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Abstract 25 

Background: Antimicrobial resistance (AMR) is an intensifying threat that requires urgent mitigation to 26 

avoid a post-antibiotic era. The ESKAPE pathogen, Pseudomonas aeruginosa, represents one of the 27 

greatest AMR concerns due to increasing multi- and pan-drug resistance rates. Shotgun sequencing is 28 

quickly gaining traction for in silico AMR profiling due to its unambiguity and transferability; however, 29 

accurate and comprehensive AMR prediction from P. aeruginosa genomes remains an unsolved 30 

problem. 31 

Methods: We first curated the most comprehensive database yet of known P. aeruginosa AMR 32 

variants. Next, we performed comparative genomics and microbial genome-wide association study 33 

analysis across a Global isolate Dataset (n=1877) with paired antimicrobial phenotype and genomic 34 

data to identify novel AMR variants. Finally, the performance of our P. aeruginosa AMR database, 35 

implemented in our ARDaP software, was compared with three previously published in silico AMR 36 

gene detection or phenotype prediction tools – abritAMR, AMRFinderPlus, ResFinder – across both the 37 

Global Dataset and an analysis-naïve Validation Dataset (n=102).  38 

Results: Our AMR database comprises 3639 mobile AMR genes and 733 AMR-conferring chromosomal 39 

variants, including 75 chromosomal variants not previously reported, and 284 chromosomal variants 40 

that we show are unlikely to confer AMR. Our pipeline achieved a genotype-phenotype balanced 41 

accuracy (bACC) of 85% and 81% across 10 clinically relevant antibiotics when tested against the 42 

Global and Validation Datasets, respectively, vs. just 56% and 54% with abritAMR, 58% and 54% with 43 

AMRFinderPlus, and 60% and 53% with ResFinder. 44 

Conclusions: Our ARDaP software and associated AMR variant database provides the most accurate 45 

tool yet for predicting AMR phenotypes in P. aeruginosa, far surpassing the performance of current 46 

tools. Implementation of our ARDaP-compatible database for routine AMR prediction from P. 47 

aeruginosa genomes and metagenomes will improve AMR identification, addressing a critical facet in 48 

combatting this treatment-refractory pathogen. However, knowledge gaps remain in our 49 

understanding of the P. aeruginosa resistome, particularly the basis of colistin AMR.  50 
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Background 51 

Antibiotic overuse and misuse [1] has driven the emergence of antimicrobial-resistant (AMR) 52 

pathogens globally [2]. We are now on the verge of a ‘post-antibiotic era’, where simple infections 53 

threaten to be untreatable with antimicrobials that once revolutionised modern medicine [3]. If 54 

unmitigated, AMR infections are predicted to cause 10 million deaths globally by 2050 and cost 55 

USD$100 trillion per annum [4].  56 

The ESKAPE pathogen, Pseudomonas aeruginosa, represents one of the biggest AMR threats due to its 57 

intrinsic resistance towards many antibiotics, environmental ubiquity, ability to infect a wide spectrum 58 

of hosts, and high global mortality rate [5-7]. Accurately detecting and predicting AMR phenotype 59 

from genotype in P. aeruginosa has proven challenging [8], even using machine learning approaches 60 

[9], with some approaches as accurate as a coin flip [8]. A major shortcoming of current in silico AMR 61 

tools is that they largely focus on detecting AMR gene gain [10, 11] and a small number of 62 

chromosomally encoded single-nucleotide polymorphisms (SNPs) [12-14]. However, P. aeruginosa can 63 

also evolve AMR through chromosomal insertions-deletions (indels), loss-of-function mutations (e.g. 64 

large deletions or frameshift mutations), structural variants, and copy-number variations (CNVs) [15]. 65 

Despite recent advances [11, 12], most AMR tools remain limited in their scope and accuracy [16] – for 66 

example, loss-of-function mutations, a major contributor to AMR, are largely ignored [14], AMR 67 

databases are often not species-specific [14, 17], they do not resolve to the individual antibiotic level 68 

[11], and precursor mutations conferring reduced antimicrobial susceptibility are overlooked. These 69 

limitations are especially problematic for accurate AMR detection and prediction in pathogens 70 

encoding complex resistomes like P. aeruginosa [8]. 71 

To address this gap, we curated and validated the most comprehensive P. aeruginosa-specific AMR 72 

variant database yet, which, when used in conjunction with the Antimicrobial Resistance Detection 73 

and Prediction (ARDaP) software [14], enables high-accuracy AMR prediction from P. aeruginosa 74 

genomes. Performance of our ARDaP-compatible AMR variant database was first assessed across 1877 75 

diverse P. aeruginosa strains (“Global Dataset”), and subsequently, across 102 analysis-naïve P. 76 
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aeruginosa strains (“Validation Dataset”). Our approach, which we demonstrate far exceeds the 77 

performance to current AMR prediction software, provides a crucial steppingstone towards the 78 

routine clinical use of genomics and metagenomics to inform personalised P. aeruginosa antimicrobial 79 

treatment regimens.   80 
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Methods 81 

P. aeruginosa AMR variant database construction. To cover the spectrum of AMR variants found in P. 82 

aeruginosa, an ARDaP v1.9 [14] compatible SQLite database was populated with all known AMR 83 

variants described in this pathogen to date 84 

(https://github.com/dsarov/ARDaP/blob/master/Databases/Pseudomonas_aeruginosa_pao1/). Gene 85 

names, locus tags, and genomic coordinates in our AMR variant database were based on PAO1 86 

(NC_002516.2) [18]. An exhaustive literature search was conducted to encompass biomedical 87 

literature published from 1980 to April 20th 2023 within the MEDLINE database. Search terms included 88 

“antimicrobial resistance” and “P. aeruginosa” accompanied by a variable search term for targeted 89 

literature, and included either: i) antibiotic class (e.g. carbapenem, aminoglycoside); ii) AMR 90 

mechanism (e.g. efflux, gene expression enzymatic inactivation); or iii) a known AMR gene (e.g. oprD, 91 

ampC, gyrA).  92 

The resultant P. aeruginosa AMR database (Dataset 1) consists of three tables. The first table, ‘1. 93 

Antibiotics’, lists the ten clinically relevant antibiotics that were interrogated in our study: amikacin, 94 

cefepime, ceftazidime, ciprofloxacin, colistin, imipenem, meropenem, piperacillin, 95 

piperacillin/tazobactam, and tobramycin, whether these drugs are first-line, second-line or tertiary, 96 

and their associated antibiotic class. The second (‘2. Variants_SNP_indel’) and third (‘3. Coverage’) 97 

tables list the entire P. aeruginosa mutational resistome [19, 20], which includes all known genetic 98 

alterations that can lead to AMR, including the functional loss of chromosomal genes (under, ‘3. 99 

Coverage’). These databases include all AMR variants and genes that: i) cause efflux pump 100 

upregulation [21]; ii) alter outer membrane permeability [22]; iii) de-repress or alter the substrate 101 

range of the AmpC cephalosporinase [23]; and/or iv) alter the antimicrobial target [24]. AMR gene 102 

acquisition was interrogated with ResFinder v4.0 [25], using default parameters and retaining only 103 

genes identified at 100% similarity and with 100% coverage. Resfinder is integrated within the ARDaP 104 

tool and run as part of the default pipeline. The default ResFinder database was manually curated to: 105 

1) remove false-positive hits that were consistently identified in AMR sensitive strains; blaOXA-106 
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395_1_AY306133, blaOXA-396_1_AY306134, blaPAO_4_AY083592, blaPAO_1_AY083595, blaPAO_3_FJ666073, blaPAO_2_FJ666065, and 107 

crpP_HM560971; 2) include additional gene variants identified within the Global Dataset in 108 

aminoglycoside AMR-conferring genes aac(6')-Ib, aac(6')-IIa, aac(6')-Ib-cr, and aac(3)-IIIa; and 3) as per 109 

ResFinder recommendations for P. aeruginosa, the substrate range for blaOXA-2_1_DQ112222 and blaOXA-110 

2_2_GQ466184 was expanded to include meropenem and imipenem. 111 

For the aminoglycosides (i.e. amikacin and tobramycin), known AMR variants consisted of point 112 

mutations in algA [26], amgS [27], fusA1 [26, 28-33], rplB [34], ptsP [33, 35], and tuf1 [26], and loss-of-113 

function mutations in the nuo [36-38] pathway. For the carbapenems (i.e. imipenem and meropenem), 114 

cephalosporins (i.e. ceftazidime), and β-lactams with or without an inhibitor (i.e. piperacillin and 115 

piperacillin/tazobactam), mutations that alter or expand the substrate range of the ampC 116 

cephalosporinase [23, 39-42] or that alter ampC expression, including inactivation of penicillin-117 

binding-protein 4 (PBP4; dacB) [43-45], ampD [45-47], ampDh2 [47], ampDh3 [47], ampE [47], ampR 118 

[48, 49], mpl [50], or ampC-ampR intergenic region [51], mutations in PBP3 (ftsI) [48, 52, 53], and 119 

mutations that cause oprD loss, inactivation, or down-regulation [49, 54-60], were included. For 120 

ciprofloxacin AMR prediction, we included point mutations in gyrA [61-67], gyrB [62, 63, 65, 68], parC 121 

[61-63, 66], and parE [62, 63, 65]. For colistin AMR prediction, point mutations in cprS [52], pmrA [69], 122 

pmrB [31, 69-74], phoP [69], and phoQ [69] were included. 123 

Efflux pumps play a key role in AMR development in P. aeruginosa, predominantly through regulator 124 

alterations, which drive efflux pump overexpression [15]. To predict MexAB-OprM upregulation, which 125 

is associated with β-lactam (including carbapenem) AMR [21], we included mutations in the cis (mexR 126 

[29, 61, 64, 75, 76]) and trans (nalC [77, 78] and nalD [23, 71, 77-79]) regulators of this efflux pump. 127 

For MexCD-OprJ upregulation, which is associated with fluoroquinolone and specific β-lactam AMR 128 

[21], mutations and loss-of coverage in the single known regulator, nfxB [61, 64] were included. For 129 

MexEF-OprN upregulation, which is linked to fluoroquinolone AMR [21], we included function-altering 130 

mutations or loss of coverage in mexS [80], the LysR family regulator mexT [81], and the global 131 

regulator mvaT [82]. For MexXY upregulation, which is associated with aminoglycoside and 132 
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fluoroquinolone AMR, we included loss-of-coverage in two refined regions of mexZ [83, 84] and the 133 

intergenic region (mexOZ) between mexZ and mexX [85, 86]. Additionally, functional gene loss variants 134 

across the entire P. aeruginosa chromosome, identified via transposon insertion experiments [36, 38, 135 

87], were included. 136 

In addition to variants that confer AMR, mutations in essential AMR-conferring genes that cause 137 

unusual antimicrobial susceptibility were included: efflux pumps mexAB [88, 89], mexXY [90], mexCD 138 

[91] and mexEF [82, 92], and the ampC regulators ampP and ampG, which are required for high-level 139 

ampC expression [51]. We also included additional targets for (meta)genome quality control and P. 140 

aeruginosa speciation (ecfX [93]), and genes responsible for conferring a hypermutator phenotype 141 

(mutS, mutL and uvrD [94]).  142 

Global Dataset. To comprehensively capture geographic, genomic, and phenotypic diversity, we 143 

collated a large and comprehensive P. aeruginosa isolate collection (n=1877) of all publicly available 144 

strains with paired antimicrobial phenotype and genomic data [9, 20, 32, 54, 95-103] (Dataset 2, Table 145 

S1). This dataset includes many antimicrobial-susceptible strains, which are essential for developing 146 

and refining high-quality AMR databases [14, 104]. Isolates with minimum inhibitory concentration 147 

(MIC) data were reclassified as sensitive, intermediate, or resistant using the CLSI M100S-Ed32:2022 148 

guidelines.  149 

Validation Dataset. To independently evaluate AMR software performance, we examined 102 150 

phylogenetically diverse, analysis-naïve, clinical P. aeruginosa strains (Figures S1 and S2). Isolates were 151 

obtained from people admitted to hospitals in Qld, Australia, with cystic fibrosis (CF; n=42), 152 

bacteraemia (n=35), chronic obstructive pulmonary disease (COPD; n=21), bronchiectasis (n=1), ear 153 

infection (n=1), ulcer (n=1), or urinary tract infection (n=1), between 2008 and 2020 (Table S2). Eighty-154 

four isolates have previously been genome-sequenced (NCBI BioProject PRJNA761496; GenBank 155 

accessions NSXK00000000.1 and NSZK00000000.1) and some have previously undergone antimicrobial 156 

susceptibility testing [105, 106]. For the current study, 18 additional COPD isolates (SCHI0038.S.1, 157 

SCHI0050.S.3, SCHI0058.S.1, SCHI0058.S.2, SCHI0059.S.1, SCHI0064.S.1, SCHI0065.S.1, SCHI0068.S.3, 158 
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SCHI0070.S.1, SCHI0070.S.1, SCHI0084.S.1, SCHI0098.S.1, SCHI0103.S.1, SCHI0107.S.1, SCHI0109.S.1, 159 

SCHI0109.S.2, SCHI0112.S.1, SCHI0112.S.2) were sequenced and appended to BioProject 160 

PRJNA761496. Antimicrobial susceptibility profiles for 8 of 10 clinically-relevant antibiotics were 161 

determined across the Validation Dataset (Table S2) using disc diffusions, following CLSI M100S-162 

Ed32:2022 guidelines. Meropenem and ciprofloxacin MICs were determined by ETEST (bioMérieux, 163 

Murarrie, Australia) using sensitive, intermediate, and resistant MIC cut-offs of ≤4, 8, and ≥16 µg/mL 164 

for meropenem, and ≤0.5, 1, and ≥2 µg/mL for ciprofloxacin. PAO1 (Belgian Coordinated Collection of 165 

Microorganisms [BCCM], Ghent University, Belgium) and LMG 6395 (BCCM) were included as 166 

antimicrobial-susceptible controls. 167 

Microbial genome-wide association study (mGWAS) and machine learning (ML) for AMR prediction. 168 

To identify novel AMR variants, mGWAS [107] was performed on the Global P. aeruginosa Dataset 169 

(n=1877 strains), with SNPs and indels identified using SPANDx v4.0.1 [108]. To increase the signal-to-170 

noise ratio, variants found in antimicrobial-sensitive isolates were penalised four-fold compared with 171 

AMR strains due to a presumed large effect size [109]. The top 50 variants associated with each AMR 172 

phenotype were assessed for their ability to improve phenotype prediction; those that improved 173 

phenotype prediction were included in the AMR database. Additionally, a supervised ML approach was 174 

performed using the Global Dataset and the AMR database as features for model creation. 175 

Comparative genomic analysis. To identify additional novel AMR variants, we conducted a 176 

comparative genomic analysis using SPANDx, with a focus on AMR strains that did not encode a known 177 

AMR variant (i.e. false negatives). These strains were compared to their closest antimicrobial-sensitive 178 

relative(s) as determined by the whole-genome phylogenetic analysis (Figure S1). SNPs and indels that 179 

separated AMR from antimicrobial-sensitive strain/s were identified, annotated and investigated with 180 

manual inspection to prioritise mutations in known AMR genes. Candidate variants were then tested 181 

against the Global Dataset to determine whether they improved phenotype prediction. AMR variants 182 

that increased balanced accuracy (bACC) were included in the database; those that did not alter, or 183 

that decreased bACC, were discarded.  184 
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AMR prediction analysis. AMR prediction was performed using our P. aeruginosa AMR database 185 

(v1.0), implemented in ARDaP [110]. ARDaP was chosen as it is the only AMR software that can detect 186 

all mutation types (i.e. SNPs, indels, gene gain, gene loss, frameshift mutations, structural variants, 187 

and CNVs) [14]. ARDaP also has a built-in feature that automatically generates a clinician-friendly 188 

antimicrobial susceptibility summary report for each strain (Figure S3) to simplify in silico AMR 189 

interpretation [14]. ARDaP performance was compared against four tools for AMR phenotype 190 

prediction and/or AMR variant identification: abritAMR [111], RGI v5.1.0 and CARD v3.0.9 [11], 191 

ResFinder v4.1 [10], and AMRFinderPlus v3.8.28 [112]. As abritAMR and AMRFinderPlus frequently 192 

report predicted AMR phenotypes to the antibiotic class level only, we chose to interpret AMR variant 193 

presence for a given class as conferring AMR towards all antibiotics within that class. Importantly, 194 

AMRFinderPlus is not intended for clinical phenotype prediction 195 

(https://github.com/ncbi/amr/wiki/Interpreting-results#genotype-vs-phenotype) but has been 196 

included as a benchmark for gene detection accuracy. For the purposes of software comparisons, gene 197 

identification by AMRFinderPlus was interpreted as conferring phenotypic resistance.  198 

A variant scoring scheme has previously been described by Cortes-Lara and colleagues, which 199 

employed a 0 (no effect) through 1 (EUCAST AMR) scale to predict in silico AMR profiles [102]. We 200 

expanded upon this scheme by providing an automated weighted score for all AMR variants in our 201 

database that quantifies their contribution, positive or negative, towards AMR development (Dataset 202 

1, ‘Threshold’ column); this score is recorded for each antibiotic on ARDaP’s automatically generated 203 

clinician-friendly report (Figure S3), unlike the Cortes-Lara scheme, which requires manual scoring for 204 

each antibiotic and strain [102]. Using our scoring system, variants known to cause AMR in isolation 205 

score as 100%, whereas AMR variants known to confer AMR in a stepwise manner (that is, only when 206 

in combination with other variant/s), or that only result in intermediate resistance, are given a lower 207 

score (e.g. 40-50%). This method accounts for both the additive nature of chromosomal mutations in 208 

P. aeruginosa, and for the decreased AMR potential caused by loss of efflux pumps or essential 209 
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transcriptional regulators. Acquired AMR genes identified by Resfinder within ARDaP were considered 210 

to confer full AMR, i.e. are scored at 100% for the purposes of phenotype prediction.  211 

Intermediate resistance prediction. The capacity of our AMR variant database to predict intermediate 212 

resistance phenotypes was examined against the Global Dataset using the following criteria:  213 

• A true-positive prediction occurred when either: i) an AMR strain was classed as AMR, or ii) an 214 

intermediate strain was identified as intermediate; 215 

• A true-negative prediction occurred when an antimicrobial-sensitive strain was identified as 216 

antimicrobial sensitive; 217 

• A false-positive prediction occurred when either: i) an antimicrobial-sensitive strain was 218 

classed as intermediate or AMR, or ii) an intermediate strain was classed as AMR; and  219 

• A false-negative prediction occurred when either: i) an intermediate strain was classed as 220 

antimicrobial-sensitive, or when an AMR strain was predicted to be antimicrobial-sensitive or 221 

intermediate.  222 

These rules provided the strictest evaluation criteria for the assessment of ARDaP’s ability to identify 223 

intermediate strains. Only ARDaP’s intermediate resistance prediction performance was assessed as 224 

abritAMR, AMRFinderPlus, CARD, and ResFinder all lack the capacity to identify intermediate 225 

resistance. 226 

AMR software predictive performance in P. aeruginosa. Due to its inability to predict AMR towards 227 

individual antibiotics, and a very high rate of false-positive predictions in the Global Dataset, CARD was 228 

deemed unsuitable for P. aeruginosa AMR analysis and was excluded from further assessment. For all 229 

other tools, predictive performance was determined using bACC [113, 114], which averages sensitivity 230 

[i.e. true positives/(true positives + false negatives)], and specificity [i.e. true negatives/(true negatives 231 

+ false positives)]. This metric was chosen as it accounts for dataset imbalance; that is, it minimises 232 

over- or under- representation of antimicrobial-sensitive or AMR strains that may otherwise make 233 

certain tools appear better or worse due to inherent dataset bias [8]. Additionally, we compared recall 234 
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(AMR) [true positives/(true positives + false negatives], precision (AMR) or positive predictive value 235 

(PPV) [true positives/(true positives + false positives), recall (sensitivity) [true negatives/(true 236 

negatives + false positives) and precision (sensitivity) or negative predictive value (NPV) [true 237 

negatives/(true negatives + false negatives)] across all software tools. 238 

Results 239 

P. aeruginosa AMR variant identification and refinement. An extensive literature search was 240 

undertaken to identify all known and putative chromosomal variants that lead to AMR in P. 241 

aeruginosa. Among the 733 identified chromosomal AMR variants, 284 putative variants were 242 

classified as ‘natural variation’ as they were common in both antimicrobial-sensitive and AMR strains 243 

in our Global Dataset, and therefore deemed unlikely to contribute to an AMR phenotype. Most of 244 

these naturally occurring variants had been previously reported as putatively causing AMR, with little 245 

to no functional investigation. Importantly, no functionally validated AMR driving variants were re-246 

classified as ‘natural variation’. Next, using mGWAS and comparative genomic analyses of the Global 247 

Dataset, we identified 75 previously unreported AMR variants associated with one or more AMR 248 

phenotypes (Table 2). In total, we identified 736 chromosomal variants in known AMR loci (Dataset 2), 249 

of which 374 were associated with AMR and 284 were natural variation.  250 

Predictive performance across Global Dataset. Although superior to CARD, abritAMR, AMRFinderPlus, 251 

and ResFinder still showed relatively poor bACCs for most antibiotics, with average bACCs of between 252 

56 and 60%, well below ARDaP’s average bACC of 85% (Figure 1A). 253 

The best abritAMR, AMRFinderPlus, and ResFinder predictions were achieved for the aminoglycosides, 254 

with average bACCs of 75%, 75%, and 82%, respectively, although these rates were lower than 255 

ARDaP’s average aminoglycoside bACC of 92%. abritAMR, AMRFinderPlus, and ResFinder AMR 256 

prediction for all other antibiotics showed poor to very poor bACCs. AMRFinderPlus had a bACC of just 257 

50% for the penicillins, cephalosporins, and colistin – the same predictive capacity as a coin flip – and 258 

had only a slightly better bACC for ciprofloxacin (58%), imipenem (58%), and meropenem (61%). 259 



12 

 

ResFinder also had a bACC of just 50% for cephalosporins and colistin, and performed worse for 260 

carbapenems (average bACC of 50%) than AMRFinderPlus, although it was better for penicillins 261 

(average bACC of 62%) and ciprofloxacin (bACC of 62%). abritAMR was the worst at predicting 262 

penicillin phenotypes, with an average bACC of just 43%, worse than a coin flip; its performance was 263 

otherwise identical to AMRFinderPlus. In contrast, ARDaP surpassed abritAMR, AMRFinderPlus, and 264 

ResFinder across all 10 antibiotics, with bACCs ranging from 60% (colistin) to 94% (tobramycin) (Figure 265 

1A).  266 

Predictive performance across Validation Dataset. We next tested abritAMR, AMRFinderPlus, ARDaP, 267 

and ResFinder across the Validation Dataset of 102 Australian clinical P. aeruginosa strains (Table S2) 268 

to determine each software’s performance in an analysis-naïve dataset. As no strains in the Validation 269 

Dataset displayed colistin AMR, the bACC for this antibiotic could not be assessed. These strains 270 

otherwise exhibited similar AMR rates to the Global Dataset, ranging from 26% for meropenem to 58% 271 

for piperacillin (Table S4).  272 

Overall, ARDaP had high predictive accuracy (average bACC of 81%) across all antibiotics (Figure 1B), 273 

vastly outperforming ResFinder (average bACC of 53%), abritAMR, and AMRFinderPlus (average bACC 274 

of 54% each). Notably, the ResFinder meropenem bACC, at just 43%, yielded worse performance than 275 

a coin flip. 276 

Inclusion of the novel AMR variants identified in the Global Dataset. The inclusion of these markers 277 

increased Validation Dataset sensitivity by an average of 4% (range 0 to 27%) depending on antibiotic, 278 

with the sensitivity of most antibiotics (meropenem, imipenem, ciprofloxacin, cefepime, and 279 

piperacillin/tazobactam) remaining unchanged. Amikacin increased the most (27%) due to the 280 

inclusion of a SNP in rplB (Gly138Ser), followed by tobramycin at 4%, and piperacillin and ceftazidime 281 

at 3% each.” 282 

ARDaP performance between the Global and Validation Datasets. Whilst ARDaP bACC between the 283 

datasets were broadly similar, there was a greater proportion of false-positive and false-negative 284 



13 

 

variants encoding AMR towards piperacillin (32% difference), tobramycin (24% difference), cefepime 285 

(19% difference), amikacin (12% difference), and meropenem (9% difference) in the Validation 286 

Dataset. In contrast, there was a greater proportion of false-positive and false-negative variants 287 

encoding amikacin AMR (5% difference) in the Global Dataset (Figure 1).  288 

Comparative genomic analysis of Validation Dataset isolates that yielded false-negative 289 

aminoglycoside AMR predictions identified that many belonged to a single multilocus sequence type 290 

(ST), ST801, also known as AUST-06. Among 23/24 aminoglycoside-AMR ST801 isolates, a clade-291 

specific missense variant in elongation factor G (FusA1 S459F) was identified; this SNP was not 292 

observed in other Global or Validation Dataset isolates. The remaining aminoglycoside-AMR ST801 293 

strain, SCHI0010.S.1, encoded AAC(6’)-IIa, an aminoglycoside-modifying enzyme. Inclusion of FusA1 294 

S459F into our AMR database significantly increased ARDaP bACCs for the Validation Dataset by an 295 

average 19% for both amikacin and tobramycin, raising them to 95% and 90%, respectively, with no 296 

impact on Global Dataset bACC. 297 

Precision and recall among AMR software. ARDaP demonstrated excellent precision and recall for 298 

predicting antimicrobial-sensitive and AMR phenotypes, ranging from 73% (average AMR recall) to 299 

96% (average sensitivity recall) (Figure 2A). In contrast, abritAMR ranged from 54% (average AMR 300 

precision) to 62% (average sensitivity precision) (Figure 2B), AMRFinderPlus ranged from 54% (average 301 

AMR precision) to 62% (average AMR recall) (Figure 2C), and ResFinder ranged from only 42% (average 302 

AMR precision) to 68% (average sensitivity precision) (Figure 2D).  303 

For colistin, abritAMR, AMRFinderPlus, and ResFinder all yielded AMR precision and recall values of 304 

0%; in other words, none of these tools identified colistin AMR variants in strains exhibiting a colistin 305 

AMR phenotype. In comparison, ARDaP identified colistin AMR strains with 21% recall and 100% 306 

precision. Similarly, abritAMR, AMRFinderPlus, and ResFinder all failed to predict cefepime sensitivity 307 

in any cefepime-sensitive strain (Figures 2B-2D), instead erroneously classing every strain as cefepime-308 

resistant, whereas ARDaP correctly identified cefepime-sensitive strains with 96% precision and 96% 309 
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recall (Figure 2A). All three tools also failed to predict ceftazidime sensitivity. In addition, abritAMR 310 

and AMRFinderPlus failed to identify piperacillin sensitivity in any of the tested strains, and 311 

AMRFinderPlus yielded failed to identify piperacillin/tazobactam sensitivity (Figures 2B and 2C). 312 

Predictive performance for intermediate resistance. The inclusion of isolates with intermediate 313 

resistance reduced ARDaP bACCs by between 1 to 13% (6% average), depending on the antibiotic 314 

(Table S5). Intermediate resistance inclusion was most detrimental to cefepime AMR prediction (-315 

13%), followed by imipenem (-8%), meropenem, ciprofloxacin and ceftazidime (-7%), 316 

piperacillin/tazobactam and amikacin (-5%), piperacillin (-4%) and tobramycin (-1%). Colistin prediction 317 

was unchanged as no intermediate category exists for this antibiotic.   318 



15 

 

Discussion  319 

The increasing role of high-throughput sequencing in the clinic has driven the concomitant 320 

development of bioinformatic tools for AMR variant detection and antimicrobial phenotype prediction 321 

[115]. However, current gold standard AMR tools are limited in their accuracy and performance due to 322 

their heavy focus on AMR gene gain rather than AMR-conferring chromosomal variants, and their 323 

inability to detect the gamut of genetic mutations that can confer AMR (i.e. gene loss, indels, CNVs, 324 

and structural variants) [14]. In addition, most tools have primarily focused on detection of AMR genes 325 

rather than AMR phenotype prediction. These shortcomings become acutely evident when attempting 326 

to predict AMR in pathogens with complex resistomes like P. aeruginosa [8].  327 

To address this issue, we first constructed a comprehensive and accurate database of AMR variants 328 

encoded by P. aeruginosa. Our database of 733 chromosomal AMR-conferring variants (Dataset 2) 329 

comprises 374 previously identified AMR variants that we confirmed were significantly associated with 330 

an AMR phenotype, along with 75 AMR variants identified in this study. A further 284 AMR variants 331 

identified by us, and others, were classed as natural variants due to their non-significant association 332 

with AMR strains (Table S3). These variants were included for two reasons: i) to allow ARDaP’s 333 

coverage algorithm to scan known AMR genes for novel, high-consequence mutations (e.g. frameshift 334 

mutations in oprD that lead to carbapenem AMR) while avoiding natural variation that does not 335 

impact function, ii) to substantially reduce the legwork involved in identifying putative novel AMR 336 

variants using mGWAS or comparative genomics, and iii) to reduce the over-reporting of natural 337 

variants as putatively AMR conferring. Our natural variant list also provides a valuable resource for 338 

minimising erroneous AMR variant reporting in future P. aeruginosa AMR variant discovery studies. 339 

Next, performance assessment of our ARDaP-compatible AMR database against the Global and 340 

Validation Datasets showed that our tool outstripped the predictive performance of current ‘gold 341 

standard’ AMR software across all 10 antibiotics, yielding average bACC of 85%, vs. just 56%, 58% and 342 

60% for abriTAMR, AMRFinderPlus and ResFinder, respectively (Figure 1). This performance difference 343 

is due to our chromosomal AMR variant database, which directly links genotypes with individual 344 
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antibiotic phenotypes, and provides weighted scores on variant contribution towards AMR 345 

development (Dataset 1). Our findings concur with a recent study of 654 P. aeruginosa genomes, 346 

which also found that CARD and ResFinder exhibited poor AMR prediction performance metrics across 347 

all 11 tested anti-pseudomonal antibiotics [8]. 348 

Although still inferior to ARDaP, abritAMR, AMRFinderPlus, and ResFinder performed best when 349 

predicting aminoglycoside phenotypes in the Global Dataset (Figure 1A), which is heavily populated 350 

with American and European strains (Table S1). These tools performed substantially worse when 351 

tested against the Australian Validation Dataset (Figure 1B), with the average aminoglycoside bACC 352 

dropping by 16% for AMRFinderPlus and 26% for ResFinder. ARDaP’s bACC also initially dropped by 353 

18% for the aminoglycosides. Upon closer inspection, we found that this performance reduction was 354 

predominantly due to false-negative calls among the ST801 isolates, a geographically restricted clone 355 

that has only been reported in people with CF in Qld, Australia [116]. Inclusion of one novel fusA1 356 

variant identified with comparative genomics in our AMR variant database restored ARDaP’s 357 

performance to bACC of 90% and 95% for amikacin and tobramycin, respectively. This performance 358 

difference across isolate datasets can be attributed to two phenomena. The first is the predominance 359 

of aminoglycoside-modifying enzymes in the Global (33%) but not Validation (8%) Datasets, reflecting 360 

potential major differences in the geographic prevalence of these enzymes that requires further 361 

exploration. The second is the enrichment of CF-derived isolates in the Validation Dataset, which 362 

comprise 86% of the aminoglycoside AMR strains (Figure S1). These isolates have largely developed 363 

aminoglycoside AMR via chromosomal mutation rather than aminoglycoside-modifying enzyme 364 

acquisition; as such, abritAMR, AMRFinderPlus, and ResFinder exhibited poor aminoglycoside AMR 365 

predictive capacity due to their limited chromosomal AMR variant databases. These performance 366 

differences highlight the need for including isolates from diverse sources, disease states, and locales to 367 

provide the most relevant AMR prediction software benchmarking comparisons. Our results suggest 368 

that abritAMR, AMRFinderPlus, and ResFinder are not useful for predicting aminoglycoside AMR from 369 
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CF-derived P. aeruginosa, particularly in the Australian context, although this finding requires further 370 

exploration across larger, geographically diverse datasets. 371 

Our findings revealed important weaknesses in abritAMR, AMRFinderPlus, and ResFinder when used 372 

for phenotype prediction. All three tools yielded bACCs of just 50% for cephalosporin prediction, 373 

abritAMR and AMRFinderPlus yielded a bACC of just 50% for piperacillin (Figures 1A and 1B), and 374 

abritAMR performed worse than a coin flip for predicting piperacillin/tazobactam phenotypes, with a 375 

bACC of just 35%. These cases of under-performance were largely attributed to sensitive isolates being 376 

predicted as AMR (Figure 2). The inferior performance of abritAMR and AMRFinderPlus over ResFinder 377 

was further exacerbated by their software design; for most anti-pseudomonal antibiotics, these tools 378 

only predict phenotypes to the antibiotic class level. To facilitate direct software comparisons, AMR 379 

identified for a given antibiotic class by abritAMR and AMRFinderPlus was extrapolated to all 380 

antibiotics within that class, which likely led to higher imprecision or error due to differences in within-381 

class antibiotic spectrum of activity. For instance, the poor abritAMR piperacillin/tazobactam bACC 382 

may be attributed to this tool only reporting ‘β-lactamase’ presence; however, the impact of this β-383 

lactamase on piperacillin/tazobactam efficacy is not explicitly reported due to insufficient granularity. 384 

Based on our and other’s [8] collective findings, we strongly discourage the use of abritAMR, 385 

AMRFinderPlus, or ResFinder for in silico cephalosporin AMR prediction in P. aeruginosa as none of 386 

these tools are currently capable of accurately differentiating sensitive from AMR strains for these 387 

antibiotics. Further, abritAMR and AMRFinderPlus should not be used to predict penicillin 388 

susceptibility phenotypes in P. aeruginosa due to their insufficient resolution. 389 

Colistin prediction proved the most challenging of the 10 tested antibiotics, yielding bACCs of 50% 390 

with abriTAMR, AMRFinderPlus, and ResFinder, and 60% with ARDaP. ARDaP the only tool able to 391 

correctly predict some colistin AMR strains; the other three tools erroneously classified all P. 392 

aeruginosa strains as colistin-sensitive (Figures 2B and 2C). Accurate colistin prediction may have been 393 

hampered by the purported unreliability of gradient diffusion methods (e.g. disc diffusions, ETESTS) to 394 

accurately measure colistin breakpoints due to poor antibiotic diffusion and Mueller-Hinton agar 395 
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manufacturer differences [117, 118]. Our study has identified a major gap in understanding the basis 396 

of colistin AMR, and underscores the need for much more work in this area, especially given the 397 

increasing use of inhaled colistin in treatment-refractory, multidrug-resistant P. aeruginosa infections 398 

[119, 120]. 399 

Loss-of-function mutations affecting the specialised porin, OprD, are the most common cause of 400 

carbapenem AMR in P. aeruginosa, particularly in clinical isolates [9]. Although oprD is notoriously 401 

hypervariable [121], ARDaP’s ability to accurately identify functional OprD loss accounted for its high 402 

carbapenem predictive accuracy (average bACC of 89% vs. just 61% for AMRFinderPlus and 52% for 403 

ResFinder). This outcome highlights the complex nature of the P. aeruginosa resistome, the necessity 404 

of AMR variant curation efforts, the value of AMR prediction tools that can accurately detect the 405 

spectrum of chromosomal variants, and the value of species-specific AMR variant databases to achieve 406 

the most accurate AMR predictions.  407 

Mutations leading to chromosomal cephalosporinase (ampC) overexpression are an important cause 408 

of β-lactam AMR [15, 122]. To predict ampC upregulation, our database includes function-altering 409 

mutations in genes known to directly or indirectly regulate ampC. These chromosomally-encoded 410 

variants, alongside acquired cephalosporinases, accounted for the high average ARDaP bACC observed 411 

for the cephalosporins (84% vs. just 50% with abritAMR, AMRFinderPlus, and ResFinder; Figure 1). The 412 

prominence of ampC over-expression-associated determinants provides further support that this 413 

mechanism is a major cause of acquired cephalosporin AMR, particularly in clinical P. aeruginosa 414 

isolates [122, 123]. In support of this hypothesis, Khaledi and colleagues demonstrated a considerably 415 

higher bACC for ceftazidime AMR prediction when using both transcriptomic and genomic data (82%) 416 

compared with just genomic data (67%) [9]. Genomics alone cannot currently identify all instances of 417 

ampC over-expression, either because up-regulation is the result of an epigenic change, or the 418 

mutation remains cryptic due to an incomplete understanding of ampC regulatory mechanisms. 419 

Indeed, a review of intrinsic β-lactamases by Juan and colleagues details the complexity of ampC 420 

expression and its intricate regulation, along with the challenge of corresponding elevated β-421 
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lactamase MICs driven by ampC upregulation to clinical AMR breakpoints [124]. Using a combination 422 

of genomic and transcriptomic data will likely lead to further improvements in AMR prediction for 423 

most antibiotics [9, 122]. 424 

Predicting intermediate resistance is exceedingly difficult from genomic data alone, even with complex 425 

machine learning algorithms that combine transcriptomic and genomic data [9]. We also encountered 426 

difficulties in predicting intermediate resistance, with the inclusion of intermediate strains dropping 427 

bACCs by up to 13% (Table S5). Possible explanations include the need to understand the contribution 428 

of stepwise variants in conferring decreased antibiotic susceptibility [15, 67, 125], subtle and rapidly 429 

reversible gene expression alterations [9] caused by methylation [126] or dynamic environmental 430 

stimuli, and undetected strain mixtures. Further refinement of our ARDaP-compatible database, such 431 

as capacity to analyse RNA-seq data, will continue to improve this critical yet understudied area. 432 

Nevertheless, the pioneering capacity of ARDaP to predict intermediate resistance, including stepwise 433 

mutations that lower the barrier to full AMR development, and to differentiate strain mixtures in 434 

metagenomic data, has important implications for detecting emerging AMR in P. aeruginosa and 435 

informing earlier treatment shifts [14]. 436 

Errors introduced during sample collection, metadata curation, specimen processing, or sequencing 437 

may be partially responsible for our inability to predict AMR with a 100% bACC for any antibiotic. For 438 

example, 11 strains in the Khaledi et al. dataset [9] possessed variants known to confer ceftazidime 439 

AMR (e.g. blaVIM-[2,4,47], blaOXA-2, blaGES-[1,5]) yet were reported as ceftazidime-sensitive, and 22 strains in 440 

the Kos et al. dataset were amikacin-sensitive, yet possessed the aminoglycoside-modifying enzyme 441 

gene aac(6')-Ib-cr, known to cause amikacin AMR and reduced ciprofloxacin susceptibility [127]. Due 442 

to the presence of these known AMR variants, all tools identified these strains as AMR, contributing to 443 

imperfect bACC (Figure 1) and poor precision (Figure 2) for amikacin and ceftazidime. As we did not 444 

have access to these strains, it was not possible to retest their AMR phenotypes or to repeat genome 445 

sequencing; however, we hypothesise that these strains would generate different results upon 446 

phenotypic retesting or re-sequencing. Alternatively, these AMR variants may be present but 447 
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functionally or transcriptionally inactive, resulting in false-positive predictions for these isolates that 448 

must be factored into future AMR prediction estimates.  449 

We recognise several study limitations. First, some false-positive predictions were identified across all 450 

antibiotic classes with our ARDaP-compatible database; however, these rates were significantly lower 451 

than those reported by other software (Figure 1). Whilst not ideal, we chose to retain a small number 452 

of AMR variants that result in low-frequency false-positive predictions as: i) some strains may have 453 

reverted to a sensitive phenotype, despite encoding a known AMR variant; and ii) we included 454 

phenotypic data generated by others, which may harbour inaccuracies. Functional profiling will be 455 

essential to fully understand the contribution of each of these variants in conferring AMR. Second, 456 

although we aimed for a phylogenetically diverse Validation Dataset (Figure S1, S2), only isolates from 457 

Queensland, Australia, were included in this dataset, limiting geographic and genetic representation. 458 

Despite this shortcoming, the Validation Dataset proved extremely useful for identifying AMR variant 459 

database deficits across all three AMR tools, particularly those variants encoding AMR towards the 460 

aminoglycosides, piperacillin, cefepime, and meropenem, highlighting clear areas of need for future 461 

research efforts. Third, due to cost constraints, we only performed ciprofloxacin and meropenem 462 

ETESTs for the Validation Dataset isolates, with disc diffusions used for the remaining eight antibiotics, 463 

a less robust methodology that may have led to some minor discrepancies in antimicrobial phenotype 464 

assignments. Fourth, we did not test out ARDaP’s capacity to identify P. aeruginosa AMR variants from 465 

simulated and real metagenomic datasets and strain mixtures for this study as we have proven this 466 

capacity elsewhere [14, 106] nor were we able to compare software performance against ARESdb 467 

[128] due to the proprietary nature of this database. Finally, our study would have benefitted from the 468 

inclusion of transcriptomic data [9] to identify additional novel variants associated with AMR. Although 469 

our understanding of the molecular mechanisms of AMR in P. aeruginosa is improving rapidly in the 470 

genomics era, false-negative predictions still occur across all antibiotic classes. Using ARDaP, such 471 

false-negative strains can now be rapidly identified and targeted for future functional work to pinpoint 472 

novel AMR variants and mechanisms.  473 
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Tables 917 

Table 1. Summary of antimicrobial resistance prevalence across 10 clinically relevant antibiotics in 918 

the Pseudomonas aeruginosa Global Dataset 919 

Antibiotic Class Antibiotic Res (%) Int (%) Sen (%) No. isolates 

Carbapenems 
MEM 682 (36) 149 (8) 682 (36) 1875 

IPM 186 (29) 46 (7) 419 (64) 651 

Polymyxins CST 48 (5) 0 (0) 933 (95) 981 

Fluoroquinolones CIP 664 (54) 78 (6) 477 (39) 1219 

Cephalosporins 
FEP 157 (17) 111(12) 650 (71) 918 

CAZ 316 (27) 121 (10) 733 (63) 1170 

Penicillins 
TZP 179 (24) 52 (7) 526 (69) 757 

PIP 185 (36) 55 (11) 272 (53) 512 

Aminoglycosides 
TOB 294 (29) 12 (1) 695 (69) 1001 

AMK 170 (12) 56 (4) 1199 (84) 1425 

 920 

Abbreviations: Res, resistant; Int, intermediate; Sen, sensitive; MEM, meropenem; IPM, imipenem; 921 

CST, colistin; CIP, ciprofloxacin; FEP, cefepime; CAZ, ceftazidime, TZP, piperacillin/tazobactam; PIP, 922 

piperacillin; TOB, tobramycin; AMK, amikacin  923 
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Table 2. Novel antimicrobial resistance (AMR) variants identified in Pseudomonas aeruginosa by 924 

microbial genome-wide association study (mGWAS) or comparative genomic
$
 analyses 925 

Locus Type of mutation Associated AMR phenotype 
Fisher’s Exact p 

value 

PA0027 Lys34Asn PIPr < 0.0001 

PA0091 (vgrG1) Gln214His AMKi NA 

PA0746 Lys106Asn FEPr < 0.0001 

PA0958 (oprD) Thr18fs
$^

  MEMr, IPMr NA 

PA0958 (oprD) Phe36fs
$^

 MEMr, IPMr NA 

PA0958 (oprD) Leu136Gln
$
  MEMr NA  

PA0958 (oprD) Gly139fs
$^

 MEMr, IPMr NA 

PA0958 (oprD) Gly193fs
$^

 MEMr, IPMr NA 

PA0958 (oprD) Tyr199fs
$^

 MEMr, IPMr NA 

PA0958 (oprD) Gln340Pro$ MEMr NA 

PA0958 (oprD) Tyr350fs$^ MEMr, IPMr NA 

PA0958 (oprD) Leu355fs$^ MEMr, IPMr NA 

PA0958 (oprD) Leu409Pro$ MEMr NA 

PA1430 (lasR) Glu183Gly$ CSTr NA 

PA1456 (cheY) Val81Ala CSTr NA 

PA1760 LOF$ TZPi NA 

PA1798 (parS) Ala149Thr MEMr < 0.0001 

PA1798 (parS) Arg383Cys$ CSTr NA 

PA1798 (parS) Arg7His$ PIPr NA  

PA1798 (parS) Asp249Asn$ TZPr, AMKi NA 

PA1799 (parR) Val68Ala CAZr 0.0002 

PA1799 (parR) Leu165Phe$  MEMr  NA 

PA1923 Ala350Val TZPr < 0.0001 

PA1942
1
 LOF$ MEMr, IPMr NA 

PA2020 (mexZ) Thr32Asn$ MEMr  NA 

PA2020 (mexZ) Ser198Ile$ MEMr  NA 

PA2020 (mexZ) Leu199Arg$  FEPr NA 

PA2402 Val3040Ala AMKr < 0.0001 

PA2520 (czcA) Gly1051Asp
$
 CSTr NA 

PA2736 Arg30Gly AMKr < 0.0001 

PA3047 (PBP4, 

dacB) 
Thr27Ser CAZr, FEPr, PIPr, TZPr 

NA 

PA3047 (PBP4, 

dacB) 
Ser230Ile CAZr, FEPr, PIPr, TZPr 

NA 

PA3047 (PBP4, 

dacB) 
Phe438Leu CAZr, FEPr, PIPr, TZPr 

NA 

PA3083 (pepN) LOF$ MEMr, CAZr NA 

PA3384 (phnC) LOF$ MEMr, TOBr NA 

PA3574 (nalD) Leu76Pro$  MEMr  NA 

PA3574 (nalD) Arg164Pro$ PIPr, FEPr NA 

PA3721 (nalC) Lys58Glu$ MEMr NA 

PA4020 (mpl) Gly137Ser$ CAZr NA  
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PA4109 (ampR) Ter297Tyr stop lost$^ PIPr NA 

PA4110 (ampC) Asp272Asn$ MEMr NA 

PA4110 (ampC)
2
 Leu320Pro

$
 MEMr NA 

PA4260 (rplB) Gly138Ser
$
 TOBi, AMKr NA 

PA4266 (fusA1)
#
 Ser459Phe

$
 TOBr, AMKr NA 

PA4296 (pprB) Asn253His
$
 CSTr NA 

PA4318 Pro243Ser PIPr < 0.0001 

PA4418 (ftsI) Gly63Asp$ IPMr, CAZr, FEPr, TZPr, PIPr NA 

PA4522 (ampD) Val10Gly
$
 CAZr, FEPi, PIPi NA 

PA4522 (ampD) Pro41Leu
$
 PIPr, FEPr NA 

PA4522 (ampD) Glu67stop
$^

 CAZi, MEMi, IPMi, TZPi, PIPi, FEPi NA 

PA4522 (ampD) Ile69Thr
$
 MEMr NA 

PA4522 (ampD) Gln88Leu$ CAZr NA 

PA4522 (ampD) Gly100Glu$ MEMr  NA 

PA4522 (ampD) Cys110Gly$ FEPr NA 

PA4522 (ampD) Gly116Val$ MEMr, CAZr NA 

PA4522 (ampD) Ile117Thr$ CAZr NA 

PA4522 (ampD) Gly121Glu$ MEMr, CAZi NA 

PA4522 (ampD) His157Tyr$ CAZr NA  

PA4522 (ampD) Gly169Cys$ FEPr NA 

PA4599 (mexC) -58C>A$ FEPr NA 

PA4677 Asp138Val FEPr < 0.0001 

PA4776 (pmrA) Leu72Phe$  CSTr NA 

PA4777 (pmrB) Arg10Leu$ CSTr NA 

PA4777 (pmrB) Arg155His$ CSTr NA 

PA4777 (pmrB) Thr158Ile$ CSTr NA 

PA4777 (pmrB) Thr253Met$  CSTr NA 

PA5000 (wapR) Gly163Asp$ CSTr NA  

PA4967 (parE) Glu459Lys CIPi NA 

PA4967 (parE) Val520Ala CIPi NA 

PA5045 (ponA) Met671Ile CAZr, FEPr, TZPr, PIPr NA 

PA5051 (argS) Asp184Gly TOBr NA 

PA5199 (amgS) Trp120Gly$  CSTr NA 

PA5199 (amgS) Pro435Ala
$
 CSTr NA 

PA5338 (spoT) Gly496Ser
$
 CAZr NA  

PA5493 (polA) Lys395Arg$ AMKr NA 

Abbreviations: AMK, amikacin; CAZ, ceftazidime; CIP, ciprofloxacin; CST, colistin; FEP, cefepime; fs, 926 

frameshift; i, intermediate resistant; IPM, imipenem; LOF, loss of function; MEM, meropenem; NA, not 927 

applicable; PIP, piperacillin; r, resistant; TOB, tobramycin; TZP, piperacillin/tazobactam 928 

1
Previously predicted to cause PIPr [129]; however, our microbial genome-wide associate study 929 

(mGWAS) analysis did not identify a significant association with this phenotype. Instead, mGWAS 930 

showed that this AMR variant was significantly associated with MEMr. 931 

2Previously identified variant in ampC known to reduce susceptibility to multiple cephalosporins. 932 

$Variant identified by comparative genomics and thus not assessed for statistical significance. 933 

#Identified in the Validation Dataset only. 934 
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^
High-consequence mutations occurring in this gene are automatically identified by ARDaP. 935 



35 

 

Figures 936 

 937 

Figure 1. Balanced accuracy of ARDaP, abritAMR, AMRFinderPlus, and ResFinder for antimicrobial 938 

resistance (AMR) prediction in Pseudomonas aeruginosa. Software comparisons across ten clinically 939 

relevant antibiotics were undertaken against (A) the Global Dataset (n=1877 isolates) and (B) the 940 

Validation Dataset (n=102 isolates). For both datasets, and for all 10 antibiotics, ARDaP outperformed 941 

abritAMR, AMRFinderPlus, and ResFinder. To enable comparison with existing AMR prediction 942 

software, isolates with intermediate AMR were removed prior to analysis. Abbreviations: AMK, 943 
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amikacin; CAZ, ceftazidime; CIP, ciprofloxacin; CST, colistin; FEP, cefepime; FQs, fluoroquinolones; IPM, 944 

imipenem; MEM, meropenem; PIP, piperacillin; TZP, piperacillin/tazobactam; TOB, tobramycin. *No 945 

strains in the Validation Dataset exhibited CST AMR; as such, balanced accuracy could not be 946 

calculated for this antibiotic. 947 

 948 

Figure 2. Precision and recall of ARDaP, abritAMR, AMRFinderPlus, and ResFinder across the Global 949 

Dataset (n=1877 strains). Precision and recall metrics for both antimicrobial-sensitive and 950 

antimicrobial-resistant strains were highest using ARDaP (A; range 73-96%) with abritAMR (B; range 951 

54-62%), AMRFinderPlus (B; range 55-62%) and ResFinder (C; range 42-68%) all performing worse in 952 

comparison. To enable comparison with existing AMR prediction software, isolates with intermediate 953 

AMR were removed prior to analysis. Abbreviations: AMK, amikacin; CAZ, ceftazidime; CIP, 954 

ciprofloxacin; CST, colistin; FEP, cefepime; FQs, fluoroquinolones; IPM, imipenem; MEM, meropenem; 955 

PIP, piperacillin; TZP, piperacillin/tazobactam; TOB, tobramycin. N.B. Precision (resistance) is also 956 

known as positive predictive value (PPV) and precision (sensitivity) is also known as negative predictive 957 

value (NPV).  958 






