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Abstract 31

Problem: The past decades have yielded an explosion of research using artificial 32

intelligence for cancer detection and diagnosis in the field of computational pathology. 33

Yet, an often unspoken assumption of this research is that a glass microscopy slide 34

faithfully represents the underlying disease. Here we show systematic failure modes 35

may dominate the slides digitized from a given medical center, such that neither the 36

whole slide images nor the glass slides are suitable for rendering a diagnosis. 37

Methods: We quantitatively define high quality data as a set of whole slide images 38

where the type of surgery the patient received may be accurately predicted by an 39

automated system such as ours, called “iQC”. We find iQC accurately distinguished 40

biopsies from nonbiopsies, e.g. prostatectomies or transurethral resections (TURPs, 41

a.k.a. prostate chips), only when the data qualitatively appeared to be high quality, e.g. 42

vibrant histopathology stains and minimal artifacts. Crucially, prostate needle biopsies 43

appear as thin strands of tissue, whereas prostatectomies and TURPs appear as larger 44

rectangular blocks of tissue. Therefore, when the data are of high quality, iQC 45

(i) accurately classifies pixels as tissue, (ii) accurately generates statistics that describe 46

the distribution of tissue in a slide, and (iii) accurately predicts surgical procedure. 47

We additionally compare our “iQC” to “HistoQC”, both in terms of how many 48

slides are excluded and how much tissue is identified in the slides. 49
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Results: While we do not control any medical center’s protocols for making or 50

storing slides, we developed the iQC tool to hold all medical centers and datasets to 51

the same objective standard of quality. We validate this standard across five Veterans 52

Affairs Medical Centers (VAMCs) and the Automated Gleason Grading Challenge 53

(AGGC) 2022 public dataset. For our surgical procedure prediction task, we report an 54

Area Under Receiver Operating Characteristic (AUROC) of 0.9966-1.000 at the 55

VAMCs that consistently produce high quality data and AUROC of 0.9824 for the 56

AGGC dataset. In contrast, we report an AUROC of 0.7115 at the VAMC that 57

consistently produced poor quality data. An attending pathologist determined poor 58

data quality was likely driven by faded histopathology stains and protocol differences 59

among VAMCs. Corroborating this, iQC’s novel stain strength statistic finds this 60

institution has significantly weaker stains (p < 2.2× 10−16, two-tailed Wilcoxon 61

rank-sum test) than the VAMC that contributed the most slides, and this stain 62

strength difference is a large effect (Cohen’s d = 1.208). 63

In addition to accurately detecting the distribution of tissue in slides, we find iQC 64

recommends only 2 of 3736 VAMC slides (0.005%) be reviewed for inadequate tissue. 65

With its default configuration file, HistoQC excluded 89.9% of VAMC slides because 66

tissue was not detected in these slides. With our customized configuration file for 67

HistoQC, we reduced this to 16.7% of VAMC slides. 68

Conclusion: Our surgical procedure prediction AUROC may be a quantitative 69

indicator positively associated with high data quality at a medical center or for a 70

specific dataset. We find iQC accurately identifies tissue in slides and excludes few 71

slides, unless the data are poor quality. To produce high quality data, we recommend 72

producing slides using robotics or other forms of automation whenever possible. We 73

recommend scanning slides digitally before the glass slide has time to develop signs of 74

age, e.g faded stains and acrylamide bubbles. We recommend using high-quality 75

reagents to stain and mount slides, which may slow aging. We recommend protecting 76

stored slides from ultraviolet light, from humidity, and from changes in temperature. 77

To our knowledge, iQC is the first automated system in computational pathology that 78

validates data quality against objective evidence, e.g. surgical procedure data available 79

in the EHR or LIMS, which requires zero efforts or annotations from anatomic 80

pathologists. 81

1 Introduction 82

Over the past several years in the field of computational pathology[1], automated methods 83

to assess data quality have tended to focus on excluding confounded regions or measuring 84

the negative impact of poor quality data. The field has benefited from specialized tools such 85

as tissue fold detection[2], blur detection[3], pen detection[4], and fragment detection[5] – 86

as well as general frameworks for quality control[6, 7]. The negative effect of whole slide 87

image artifacts on downstream computational pathology methods has been benchmarked[8, 88

9], with some reports of specific normalizations improving task performance under specific 89

artifacts[10, 11]. 90

If an automated system is not used to segment out artifacts or other confounds that 91

would lower data quality, computational pathology pipelines may implicitly or explicitly have 92

methods to exclude artifacts. For instance, our earlier work to predict SPOP mutation in 93

prostate cancer was engineered to focus on diagnostically salient regions enriched in 94

predicted subtypes of nuclei, which implicitly avoids pen and background[12]. Later, in what 95

would form the basis of Paige Prostate, Campanella and colleagues used weakly supervised 96

learning and a recurrent neural network to identify suspect foci of cancer in whole slide 97

images, which explicitly used Otsu’s method[13] to exclude background and through 98

machine learning at scale may implicitly learn to avoid some artifacts[14]. Shortly thereafter, 99

Lu and colleagues used weakly supervised learning with an attention mechanism for renal 100

cancer subtyping, which explicitly used thresholding to exclude background, while their 101
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attention mechanism was shown to exclude normal morphology and some artifacts[15]. 102
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Fig 1. Our study’s workflow (Sec S1.9), from a patient’s surgery (A1), through iQC’s quality
control (D2a-c), to downstream computational research (D3) and results (D4). A1: Tissue is
surgically excised from the patient. A2a: Tissue may be excised as a needle biopsy, which removes a
thin ribbon of tissue (Fig 2A1). A2b: Alternatively, tissue may be excised as a “nonbiopsy”, e.g. a
prostatectomy (Fig 2E1) or a transurethral resection of prostate (TURP). B1a: A pathologists’
assistant receives the tissue. B2b: The pathologists’ assistant may use a machine to prepare the
slide. B2a: A slide may be prepared by hand or by machine, using stains and mounting solution.
B2b: Alternatively, a machine may prepare the slide using stains and a lower-cost mounting tape.
B3: A prepared slide is stored, e.g. in a cabinet in the pathology department or medical center.
Slides age here and may be subject to changes in heat, humidity, ultraviolet light, etc. Aging rates
may depend on slide preparation. B4: If the pathology department does not have a whole slide
scanner, the department ships the slides to a different medical center that has one. B5: A whole
slide scanner takes a high-resolution picture of the entire slide. This picture is a whole slide image.
C1: Several medical centers in parallel generate whole slide images. C2a: Each medical center sends
a mix of whole slide images, which may include biopsies (c.f. A2a). C2b: Nonbiopsy images may be
sent in the mix (c.f. A2b). D1a: Images are collected and organized in the datacenter. D1b: The
Laboratory Information Management System (LIMS) tracks which slides are biopsies (e.g. C2a) and
which slides are nonbiopsies (e.g. C2b). These biopsy/nonbiopsy metadata are used to train iQC
(D2a) to predict from the image the corresponding surgical procedure (biopsy vs nonbiopsy).
Alternatively, surgical procedure may be tracked in the Electronic Health Record (EHR). D2a: iQC
subjects all whole slide images to quality control and generates many statistics to describe each
image. D2b: iQC generates a mask image to describe each pixel (c.f. C2a), and in this case passes
biopsy samples on to downstream studies (D3). D2b: iQC may reject poor quality slides or withhold
nonbiopsies (c.f. C2b) from downstream studies (D3), if the studies are intended to be of biopsies
only. D3: Downstream computational studies may occur on high-quality whole slide images of the
appropriate surgical procedure type, i.e. biopsies. D4: Studies may lead to publication.

Unfortunately, in a large independent validation, Perincheri and colleagues noted “Areas 103

for improvement were identified in Paige Prostate’s handling of poor quality scans”, which 104

may suggest weakly supervised learning may benefit from rigorous quality control as a 105

preprocessing step[16]. Quality control may flag poor quality slides for manual review, 106

exclude artifacts, or take other actions before Paige Prostate or other downstream 107

processing occurs. 108

Inspired by our early work that noted different surgical procedures (Fig 1A2,A3) may 109

impact the distribution of tissue in a slide and deep learning performance[17], we developed 110
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the hypothesis underlying our iQC tool. Specifically, for high quality data, a quality control 111

system should be able to accurately count the number of tissue pixels in a slide, describe the 112

distribution of tissue in a slide, and therefore predict what kind of surgical procedure was 113

used to excise the tissue present in the slide (Fig 2A1,C1,D1,F1,Q1 are biopsy examples 114

versus Fig 2B1,L2,N1,O1,P1 are nonbiopsy examples). Thus for poor quality data, our 115

hypothesis is that tissue may not be accurately measured and surgical procedure may not be 116

accurately predicted. 117

118

(Caption on next page.) 119
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Fig 2. Representative histopathology images in our study. A1: a whole slide image of a prostate
needle biopsy at low magnification. A2: High magnification of prostate needle biopsy from A1,
showing horizontal bands of systematic blur (gray arrows), in contrast to bands of visually sharp
pixels where glands are visible (black arrows). A3: iQC’s quality control mask (imaskraw ) showing
the type of each pixel – background pixels are in white, blue pen pixels (which draw two blue check
marks rotated 90°) are in blue, the edge of the slide is in black, tissue pixels are in magenta (black
arrows), “suspect” tissue pixels are orange (gray arrows), and “suspect” pixels that form horizontal
bands (red arrows) may suggest the quality of this whole slide image suffers from systematic blur.
A4: iQC’s quality control mask (imaskinferred) shows machine learning infers “suspect” tissue
pixels as tissue (dark magenta at gray arrows), so all tissue in the slide may be accurately measured
for biopsy/nonbiopsy prediction. B1: A pelvic lymph node at low magnification where systematic
blur may be difficult to perceive. B2: Higher magnification plainly shows a horizontal band of
systematic blur (gray arrow) compared to visually sharp pixels (black arrow). B3: This imaskraw

shows sharp pixels are assigned the “tissue” type as indicated in magenta (black arrow), while
systematically blurred pixels have the “suspect“ type as indicated in orange (gray arrow). B4:
Machine learning infers “suspect” tissue pixels as tissue, which is shown as a dark magenta (gray
arrow). C1: A prostate needle biopsy, where the slide shows signs of age. C2: iQC’s quality control
mask imaskedge outlines in magenta these signs of age, i.e. large acrylamide bubbles from degraded
mounting compound incompletely holding the coverslip to the glass slide (Sec S1.6). Tissue and
pen are outlined in green. C3: imaskinferred shows some tissue pixels in magenta, while other
tissue pixels are shown in black, which may loosely correspond to which tissue is most confounded
by bubbles. Bubble edges are shown in black. D1: This slide shows signs of age through refractive
dispersion that causes a rainbow effect (black arrows), in addition to bubbles. D2: Like C3,
imaskinferred shows tissue in magenta and the most age-confounded pixels in black. E1: The
Cancer Genome Atlas (TCGA) is a public dataset. There are bubbles throughout slide
TCGA-QU-A6IM-01Z, which may emphasize the value of automated quality control for public
datasets. E2: imaskinferred shows bubble edges or bubble-confounded regions in black, regions with
blood/erythrocytes in red, and regions with blue marker in blue. F1,G1,H1: all these slides have
faded histopathology stains. A pathologist deemed these slides unsuitable for diagnosis,
corroborating iQC’s stain strength statistics (Sec S1.2.7.1) that are weak for these slides. H2,H3:
imaskraw and imaskinferred , respectively, which show points of debris as brown spots, threads of
debris in black, and thread-confounded tissue in black. I1: A whole slide image thumbnail showing
identifiers such as surgical pathology number “SP...” that may be printed on the glass slide, along
with other identifiers. A coded external ID “C...” may be applied as a sticker on top to redact some
or all of these identifiers. We indicate our redactions to this image with stars. I2: A whole slide
image thumbnail that shows an accession number “S03...” and a coded external ID “C...”. We
remove all thumbnails from slides because no identifiers are allowed in research data. Our
redactions are indicated with stars. J1,J2,K1,K2: Depending on how the glass slide is physically
aligned during scanning, text or potentially identifiers on the slide (see I1,I2) may be scanned in the
whole slide image at high resolution (at gray arrows, stars for redactions). iQC flags for manual
review slides having such markings because patient names or other identifiers are not allowed in
research data. L1: The thumbnail indicates a black scuff artifact was scanned at high resolution
(green box) – missing the prostate needle biopsy (red arrow). L2,L3: There is no human tissue
scanned at high resolution in this slide, only the black artifact. M1: The thumbnail indicates a blue
pen mark was scanned at high resolution (green box) – missing the prostate needle biopsy (red
arrow). M2,M3: There is no human tissue scanned at high resolution in this slide, only the blue
artifact. N1,N2: Iliac bone in our dataset, due to metastasis. O1,O2: Colon polypectomy in our
dataset, with colonic crypts visible (black arrows). P1: Slide with faded stain and more extensive
refractive dispersion (black arrows) than D1. P2: Due to faded stain and slide age, many pixels are
have the “suspect” type in imaskraw (orange). P3: Underlining the importance of iQC’s machine
learning to infer pixel types, these pixels are re-typed as tissue (dark magenta) in imaskinferred .
Other suspect pixels are inferred as background (gray). Q1,Q2: Green pen over red pen (black
arrow) typed as green or black in imaskinferred . R1,R2: iQC detects red pen.
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2 Results 120

2.1 Batch effect of poor data quality detected 121

We found a batch effect, where a subset of data accounted for most slides in iQC’s 122

“fail all tissue” category (Fig 3A1). iQC defines ten quality control categories (Sec S1.1). 123

Specifically, we found Institution β accounted for most of the “fail all tissue” 124

slides (Fig 3A2). An anatomic pathologist recommended all slides from Institution β fail 125

quality control and be remade (Fig 3B2). 126

2.1.1 HistoQC recapitulates iQC batch effect identification 127

With HistoQC, we could recapitulate this result and find the batch effect. While the default 128

configuration file for HistoQC (Sec S1.5) excluded most slides as “no tissue detected” 129

(Fig 3A3), we could customize the HistoQC configuration file. With our custom 130

configuration file, HistoQC correctly identified most slides that failed as “no tissue detected” 131

were from Institution β (Fig 3A4). 132

While iQC and HistoQC agree on the batch effect, their methods to exclude slides differ 133

(Fig 4). iQC directly detects faded histopathology stains (Sec S1.2.7.1), and marks these 134

slides as “fail all tissue”. In contrast, HistoQC may not detect tissue having faded stains, in 135

which case these slides are marked as “no tissue detected”. 136

2.1.2 iQC surgical prediction performance corresponds to data quality 137

After manually reviewing dozens of cases in detail from Institution α, we determined the 138

equations and parameters for iQC’s surgical procedure (i.e. biopsy/nonbiopsy) predictor 139

(Sec S1.4). In this way, iQC achieved AUROC of 0.9966 for the biopsy/nonbiopsy prediction 140

task (Fig 5A). Testing this on all other VAMC data, we found AUROC substantially dropped 141

to AUROC of 0.8346 (Fig 5B). Testing only on Institution β data, we found even lower 142

AUROC of 0.7115 (Fig 5C). Testing on the Institutions that were neither α nor β, we found 143

AUROC of 1.000 (Fig 5D). We concluded Institution β drove the drop in AUROC on 144

non-Institution-α data (Fig 5B). 145

2.2 iQC standard of data quality across datasets 146

We next asked if iQC would serve as a standard of quality both on VAMC data and unseen 147

high quality data from outside Veterans Affairs. In the public dataset for the Automated 148

Gleason Grading Challenge 2022[18], we found zero slides failed iQC’s quality control, using 149

the same quality control code, configuration, and thresholds for iQC at VAMCs (Fig 3A5). 150

This may suggest iQC may serve as a standard of data quality across datasets without 151

reconfiguration, but we sought corroborating evidence, below. 152

2.2.1 iQC surgical prediction performance strong on external high quality datasets 153

To test how well iQC generalized to unseen data, and more specifically to non-Veteran data, 154

we evaluated iQC’s biopsy/nonbiopsy predictor on AGGC data[18]. We found an AUROC of 155

0.9824 (Fig 5E). This may suggest iQC generalizes well to unseen data, external datasets, 156

and non-Veteran data. An example of a nonbiopsy that iQC mistakes for a biopsy is shown 157

in Figure 5F1, where the ectomy tissue is cut into a long a thin strip. Biopsies tend to be 158

long and thin. 159
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Fig 3. iQC and HistoQC quality control category counts for slides in our study. A1: Initial data
collection. A “collection” is a set of data, e.g. all slides from a conference room or a prior study. A
“batch” corresponds to a subset of slides, e.g. the first box of slides from the conference room. The
next box is batch 2. We noticed “Collection D Batch 1” accounted for most slides in iQC’s
“fail all tissue” category (red arrow), which indicates these slides have faded stain, so the entire slide
is unsuitable for diagnosis. A2: Coloring A1 according to the VAMC/Institution that made the slide,
it appears Institution Beta (β) accounts for most “fail all tissue” slides, which is a batch effect.
iQC fails 227 slides as “fail all tissue”, 505 slides as “fail some tissue”. A3: With the default
configuration file, HistoQC fails (89.9%) of slides as “no tissue detected”. For comparison, iQC
only marks 2 slides as “review for inadequate tissue” (panel A2). A4: With our customized
configuration file, HistoQC fails (16.7%) of slides as “no tissue detected”, which is much better
than the default configuration’s 89.9% (panel A3). For comparison, iQC only marks 227 slides
(6.2%) as “fail all tissue” (panel A2). A5: Zero AGGC slides fail iQC’s quality control, suggesting
this dataset is high quality[18]. Most slides are “review...”, which is a warning. Many slides have
tissue debris. B1,B2: A pathologist reviewed slides from Institution β. He concluded they were
poor quality and unsuitable for diagnosis. He recommended all slides from Institution β fail quality
control (red arrow). B3,B4: HistoQC’s corresponding failure status for Institution β slides is
“explicitly failed”. C1,C2,C5: Quality control categories for slides iQC predicted to be nonbiopsies,
e.g. prostatectomies or TURPs. D1,D2,D5: Quality control categories for slides iQC predicted to
be biopsies of any sort, e.g. prostate needle biopsies or liver biopsies. For us, HistoQC did not
accept the AGGC TIFF file format of whole slide images (Sec S1.5).
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2.3 iQC’s stain strength statistic quantifies differences among 160

VAMCs and datasets 161

To test if iQC could quantify differences in stain strength among VAMCs, among surgical 162

procedures, and between VAMC and non-VAMC datasets, we considered iQC’s novel stain 163

strength statistic for each whole slide image (Sec S1.2.7.1). 164

2.3.1 Significant and large stain strength difference among VAMC biopsies 165

We found VAMC Institution α contributed biopsy slides that were stained significantly 166

stronger than VAMC Institution β’s biopsy slides (p < 2.2× 10−16, two-tailed Wilcoxon 167

rank-sum test), and this staining effect was large (Cohen’s d = 1.208) (Fig 6). 168

Corroborating our pathologist’s expert opinion that β slides were faded such that β slides 169

were unsuitable for diagnosis (Fig 2F1,G1,H1), we suspect this large effect as measured by 170

Cohen’s D is clinically meaningful. 171

2.3.2 Negative control: differences in stain strength between biopsies and 172

nonbiopsies at a VAMC unlikely to be clinically meaningful 173

We found VAMC Institution α biopsy slides were stained significantly stronger than α 174

nonbiopsy slides (p = 5.823× 10−14), but this effect was so small (d = 0.390) that we 175

believe this difference is probably not clinically meaningful (Fig 6). 176

2.3.3 Negative control: no differences in stain strength in AGGC biopsies vs 177

nonbiopsies 178

We found AGGC biopsies and nonbiopsies have stain strength differences that may be due to 179

change alone (p = 0.7991), and the overall effect size of stain strength differences was 180

negligible (d = 0.0976) (Fig 6). We believe this is an important negative control for iQC’s 181

stain strength statistic, which is particularly valuable because AGGC is a public dataset. 182

2.3.4 Positive control: large differences in stain strength between VAMCs and 183

AGGC dataset 184

Highlighting potential differences in slide staining protocols, whole slide scanners, etc – we 185

found AGGC biopsies were stained significantly stronger than VAMC Institution α biopsies 186

(p < 2.2× 10−16), and this effect was large indeed (d = 8.223) (Fig 6). We are encouraged 187

that despite these large differences between VAMC and AGGC datasets, iQC could still 188

accurately distinguish biopsies from nonbiopsies for both VAMC and AGGC datasets (Fig 5), 189

which may be evidence that iQC’s methods will generalize well to yet other high-quality 190

non-VAMC datasets. 191

3 Methods 192

This study was approved by the Institutional Review Board at the VA Boston Healthcare System. 193

Institutions α and γ prepare slides with a special Toluene-based mounting media (Fig 1B2a) 194

that is resistant to oxidation, discoloration, and fading (Sec S1.6). This may contribute to the 195

quality of slides from Institutions α and γ. We suspect Institution β used mounting tape (Fig 1B2b) 196

to prepare many or all of their slides. 197

iQC generates interpretable statistics to calculate a score for biopsy/nonbiopsy prediction. iQC 198

has a multistep pipeline, including (1) Otsu thresholds (Sec S1.2.1), (2) preliminary pixel typing 199

(Sec S1.2.2), (3) debris detection (Sec S1.2.3), (4) edge detection (Sec S1.2.4), (5) blur artifact 200

detection (Sec S1.2.5), (6) black mark detection (Sec S1.2.6), (7) pen detection, connection, and 201

extension (Sec S1.2.7), (8) stain strength calculations (Sec S1.2.7.1), (9) write imaskraw mask 202
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Fig 4. Qualitative comparison of iQC to HistoQC. A1: A prostate needle biopsy. A2: iQC’s
imaskinferred segments slide background (white), tissue (magenta), tissue with rich hematoxylin
staining (cyan), black pen marks (black), and debris (brown). A3: HistoQC excludes the entire side,
per the “fuse” mask (green). A4: HistoQC excludes some areas for small area. A5: HistoQC
excludes most areas as blurry. A6: HistoQC does not exclude any areas as pen marks. B3: With
our custom configuration file, HistoQC segments out the tissue in the slide (pink, c.f. panel A3).
We disabled pen detection in this configuration. B4: As expected, no small areas were excluded.
B5: Few regions were discarded as blurry, which is better than the default configuration (panel A5).
C1: Adipose tissue indicates this is not a biopsy (Eqn 1). C2: iQC’s imaskinferred segments
background, tissue, blue pen, and debris. C3: HistoQC includes some tissue (magenta) and excludes
the rest (green). C4: HistoQC excludes some tissue as small areas. C5: HistoQC excludes some
tissue and pen as blurry. C6: HistoQC does not exclude any areas as pen marks. D3: With our
custom configuration file, HistoQC segments out most of the tissue (pink) but excludes some
adipose tissue that iQC detects (panel C2 in magenta). D4: HistoQC still excludes some small
areas unfortunately. D5: HistoQC excludes more regions as blurry, which is worse than the default
configuration (panel C5).

(Sec S1.2.8), (10) blur artifact orientation detection (Sec S1.2.9), (11) writing of imaskmean that 203

mixes base image with imaskraw (Sec S1.2.10), (12) machine-learning-driven inference of “suspect” 204

type pixels to other types e.g. pen, tissue, and background (Sec S1.2.11), (13) write imaskinferred 205

mask (Sec S1.2.12), (14) biopsy/nonbiopsy prediction (Sec S1.2.13), (15) ridge detection and 206

age-related bubble detection (Sec S1.2.14), (16) write imaskedge mask (Sec S1.2.15), (17) barcode 207

and text detection for PHI/PII risks (Sec S1.2.16), and (18) close-out timing statistics 208

(Sec S1.2.17). 209

iQC’s biopsy/nonbiopsy predictor is a function that generates a score (y(imi) in Eqn 1) between 210
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0 and 1000000, with low numbers favoring a biopsy and high numbers favoring a nonbiopsy, e.g. 211

prostatectomy or TURP, where for brevity we denote imaskinferred as imi : 212

y(imi) = min(1000000, Gnarrow(imi)×Garea(imi)×Glong(imi) +Gadipose(imi)) (1)

Each G(...) is a Gompertz function[19], further discussed in the supplement (Sec S1.4). 213

Computational software and hardware (Sec S1.5), as well as whole slide image details 214

(Sec S1.7), are detailed in the supplement. 215

4 Discussion 216

4.1 Data quality defined on objective ground truth 217

To our knowledge, we are the first to define quality in terms of objective ground truth data, 218

e.g. a dataset is high quality if the AUROC is close to 1.0 for a surgical procedure prediction 219

task. Surgical procedure data are available from a Laboratory Information Management 220

System (LIMS). For iQC, AUROC is close to 1.0 for all datasets and VAMCs except 221

Institution β. Institution β has AUROC of 0.71 and poor quality data. 222

4.1.1 Objective ground truth from LIMS or EHR is scalable 223

We believe iQC is a novel approach to quality control because it is rooted in objective 224

ground truth. Highly curated surgical procedure or other coded data from the LIMS or 225

Electronic Health Record (EHR) are readily available. This approach may scale well because 226

surgical procedure annotations are at the whole slide level, rather than at the region of 227

interest (ROI) or pixel level. Slide-level annotations drive the scalability of Campanella[14], 228

Lu[15], and other weakly supervised learning pipelines. Still, iQC provides quality control 229

masks for per-pixel semantic segmentation, e.g. imaskinferred
, to assist pathologists and 230

downstream AI pipelines in distinguishing artifacts such as pen or blur from tissue in the 231

whole slide image. 232

4.1.2 Prior work in defining quality 233

iQC’s definition of quality in terms of objective ground truth data differs from some prior 234

approaches to quality control in digital pathology. In 2019, Schaumberg and Fuchs defined 235

quality control in terms of numeric parameters or rules that were hand-engineered[7]. To 236

refine the subjective nature of quality control, HistoQC validated quality control in terms of 237

pathologist concordance[20]. A follow-up HistoQC study of the Nephrotic Syndrome Study 238

Network (NEPTUNE) digital pathology repository disqualified 9% of slides as unsuitable for 239

analysis, where slides were disqualified if particular statistics were out of pre-programmed 240

bounds, such as the mean brightness of the entire slide being too high or low[21]. HistoROI 241

claimed to improve upon HistoQC through human-in-the-loop training and a deep learning 242

system on annotated tiles, although this quality control depends on manual annotations 243

from pathologists and their subjective interpretation of the morphology, which may be 244

challenging to independently reproduce exactly[22]. 245

4.2 Myriad technical factors drive quality 246

Institution β slides were made in the years 2000-2007. The slides were over a decade old 247

when they were scanned in 2023 (Sec S1.7). The slides from the other VAMCs were made 248

in the years 2003-2021. We believe this suggests there are myriad technical factors beyond 249

calendar age that contribute to how over time slides show signs of age, e.g. faded stain 250

(Sec S1.2.7.1) and acrylamide bubbles (Sec S1.2.14). Technical factors may include the 251

formulation of hematoxylin and eosin (H&E) stains, the slide mounting protocol (e.g. 252
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A B

C D

E F1 F2

Fig 5. iQC biopsy/nonbiopsy prediction AUROC for various datasets and subsets in our study. A:
AUROC for Institution Alpha (α), which made most VAMC slides. We trained/tuned
biopsy/nonbiopsy predictor on a subset of this dataset, so AUROC is high. B: AUROC for all
institutions that are not α, i.e. β, γ, δ, ε. AUROC is much lower. There are few nonbiopsy slides. C:
AUROC for β, which is strikingly low. We believe this is because Institution β provided poor quality
slides that were old and had faded stain. iQC is not able to accurately identify which pixels are
tissue and cannot distinguish biopsies from nonbiopsies. D: AUROC for other VAMCs (i.e. γ, δ, ε) is
high but this is an underpowered test because there are only 5 nonbiopsies. E: AUROC on the
public AGGC dataset[18] is high, indicating iQC’s biopsy/nonbiopsy predictor may generalize well to
unseen data. F1,F2: iQC mistakenly classified this prostatectomy sample as a needle biopsy,
perhaps because the distribution of tissue is long and thin, very loosely like a needle biopsy.

Fig 1B2a mounting solution vs Fig 1B2b mounting tape), and storage conditions of the 253

slides. Storage conditions may vary in terms of temperature, humidity, or ultraviolet light 254

exposure. Institution α’s protocols may have mitigated some of these technical factors to 255

maintain high quality (Sec S1.6). 256
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Fig 6. iQC stain strength quantifies differences among VAMCs, datasets, and surgical procedures.
For the AGGC dataset (top right), there is not a significant difference (p = 0.7991, two-tailed
Wilcoxon rank-sum test) between biospy and nonbiopsy stain strength, which is a negative control
for us. For Institution Alpha (at left), there is a statistically significant (p = 5.823× 10−14) but
small difference (Cohen’s d = 0.3930) in stain strength, when comparing biopsies to nonbiopsies,
but we do not believe such a small difference is clinically meaningful. When comparing biopsies
from Institution Alpha to Institution Beta (at center), we find the stain strength differences are
both significant (p < 2.2× 10−16) and large (d = 1.208), supporting our qualitative finding that
Institution Beta slides have faded stains. There is an even larger stain strength difference
(d = 8.223, p < 2.2× 10−16) between AGGC biopsies and Institution Alpha biopsies, which may be
attributed to differences in staining protocols and whole slide scanners.

4.3 Pathologist review essential for assessing quality, taking action 257

iQC detected the faded stain and assigned many Institution β slides to the “fail all slide” 258

quality control category to indicate these slides are not suitable for diagnosis (Fig 3A2). An 259

anatomic pathologist later reviewed the slides and recommended all Institution β slides fail 260

quality control and be remade (Fig 3B2). iQC’s stain strength statistic recapitulated the 261

pathologist’s finding of faded stains at Institution β (Fig 6). 262

4.4 Quality control machine learning framed as search 263

Proceeding from some of our earlier work that showed how tractable search is in 264

computational pathology[23, 24], we framed quality control as a search problem at the pixel 265

level. Rather than train artifact-specific classifiers to detect blur[3], pen[4], or coverslip 266

breaks[6], iQC uses machine learning to compute how similar a “suspect” pixel is to other 267

“nonsuspect” pixel types (e.g. pen, tissue, background, etc see Section S1.8). We believe 268

this allows iQC to define relatively simple criteria for the appearance of different pixel types, 269

and extend these rules using machine-learning-driven inferences (Fig 2P1-P3), to achieve 270
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high AUROC performance across VA and AGGC datasets (Fig 5). 271

5 Conclusion 272

Our iQC pipeline found a batch effect from a medical center that provided aged slides to 273

scan, where the inexpensive preparation of the slides may have interacted with the adverse 274

slide storage conditions at the medical center. Moreover, iQC provides type information for 275

each pixel, uses pixel type information to predict surgical procedure, and provides an overall 276

AUROC for surgical procedure prediction performance that positively corresponds to the 277

overall quality of data produced at a medical center. iQC provides a novel stain strength 278

statistic that corroborates the pathologist’s finding that slides from this institution were 279

faded. 280

We find high AUROC for all datasets and medical centers except the one medical center 281

with aged slides. At this medical center (β) AUROC is correspondingly much lower and 282

histopathology stains are faded. Because iQC separates biopsies from nonbiopsies in mixed 283

incoming datasets, we believe iQC may be especially valuable for downstream studies where 284

only biopsies may be included in a study, to the exclusion of all other surgical procedures, i.e. 285

prostatectomies, TURPs, colonic polypectomies, etc. 286

To our knowledge, we present the first quality control pipeline for histopathology 287

validated to objective ground truth data, specifically surgical procedure. Following this 288

approach, a hospital may apply our quality control pipeline and validate against surgical 289

procedure data in their LIMS or EHR, without requiring effort or annotations from 290

pathologists. We encourage broad adoption of such scalable quality control pipelines in 291

digital pathology and computational pathology pipelines. 292
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Supporting Information 483

S1 Supplementary materials and methods 484

S1.1 iQC quality control categories 485

iQC defines ten quality control categories (Fig 3). This provides granular information for the 486

quality of a slide. These categories are grouped into “fail...”, “review...”, and “pass...” 487

supercategories. We define each of the ten categories below. 488

1. fail all tissue: iQC suggests all tissue in the slide is not suitable for any diagnostic 489

purpose. The tissue is not suitable for a pathologist to render a diagnosis. The tissue 490

is also not suitable for downstream computational analysis / machine learning / 491

artificial intelligence (AI). Typically, this occurs because the tissue staining is badly 492

faded (Sec S1.2.7.1), e.g. the hematoxylin stain is not visible and only eosin remains. 493

This fading worsens as the slide ages, depending on the storage conditions, the quality 494

of stains used, and perhaps other factors (Sec S1.6). 495

2. fail some tissue: iQC suggests some of the tissue is not suitable for any diagnostic 496

purpose. This typically occurs if the mounting solution/layer that adheres the glass 497

coverslip to the glass slide has aged (Sec S1.6). The mounting solution may break 498

down to form acrylamide, leading to “window pane breaking” artifacts and bubbles. If 499

these artifacts or bubbles occur over tissue in the slide, such occluded tissue may not 500

be suitable for a pathologist or AI. These regions should be excluded, while the rest of 501

the unaffected tissue may be retained and used by a pathologist or AI. It may be 502

especially problematic if such artifacts or bubbles occlude all the malignant foci in the 503

slide, or other foci of disease. Such occlusion may change the diagnosis, depending on 504

whether or not disease foci are included or excluded. For this reason, great care should 505

be taken when using fail some tissue slides. 506

3. review for inadequate tissue: iQC suggests there is very little tissue in the slide. This 507

slide should be manually reviewed by an expert to determine if sufficient tissue exists 508

for either a pathologist to diagnose a disease or an AI to analyze. 509

4. review for acrylamide aging: iQC suggests there may be evidence of acrylamide aging 510

in the slide, e.g. window pane breaking artifacts or bubbles. The evidence is not 511

strong, so manual expert review is recommended. 512

5. review for systematic blur: iQC suggests there may be evidence of a specific type of 513

blur in the slide, which we call systematic blur. Systematic blur is thought to occur 514

when the acrylamide layer has aged such that the glass coverslip is not securely 515

adhered to the glass slide, so the slide “shakes in place” while the slide is being 516

scanned, and this shaking is such that the scanner’s autofocus cannot focus correctly 517

on the slide to get a sharp picture. The result is a band of blurred pixels, e.g. a 518

horizontal band of blurring as the scanner’s camera travels left to right to photograph 519

parts of the slide. Systematic blur induces subtle linear artifacts in the background 520

between adjacent passes of the scanner’s camera, which may occur when the 521

scanner’s software stitches together images. iQC detects these linear artifacts as 522

straight lines of “suspect” pixels. If the number of such linear suspect pixels exceeds a 523

threshold, iQC recommends the slide for manual expert review here. This may be a 524

novel way to detect blur, in that we look at lines in the slide background, rather than 525

directly look for blurry pixels. 526

6. review for faded stain: iQC suggests there may be evidence of stain fading in the slide, 527

but this evidence is not strong, so manual expert review is recommended. 528
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7. review for debris pen etc: iQC suggests there may be evidence for debris, pen, or 529

marker in the slide. Manual expert review is recommended. Some care should be 530

taken with these slides, e.g. if pen marks occlude foci of disease, omitting such foci 531

may change the diagnosis. 532

8. review for barcodes writing pii etc: iQC introduces a potentially novel method to 533

detect barcodes or other black structured marks (like text) on a slide. Slides with 534

names printed on them in black text are not de-identified and are not suitable for 535

research purposes. Often, however, the printed text in a slide indicates where the slide 536

was manufactured, rather than indicating PHI/PII of the patient. Manual expert 537

review is recommended. 538

9. pass intact: iQC suggests the slide is generally good condition, though there may be 539

some small amount of pen, marker, or debris present in the slide. Automated tools 540

such as iQC may recommend where pen, marker, etc are in the slide so these may be 541

avoided. iQC recommends the slide is otherwise of high quality and is expected to be 542

suitable for both a pathologist and AI. 543

10. pass pristine: iQC suggests the entire slide is high quality and can likely be used as-is. 544

S1.2 iQC algorithm steps 545

iQC has a number of steps outlined below. iQC operates on the whole slide image at 10x 546

total magnification and assumes a scan at 0.25 microns per pixel. 547

S1.2.1 Otsu threholds 548

iQC calculates thresholds via Otsu’s Method[13]. Thresholds are calculated for the red 549

channel, green channel, blue channel, grayscale pixel values, and Sobel magnitude values. 550

For machine learning, a pixel is represented by a 4-dimensional red, green, blue, and Sobel 551

vector of values (Sec S1.8). 552

S1.2.2 Preliminary pixel typing 553

iQC uses simple rules to assign a preliminary type to each pixel, where the types are 554

hematoxylin type, red type, green type, blue type, background type, black type, and tissue 555

type. The red/green/blue/black types are often pen or marker. The black types may also be 556

debris, tissue folds, or necrosis. The hematoxylin type is a special subtype of the tissue type. 557

Hematoxylin types have a blue channel value greater than red channel value, a red greater 558

than green, and a Sobel value above the corresponding Otsu threshold (Sec S1.2.1). 559

S1.2.3 Debris detection 560

If a set of nonbackground pixels are completely enclosed in box with sides of length 2r, then 561

the enclosed nonbackground pixels are typed as debris. iQC lets r = 10, e.g. the debris box 562

radius is 10. 563

S1.2.4 Edge detection 564

When slide mounting solution or mounting tape (Fig 1B2a,b) ages, ”window pane breaking” 565

artifacts and acrylamide bubbles may form. Both these signs have well-defined edges. iQC 566

detects edges to both describe the whole slide image and estimate the presence of these 567

signs of age. iQC excludes debris from edge detection. By excluding debris, the count of 568

edge pixels may be more accurate, so by extension the statistics from the calculation of how 569
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many pixels are edges related to window pane breaking or bubbles may be more accurate. 570

iQC uses of Otsu’s Method to type a pixel as an edge or not. 571

S1.2.5 Systematic blur detection via bar artifacts 572

Horizontal bars of suspect pixels may indicate systematic blur (Fig 2A3,B3). In principle, 573

there could be vertical bars as well, depending on how the scanner scans, either left to right 574

(horizontal) or top to bottom (vertical). 575

S1.2.6 Black mark detection 576

iQC next converts “suspect” type pixels to “black” type pixels according to grayscale Otsu 577

Thresholds. 578

S1.2.7 Pen detection, connection, and extension 579

For every red, green, blue, or black “pen” type pixel – iQC attempts to make straight lines 580

connecting two pen pixels having the same type (e.g. red pixel may connect to a red pixel, 581

blue pixel may connect to a blue pixel, etc), then flood fill through suspect pixels that are 582

not stitching artifacts. The extent of flood fill is limited to a specific distance away from 583

where the flood fill started, which prevents flood fill from overwriting large portions of imask 584

with pen pixel types. 585

iQC counts tissue and suspect pixels, replacing tissue pixels with pen if tissue pixel is 586

surrounded by pen or background. This is intended to remove any false tissue type pixel 587

perimeter from pen marks. 588

S1.2.7.1 Stain strength calculation 589

iQC calculates stain strength in two ways, mean stain strength (Eqn S4) and median stain 590

strength (Eqn S8). If most of the tissue is stroma, then the mean or median pixel is 591

expected to approximate the red, green, and blue pixel values of stroma in the slide. If 592

stain strengthmean is less than stain strengthmean threshold, or stain strengthmedian is 593

less than stain strengthmedian threshold, iQC categories the slide as “fail all tissue” due to 594

faded stain. Presently, stain strengthmean threshold = 6 and 595

stain strengthmedian threshold = 6. 596

redmean =
1

length(tissue pixels)

p ∈ tissue pixels∑
pixel p

red(p) (S1)

597

greenmean =
1

length(tissue pixels)

p ∈ tissue pixels∑
pixel p

green(p) (S2)

598

bluemean =
1

length(tissue pixels)

p ∈ tissue pixels∑
pixel p

blue(p) (S3)

599

stain strengthmean =
redmean + bluemean

2
− greenmean (S4)

600

redmedian = median({pixel p ∈ tissue pixels : red(p)}) (S5)
601

greenmedian = median({pixel p ∈ tissue pixels : green(p)}) (S6)
602

bluemedian = median({pixel p ∈ tissue pixels : blue(p)}) (S7)
603

stain strengthmedian =
redmedian + bluemedian

2
− greenmedian (S8)
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For median(...) we use the grouped median rather than simple median, because there are 604

so many duplicate values in a channel for an image, e.g. red(p) values are integers between 605

0 and 255 inclusive. We found this median approach to be better behaved than the mean, 606

e.g. via the median there is no significant difference in stain strength between AGGC 607

biopsies and AGGC nonbiopsies, which we believe is an important negative control (Fig 6). 608

S1.2.7.2 Systematic blur threshold 609

iQC calculates how sharp (i.e. not blurry) the tissue pixels are. This sharpness is defined by 610

a Sobel Magnitude. This sharpness should not be confused with systematic blur. Tissue is 611

visually sharp when tissue pixels tend to have different grayscale values when compared to 612

adjacent pixels. A freshly-stained slide will tend to be more vibrantly-stained and more 613

“sharp” than an aged slide, as fresh stains will highlight differences among tissues well. 614

iQC estimates a slide may have evidence of systematic blur if the total number of 615

suspect pixels that participate in horizontal or vertical bars exceeds double the height or 616

width of the slide image at 10x. This may be used as a warning to that the slide may 617

benefit from manual review to check for systematic blur. 618

S1.2.7.3 Slide age estimates 619

iQC estimates slide age as a stain strength metric multiplied by a tissue sharpness metric. 620

The intuition for this is aged slides with faded stain will have both (1) low stain strength 621

because stain has faded to gray, and (2) low tissue sharpness because old stain does not 622

vibrantly highlight differences among adjacent tissues. The intuition continues that for new 623

freshly-stained slides there will have both (1) high stain strength because reds (from eosin) 624

and blues (from hematoxylin) will be much stronger then greens (neither hematoxyin or 625

eosin is green) in the slide and (2) high tissue sharpness because fresh stain will vibrantly 626

highlight differences among adjacent tissues. 627

S1.2.8 Write imaskraw
628

iQC writes imaskraw
as a semantic segmentation of pixel types in the whole slide image. 629

S1.2.9 Stitching score for systematic blur bar artifacts 630

iQC detects if stitching artifacts run left-right (horizontally) or up-down (vertically). The 631

blur boundary will be parallel to stitching artifacts, if there is a blur boundary. For example, 632

if there are horizontal stitching artifacts, there will also be horizontal bands of systematic 633

blur. 634

S1.2.10 Write imaskmean 635

iQC writes a mean image that is a mix of the pixel types with the original pixel values in the 636

slide image. 637

S1.2.11 KNN inference of suspect pixels to other types 638

Not all pixels fit within iQC’s rigid set of rules for background, pen, tissue, etc (per 639

Sec S1.2.2). Many pixels may be typed as “suspect” in the slide to indicate these pixels may 640

be tissue, but the pixels may also be background, pen, etc. To infer the type of suspect 641

pixels, iQC uses the K-Nearest Neighbors (KNN) machine learning algorithm for pixels 642

(Sec S1.8). Specifically, for a given suspect pixel p, iQC uses KNN to find the pixel c, where 643

c has the most similar red, green, blue, and Sobel magnitude values to p. This is sometimes 644

referred to as the “closest pair of points problem”. Then iQC assigns the imaskraw
type of c 645
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to p. Thus p is no longer the suspect type. Instead, the type of p is equal to the type of c. 646

This is the inductive bias of KNN, e.g. that the type of a pixel is mostly likely the same as 647

the type of the most similar pixel. This is a very simple inductive bias that is readily 648

interpretable. KNN may be considered the simplest possible machine learning algorithm, so 649

KNN is a logical first choice of machine learning algorithms, by Occam’s Razor. The 650

performance and relative complexity of more advanced machine learning algorithms may 651

then be compared to KNN. 652

S1.2.12 Write imaskinferred
653

iQC writes imaskinferred
file that includes inferred pixel types. 654

S1.2.13 Biopsy/nonbiopsy prediction 655

See Surgical procedure prediction (biopsy/nonbiopsy) (Sec S1.4). 656

S1.2.14 Ridge detection 657

A ridge identifies window breaking patterns or bubbles. For iQC’s purposes, a ridge is a pixel 658

with an edge type in imaskraw . This is a dark/black pixel that has adjacent 659

lighter/background pixels and nearby non-adjacent lighter/background pixels. We consider a 660

Sobel filter to identify edges, and an Otsu on the Sobel magnitudes to classify a pixel type 661

as edge/non-edge. For iQC, an edge pixel is grown outwards to adjacent edge pixels, such 662

that all involved edge pixels are types as ridges. This allows edge pixels that would not 663

themselves be considered ridges to take the ridge type. Canonically in image analysis, a 664

ridge is a contiguous path of edge pixels. 665

S1.2.14.1 Acrylamide age statistics, a.k.a. slide degeneration 666

To estimate how aged the slide is, iQC combines ridge detection (edges of bubbles) with 667

stain strength detection (faded stain). 668

S1.2.15 Write imaskedge
669

iQC writes imaskedge
to debug edge and ridge detection. This highlights bubble edges, tissue 670

edges, pen edges, etc (Fig 2C2). 671

S1.2.16 Barcode and PHI/PII detection 672

Part of the mission at our Center is to make research-ready datasets. It is required that 673

there are no identifiers in research-ready datasets. Identifiers may include PHI/PII as well as 674

medical accession numbers, surgical pathology numbers, etc (Sec 2I1-2). 675

Therefore, iQC performs barcode detection, which may detect other identifiers printed on 676

a slide as plain text (Sec 2J1-2,K1-2). Barcode detection compares how many dark/black 677

pixels are set against light/background pixels, on both the left and right sides of a slide. If 678

there is a sticker or some printed black text that may disclose identifiers, this text is 679

expected to be on the left side or the right side, but never both sides at the same time. This 680

printed text may be on a black-and-white sticker. Thus, by comparing the dark/light 681

differences on the left to right sides, identifiers such as PHI/PII are most likely to be 682

disclosed when one side has many more dark-against-light pixels than the other side. 683

S1.2.17 Close-out timing statistics 684

iQC times its performance, for monitoring purposes. These times are reported as iQC 685

completes. 686
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S1.3 Lambda operator for contiguity measurements 687

We define an operator lambda to measure contiguity of pixel types, e.g. how long is an 688

approximately continuous line of tissue type pixels. Some breaks in this line are allowed, but 689

generally the longer the break the lower the score from the lambda operator will be. 690

S1.4 Surgical procedure prediction (biopsy/nonbiopsy) 691

In Equation 1, Gnarrow converts to a number between 0 and 100 the approximate 692

measurement of the narrowest region of tissue (Eqn S9), with the intuition that biopsies are 693

narrow and will be close to 0: 694

Gnarrow(imi) = 100e−100e
−0.025∗mmts

(S9)

Garea converts to a number between 0 and 100 the approximate measurement of the tissue 695

area by summing up the number of tissue type pixels, with the intuition that biopsies tend 696

to involve little tissue and will be close to 0: 697

Garea(imi) = 100e−50e
−0.000004∗(sthp+stnpi)

(S10)

Glong converts to a number between 0 and 100 the approximate length-to-width ratio of the 698

tissue, with the intuition that biopsies tend to have a ratio much greater than 1 (so Glong 699

will be close to 0) while nonbiopsies tend to have a ratio close to 1 (so Glong will be close 700

to 1): 701

Glong(imi) = 100− 100e−100e
−2.5∗mmctsr

(S11)

Gadipose is a correction factor for specimens with an abundance of adipose tissue, to prevent 702

some ectomy/TURP samples that are mostly fat from erroneously being predicted as 703

biopsies (Eqn S12). Gadipose converts to a number between 0 and 100000 the approximate 704

measure of how frequently tissue type pixels are adjacent to background type pixels. 705

Background pixels are white/clear/empty in the slide image. Adipose (a.k.a. fat) tissue 706

typically consists of thin strips of stromal tissue to support large globules of fat tissue. The 707

stromal tissue is pink and is counted as tissue pixels, while the fat globules are clear and are 708

counted as background. Therefore in fat, tissue pixels are adjacent to many more 709

background pixels that would occur in a biopsy or in solid blocks of tissue (in most ectomies 710

or TURPs). Fatty ectomies have a high Gadipose, which is important because fatty ectomies 711

may have very little solid tissue, or only a thin strip of tissue that would otherwise be 712

classified as a biopsy (e.g. Fig 4B1), if it were not for Gadipose increasing y(imi
) (Eqn 1). 713

Gadipose(imi) = 100000e−20e
−10∗batr

(S12)

We define mmts (Eqn S9) as the “min median tissue score”. Low values of mmts mean 714

the narrowest region is very small, so the tissue may be thin, so Gnarrow(imi) approaches 0, 715

to suggest a biopsy. In contrast, high values of mmts mean the narrowest region is much 716

larger, so the tissue is approximately square in shape, Gnarrow(imi
) approaches 100, to 717

suggest a nonbiopsy. 718

In Equation S10, we define sthp as the “sum [of] tissue or hematoxylin pixels” and stnpi 719

as “suspect-to-nonsuspect pixels inferred”. 720

We define mmstsr (Eqn S11) as “maxmin max contiguous tissue score ratio”. Low 721

values of mmctsr mean the ratio is close to 1 and the tissue is approximately square so 722

Glong(imi
) approaches 100, to suggest a nonbiopsy. In contrast, high values of mmctsr 723

mean the ratio may be larger than 1 (e.g. a ratio of 20) and the tissue is approximately 724

ribbon-like so Glong(imi) approaches 0, to suggest a biopsy. 725

In Equation S12, we define batr as the “background-to-adjacent-tissue ratio”. 726
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S1.5 Computational software and hardware 727

We implemented iQC in python 3.9.16, with imports from numpy[25] and statistics. 728

Visualization was performed in R version 4.2.2 and rstudio 2022.07.2-576, with 729

plots made via ROCR[26] and ggplot2[27]. Cohen’s D calculation[28] and interpretation of 730

D values as negligible(d < 0.2)/small(d < 0.5)/medium(d < 0.8)/large(d >= 0.8) was 731

performed with R’s effsize package[29]. Text processing was performed in perl 5.32.1. 732

For computation, we leveraged the Genomic Information System for Integrative Science 733

(GenISIS) datacenter at the Center for Data and Computational Sciences. iQC can run on a 734

single-CPU system with an amount of CPU RAM approximately triple the file size, e.g. for a 735

1GB whole slide image, we suggest 3GB CPU RAM. We recommend running iQC on at least 736

5 CPUs in parallel, ideally 20 CPUs, and 80+ CPUs for best performance. The amount of 737

required CPU RAM scales with the number of parallel CPUs. 738

For comparisons to iQC, we considered HistoQC[6] at commit version 739

a99916c2ceaa61c7ae5d75600f10d3fb553041fc from March 22, 2023. We used HistoQC’s 740

default configuration file, i.e. config.ini. 741

S1.6 Glass microscopy slide preparation 742

Institution α’s pathology lab prepared glass microscopy slides with Acrymount Plus (StatLab 743

Medical Products, McKinney, TX), a Toluene and Acrylate polymer based mounting media. 744

This reagent is formulated to reduce oxidation, discoloration (i.e. yellowing) and fading in 745

H&E stains over time. This may be superior in quality and integrity to the more traditional 746

Xylene-based mounting media. 747

The proper mounting media plays a critical role in embedding the specimen as well as 748

providing an optically translucent barrier that preserves the pathological tissue section 749

quality and integrity for long-term storage. Furthermore, a high-quality mounting media will 750

have a refractive index that is virtually identical to the glass slide. This may be optimal for 751

high quality images and high magnification[30]. 752

Leakage around slides is usually attributed to usage of excessive amount of mounting 753

media or low-quality ingredients within the media that may degrade over time and form 754

byproducts, e.g. acrylamide bubbles. 755

S1.7 Whole slide images 756

VAMC glass microscopy slides were scanned on a Leica Aperio GT450 scanner, which 757

produces SVS files that we read via openslide 3.4.1[31, 32]. AGGC slides were scanned 758

on an Akoya Biosciences scanner, which produces TIFF files that we read via ImageMagick 759

6. 760

S1.8 Machine learning 761

iQC uses machine learning to infer select “suspect” pixel types to other pixel types. 762

Specifically, for a given image, iQC uses the K-nearest neighbors algorithm[33, 34], with 763

k=1 and an L1 norm. A pixel is represented as a four-dimensional value: red channel (0 to 764

255 integer), green channel, blue channel, and Sobel channel. The Sobel channel is the 765

magnitude of a 3× 3 Sobel operator[35, 36]. 766

S1.9 Workflow icons attribution 767

For Figure 1, we leverage a number of icons from The Noun Project1 (Table S1). 768

1The Noun Project may be reached at https://thenounproject.com
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Table S1. Attribution of icons in Figure 1 panels. Icons are distributed under a Creative Commons
Attribution 3.0 license https://creativecommons.org/licenses/by/3.0/. Legend: 1 is
own/AJS work, derived from B2a. 2 color is own/AJS work. 3 text, color, and background are
own/AJS work.
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