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Abstract 32 

Background: Plasma growth differentiation factor 15 (GDF15) and N�terminal pro�B�type 33 

natriuretic peptide (NT�proBNP) are cardiovascular biomarkers that associate with a range of 34 

diseases. Epigenetic scores (EpiScores) for GDF15 and NT-proBNP may provide new routes for risk 35 

stratification. 36 

Results: In the Generation Scotland cohort (N ≥ 16,963), GDF15 levels were associated with 37 

incident dementia, ischaemic stroke and type 2 diabetes, whereas NT-proBNP levels were associated 38 

with incident ischaemic heart disease, ischaemic stroke and type 2 diabetes (all PFDR < 0.05). 39 

Bayesian Epigenome-wide association studies (EWAS) identified 12 and 4 DNA methylation 40 

(DNAm) CpG sites associated (Posterior Inclusion Probability [PIP] > 95%) with levels of GDF15 41 

and NT-proBNP, respectively. EpiScores for GDF15 and NT-proBNP that were trained in a subset of 42 

the population. The GDF15 EpiScore replicated protein associations with incident dementia, type 2 43 

diabetes and ischaemic stroke in the Generation Scotland test set (Hazard Ratios (HR) range 1.36 – 44 

1.41, PFDR <0.03). The EpiScore for NT-proBNP replicated the protein association with type 2 45 

diabetes, but failed to replicate an association with ischaemic stroke. EpiScores explained 46 

comparable variance in protein levels across both the Generation Scotland test set and the external 47 

LBC1936 test cohort (R2 range of 5.7-12.2%). In LBC1936, both EpiScores were associated with 48 

indicators of poorer brain health. Neither EpiScore was associated with incident dementia in the 49 

LBC1936 population. 50 

Conclusions: EpiScores for serum levels of GDF15 and Nt-proBNP associate with body and brain 51 

health traits. These EpiScores are provided as potential tools for disease risk stratification. 52 

 53 
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Background 56 

Delaying or preventing the onset of chronic diseases is a major challenge. Traditional risk factor 57 

models provide a foundation to achieve this (1,2), but can be augmented by molecular-level data. 58 

Plasma growth differentiation factor 15 (GDF15) and N�terminal pro�B�type natriuretic peptide 59 

(NT�proBNP) are biomarker candidates that have yielded promising results as indicators of a range 60 

of morbidities. GDF15 is associated with low-grade inflammation and age-related 61 

immunosuppression (3). Higher levels of GDF15 have been found, through Mendelian 62 

randomisation, to causally associate with increased risk of cardiometabolic stroke, atrial fibrillation, 63 

coronary artery disease and myocardial infarction (4). Two recent proteome-wide studies that 64 

assessed 1,301 (5) and 1,468 (6) proteins identified GDF15 as the top marker of multimorbidity. NT-65 

proBNP is a metabolite of pro B-type natriuretic peptide (BNP), which is a natriuretic and diuretic 66 

hormone released by heart muscle in response to wall stretch (7). An inverse relationship between 67 

the levels of NT-proBNP in blood and incident diabetes has been reported (8), whereas lower levels 68 

of NT-proBNP have been associated with more favourable cardiovascular outcomes in randomised 69 

control trials (9–11). Elevated levels of  GDF15 and NT-proBNP in individuals diagnosed with 70 

COVID-19 have been linked to more severe outcomes (12,13). Both protein markers have also been 71 

found to associate with vascular brain injury, poorer neurocognitive performance and incident 72 

dementias (14,15). 73 

DNAm-based epigenetic scores (EpiScores) for blood proteins have been found to serve as markers 74 

of incident diseases (16) and augment clinically-used risk factors for risk stratification (17,18). 75 

DNAm reflects the body’s chronic response to low-grade inflammation, environmental and 76 

biological exposures (19–21). A study that directly compared an EpiScore for C-Reactive protein 77 

(CRP) to measured CRP found that the EpiScore had greater test-retest reliability over time point 78 

measures (22). This suggests that EpiScores may be more stable indictors than measured proteins in 79 

some instances. An EpiScore for GDF15 levels based on changes to DNAm at CpG sites across the 80 
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genome is one of seven protein EpiScores that contribute to GrimAge, a leading epigenetic predictor 81 

of biological age acceleration, healthspan and lifespan (23,24). However, the performance of protein 82 

EpiScores against within-sample protein measurements in relation to incident diseases has not been 83 

comprehensively investigated. Additionally, EpiScores have typically been trained in samples of 84 

restricted size, with training sets typically ranging from 775 to 2,356 individuals (25) (23). 85 

Here, we assess the viability of EpiScores for serum GDF15 and NT-proBNP as markers of disease 86 

outcomes and brain health (Fig. 1). Using GDF15 and NT-proBNP measures available in Generation 87 

Scotland (N ≥ 16,963), we first profile associations between GDF15 and NT-proBNP and four 88 

incident diseases (type 2 diabetes, ischaemic heart disease, ischaemic stroke and dementia), in 89 

addition to COVID-19 outcome severity. These diseases were chosen for the study as they have been 90 

linked to GDF15 and NT-proBNP and were available through electronic health linkage. We next 91 

map the epigenetic architectures of the two proteins, before training and testing protein EpiScores for 92 

them in subsets of Generation Scotland. In the test set, direct biomarker comparisons between 93 

measured proteins and the EpiScore equivalents are performed in relation to the four incident 94 

diseases assessed in the full Generation Scotland sample initially. EpiScores are then retrained in the 95 

full sample available and tested externally in the Lothian Birth Cohort 1936 (LBC1936), where 96 

associations with brain health traits are also profiled cross-sectionally and longitudinally. 97 

  98 
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99 

Figure 1. Study design for this assessment of GDF15 and NT-proBNP EpiScores as100 

biomarkers. Disease associations and epigenome-wide association studies (EWAS) for each protein101 

were first characterised in the full Generation Scotland sample. EpiScores for each protein were102 

initially trained and tested in subsets of the population. This allowed EpiScores to be compared with103 

measured proteins in associations with the four incident diseases profiled in the test set. EpiScores104 

were then retrained on the full sample and tested externally in the LBC1936 Wave 4 population,105 

which had measures of both proteins and DNAm available. EpiScores were projected into the larger106 

LBC1936 Wave 1 population (that has DNAm but no protein measures) and profiled in associations107 

with brain health traits, cross-sectionally and longitudinally. Consent for dementia linkage was108 

available from Wave 2 of the LBC1936; therefore, we also tested whether EpiScores were associated109 

with time-to-dementia. EpiScores were modelled with polygenic risk scores (PRS) for the proteins.110 

CpG: cytosine-phosphate-guanine. IHD: ischaemic heart disease. 111 

Results 112 
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Sample populations 113 

There were 18,413 Generation Scotland participants (59% female) that had DNAm measurements, 114 

with a mean age of 48 years (SD 15), a minimum age of 17 years and maximum age of 98 years 115 

(Supplementary Table 1) (26,27). Of these, 17,489 had GDF15 measurements and 16,963 had NT-116 

proBNP measurements. Subsets of this sample that were unrelated to one another were used to 117 

initially train and test EpiScores for GDF15 (Ntrain = 8,207, Ntest = 2,954) and NT-proBNP (Ntrain = 118 

8,002, Ntest = 2,808) (Supplementary Table 1). Measurements of serum GDF15 and NT-proBNP 119 

levels were available at Wave 4 (mean age 79 years, with 0.6 SD) of the LBC1936 study. These 120 

samples were used as external test sets for EpiScores trained on the full Generation Scotland sample. 121 

Of 507 individuals at Wave 4, 322 had GDF15 measures (48% female) and 500 had NT-proBNP 122 

measures (49% female). LBC1936 has successive Waves of measurements (Waves 1-5, collected at 123 

mean ages of 70, 73, 76, 79 and 82 years old, with SD < 1 at each Wave) (28,29). EpiScores were 124 

projected into Wave 1 (895 individuals with DNAm, but no protein measures) and evaluated in 125 

relation to cross-sectional and longitudinal brain health traits. As consent to dementia linkage was 126 

available from Wave 2, associations between EpiScores and time-to-dementia were also tested in 127 

LBC1936. 128 

GDF15 and NT-proBNP disease associations 129 

Six associations (Fig. 2) were identified in Cox proportional hazards (PH) mixed effects models 130 

between protein levels and incident diseases in Generation Scotland (N ≥ 16,963). These associations 131 

had False Discovery Rate (FDR) P < 0.05 in basic (age and sex adjusted) models and P < 0.05 in 132 

fully-adjusted models (that further adjusted for smoking, alcohol intake, body mass index (BMI), 133 

social deprivation and years of education) (Supplementary Table 2). Counts for cases, controls and 134 

mean time-to-onset for cases are provided in Supplementary Table 2. In basic logistic regression 135 

models, GDF15 was associated with subsequent hospitalisation due to COVID-19 (odds ratio (OR) 136 
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per SD = 2.0, 95% confidence interval (CI) = [1.2, 3.4], FDR P = 0.037), as opposed to having137 

COVID-19 without hospitalisation. An inverse association was identified between a one SD increase138 

in NT-proBNP levels and COVID-19 hospitalisation (OR = 0.59, 95% confidence interval (CI) =139 

[0.38, 0.93], FDR P = 0.046). No associations in relation to long-COVID as a binary outcome had140 

FDR P < 0.05. Full summary statistics are provided in Supplementary Table 3. 141 

 142 

143 

Figure 2. Disease associations for GDF15 and NT-proBNP in Generation Scotland (N ≥ 16,963).144 

Fully-adjusted hazard ratios from Cox PH mixed effects regression models between protein levels145 

and incident diseases are plotted with 95% confidence intervals. The six associations in red had FDR146 

P < 0.05 in basic and P < 0.05 in fully-adjusted models, whereas associations that had P > 0.05 are147 

shown in black. Hazard ratios are plotted per 1 SD increase in the rank-base inverse normalised148 

levels of each marker. Fully-adjusted models controlled for age, sex, relatedness and common health149 

and lifestyle factors (smoking, alcohol intake, BMI, social deprivation and years of education). 150 

GDF15 and NT-proBNP epigenetic associations 151 

In variance components analysis of GDF15 and NT-proBNP in Generation Scotland (N ≥ 16,963)152 

DNAm explained 36% of the variance in GDF15 levels (lower and upper confidence intervals [CIs]153 

= 32% to 39%) and 32% of the variance in NT-proBNP levels (lower and upper CIs = 27% to 36%).154 

In the EWAS, there were 12 and 4 associations (Bayesian Posterior Inclusion Probability [PIP] >155 

95%) between differential DNAm at 14 unique CpG sites and the levels of GDF15 and NT-proBNP,156 

respectively. The CpG sites cg03546163 (FKBP5) and cg13108341 (DNAH9) were associated with157 
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both GDF15 and NT-proBNP. Table 1 summarises the CpG sites, the biomarkers they associated 158 

with, the genes the CpGs are annotated to, and a selection of traits that DNAm at these CpGs have 159 

previously been associated with in EWAS studies. The full index of MRC IEU EWAS Catalogue 160 

associations (available as of August 2023) for these 14 CpG sites are available in Supplementary 161 

Table 4.  162 

CpG PIP Biomarker CpG Gene CpG trait associations (MRC-IEU EWAS Catalogue) 

cg03546163* 
0.98, 
0.96 

GDF15,  
NT-proBNP FKBP5 

Chronic kidney disease, fetal vs adult liver, body mass index, 
waist circumference, mortality, age, neurodegenerative disorders.  

cg13108341* 
1.00, 
0.98 

GDF15,  
NT-proBNP DNAH9 Cancer treatment 

cg00757033 1.00 NT-proBNP WDR51B Crohn's disease, inflammatory bowel disease, age 

cg05412028 0.99 NT-proBNP ABCC4 Age, ageing, primary Sjogrens syndrome 

cg19693031 1.00 GDF15 TXNIP 

Fetal vs adult liver, triglycerides, sex, hbA1c, alcohol 
consumption, blood pressures, hepatic fat, waist circumference, 
cholesterol measures, age. 

cg02650017 1.00 GDF15 PHOSPHO1 

Type 2 diabetes, primary Sjogrens syndrome, C-reactive protein, 
body mass index, serum high-density lipoprotein cholesterol, 
Crohn's disease, body mass index, coagulation factor VIII, 
eosinophilia, age.  

cg06918740 1.00 GDF15 N/A N/A 

cg08900409 1.00 GDF15 PGPEP1 Age 

cg25460262 1.00 GDF15 GDF15 Fetal vs adult liver 

cg21088460 1.00 GDF15 GDF15 N/A 

cg05575921 1.00 GDF15 AHRR 

Extensive set of smoking-associated traits, lung function/cancer 
traits, body mass index, serum cotinine, C-reactive protein, IgG 
glycosylation measures, educational attainment, cognitive ability, 
statin use, urinary cadmium, mortality, post-traumatic stress 
disorder, age, acute myocardial infarction. 

cg25410121 1.00 GDF15 N/A N/A 

cg15058033 0.97 GDF15 PLXNB2 N/A 

cg16993186 0.97 GDF15 CELF2 N/A 

 163 

Table 1. EWAS of GDF15 and NT-proBNP levels in Generation Scotland (N ≥ 16,963). 164 

Posterior inclusion probabilities (PIPs) are provided for all CpG-protein associations (PIP > 0.95) in 165 

the BayesR EWAS. * Two CpGs were associated with both GDF15 and NT-proBNP. A selection of 166 

traits implicated in associations (P<3.8x10-6, with n>100) with the CpGs from the MRC-IEU EWAS 167 

Catalogue (as of August 2023) are shown. HbA1c: glycated haemoglobin. IgG: immunoglobulin G. 168 
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EpiScores for GDF15 and NT-proBNP within Generation Scotland 169 

EpiScores for GDF15 and NT-proBNP were initially trained and tested in subsets of Generation 170 

Scotland that were unrelated to one another. Predictor weights for EpiScores are available in 171 

Supplementary Table 5. Performance in the test set was modelled through the incremental variance 172 

(R2) in protein levels that scores could explain beyond a null linear regression model that adjusted for 173 

age and sex. The EpiScore for GDF15 trained using the full set of EPIC array probes had an R2 of 174 

12.2%, whereas the NT-proBNP EpiScore had an R2 of 5.7%. Similar performance was observed 175 

when comparing with EpiScores trained using sites available on the 450k array subset 176 

(Supplementary Fig. 1). When modelling EpiScores and polygenic risk scores (PRS) derived for 177 

each protein (see Methods), additive effects beyond the null model were observed for GDF15 (R2 of 178 

15.5%) and NT-proBNP (R2 of 6.9%). A full summary of the results is provided in Supplementary 179 

Table 6.  180 

EpiScore replication of protein biomarker associations within Generation Scotland 181 

The same Cox PH model structure (as shown in Fig. 2) was used to directly compare protein levels 182 

and EpiScores in the Generation Scotland test. All protein-disease associations – except the 183 

association between NT-proBNP and ischaemic stroke – were replicated by EpiScores in fully-184 

adjusted models (Fig. 3, Supplementary Table 7). Mean time-to-onset, counts for cases and 185 

controls and full summary statistics are available in Supplementary Table 7. Mean attenuation in 186 

the absolute log of the HR due to the additional adjustment for lifestyle factors beyond age and sex 187 

was 6% for protein associations and 12% for EpiScore associations. Of the four protein EpiScore 188 

associations identified in fully-adjusted models, three withstood further adjustment for estimated 189 

immune cell proportions (attenuation in the absolute log of the HR ranging from 0 – 9%). The 190 

association between the GDF15 EpiScore and dementia had P = 0.064, with 5% attenuation in the 191 

absolute log of the HR. Supplementary Table 7). As only five instances of COVID-19 192 
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hospitalisation and nine instances of long-COVID were reported in the test population, we did not 193 

conduct protein EpiScore and protein comparisons for these outcomes. 194 

 195 

 196 

Figure 3. Comparison of EpiScores versus measured protein equivalents in fully-adjusted 197 

associations with incident diseases in the Generation Scotland test sample (N ≥ 2,808). For each 198 

disease, the protein-disease association is plotted, with the equivalent protein EpiScore-disease 199 

association shown directly beneath it for comparison. Hazard ratios are plotted per 1 SD increase in 200 

the rank-based inverse normalised levels of each marker. Nine associations (red) had FDR P < 0.05 201 

in basic and P < 0.05 in fully-adjusted Cox proportional hazards mixed effects models in the test 202 

samples. Fully-adjusted models adjusted for age, sex, relatedness and common lifestyle risk factors 203 

(smoking, alcohol intake, BMI, social deprivation and years of education). Associations that were 204 

non-significant (P > 0.05 in fully-adjusted models) are shown in black.  205 

  206 
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EpiScore application to the LBC1936 external cohort 207 

EpiScores for each protein were then retrained in the entire Generation Scotland sample (NGDF15 = 208 

17,489 and NNt-proBNP = 16,963). Although we make predictor weights for EpiScores trained on the 209 

full EPIC array probes and the subset of probes on the older 450k array available (Supplementary 210 

Table 8), the LBC1936 external test cohort in this study measured DNAm using the 450k array. 211 

Thus, the EpiScores trained on the 450k probe subset were projected into this population for external 212 

validation.  213 

In the LBC1936 test sample (NGDF15 = 322 and NNt-proBNP = 500), incremental R2 values of 8.9% for 214 

GDF15 and 8.1% for NT-proBNP EpiScores were observed, beyond age and sex-adjusted linear 215 

regression models (Fig. 4a). When a PRS for each protein was modelled together with the EpiScores, 216 

incremental variance explained rose to 13.7% and 9.1% for GDF15 and NT-proBNP, respectively 217 

(Supplementary Table 9). Finally, the GDF15 EpiScore generated previously by Lu et al as part of 218 

the GrimAge biological age acceleration predictor (23) was projected into the Wave 4 GDF15 test 219 

set (322 individuals) and evaluated. It explained 5.6% of the variance in GDF15 beyond age and sex, 220 

as compared to the 8.9% observed modelling our updated GDF15 score. The two GDF15 EpiScores 221 

had a Pearson correlation r = 0.32 in the test sample. 222 

EpiScore associations with brain health traits in LBC1936  223 

The EpiScores that were validated against protein measures in the LBC1936 Wave 4 external test set 224 

were then projected into methylation measured at Wave 1 (a time point nine years prior), which has a 225 

larger DNAm sample available but no protein measures. Structural equation models were then run to 226 

characterise associations between the protein EpiScores and five brain health traits (cognitive ability 227 

and four structural brain imaging measures). This allowed for EpiScore relationships with both cross-228 

sectional brain health (Wave 1, N=895 individuals with EpiScores, total model N=1,091) and 229 

longitudinal change in brain health (Waves 1-5 for cognitive change and Waves 2-5 for brain 230 
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imaging changes) to be tested (five brain health traits x two EpiScores x cross-sectional and 231 

longitudinal associations = 20 hypothesis tests).  232 

Seven of the twenty basic model associations tested had FDR P < 0.05 (Supplementary Table 10). 233 

All seven associations involved cross-sectional brain health phenotypes and had negative effect 234 

estimates (standardised betas ranging from -0.05 to -0.19). Higher GDF15 and NT-proBNP 235 

EpiScores were associated with lower general cognitive ability and lower brain volumes. None of the 236 

ten slope associations assessing relationships between the EpiScores and longitudinal change in the 237 

five brain health phenotypes were significant at FDR P < 0.05. In models that further adjusted for 238 

additional health and lifestyle factors, five associations had P < 0.05 (Fig.4b, Supplementary Table 239 

10). A one standard deviation increase in GDF15 EpiScore levels was associated with lower normal 240 

appearing white matter volume (Beta = -0.07, SE = 0.02, P = 2.2x10-3), poorer general cognitive 241 

ability (Beta = -0.09, SE = 0.04, P = 9.1x10-3) and lower total brain volume (Beta = -0.05, SE = 0.02, 242 

P = 3.5x10-3). A one standard deviation increase in NT-proBNP EpiScore levels was associated with 243 

lower normal appearing white matter volume (Beta = -0.05, SE = 0.02, P = 0.02) and lower total 244 

brain volume (Beta = -0.03, SE = 0.01, P = 0.03). In a sensitivity analysis that further adjusted for 245 

immune cell proportions, the two NT-proBNP associations were attenuated (P > 0.07) and the 246 

associations between NT-proBNP and lower cognitive ability was found to be significant (Beta = -247 

0.10, SE = 0.04, P = 6.0x10-3). In the sensitivity analysis, the three GDF15 associations remained 248 

significant (P < 0.05), with a mean attenuation of 11% in Beta effect magnitude (Supplementary 249 

Table 10).  250 

Individuals consented to share disease information from electronic health records from Wave 2 of the 251 

study onwards. In Cox regression models that utilised Wave 2 as the baseline and modelled incident 252 

dementia as the outcome (Ncases = 108, Ncontrols = 672, mean time-to-event for cases = 8.6 years [SD 253 

3.42] and maximum follow-up of 14.3 years), no associations were identified for either EpiScore 254 

(Supplementary Table 11). 255 
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 256 

Figure 4. External assessment of the GDF15 and NT-proBNP EpiScores in LBC1936. a, 257 

Correlation plots between measured protein levels and GDF15 (orange) and NT-proBNP (red) 258 

EpiScores in the LBC1936 Wave 4 external test set (NGDF = 322, NNT-proBNP = 500). Pearson 259 

correlation coefficients are annotated in each instance. b, Standardised beta coefficients derived from 260 

structural equation models (SEMs) between EpiScore levels at LBC1936 Wave 1 (N=895 with 261 

DNAm, N=1,091 total) and cross-sectional measures of brain health traits that had FDR P < 0.05 in 262 

basic (age and sex adjusted) models and P < 0.05 after adjustment for further lifestyle covariates. All 263 

associations had a negative beta coefficient (blue). Twenty EpiScore-trait associations were tested in 264 

total: 10 cross-sectionally and 10 assessing longitudinal change in brain traits. 265 

 266 

Discussion 267 

Here, biomarker-disease associations for GDF15 and NT-proBNP were first observed in Generation 268 

Scotland, prior to developing EpiScores for these proteins. EpiScores replicated protein associations 269 

with incident diseases in the Generation Scotland test sample. In the LBC1936 external test 270 

population, the GDF15 and NT-proBNP EpiScores explained 9% and 8% of the variance in the 271 
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protein levels, respectively, with higher levels of the EpiScores associated with poorer brain health 272 

cross-sectionally. EWAS of each protein highlighted 14 CpGs with differential DNAm. 273 

This study provides EpiScores for GDF15 and NT-proBNP trained in the largest samples to date as 274 

tools for health stratification. Despite the LBC1936 test set being older than the Generation Scotland 275 

cohort (mean age of 79 versus 48 years), the EpiScores had R2 values comparable to those observed 276 

in the Generation Scotland test set. In the external LBC1936 test set, the GDF15 EpiScore had 277 

improved performance (an additional R2 of 3.3%) when compared to the GDF15 EpiScore derived 278 

by Lu et al in 2019 as part of the GrimAge biological age acceleration predictor (23). This is likely 279 

due to differences in the sample sizes used for training the two GDF15 scores (2,356 individuals as 280 

compared to 17,489 individuals in our study). It may also be due to our training and testing 281 

populations having more homogeneous ancestry (Scottish) than the populations used to train the 282 

original GrimAge GDF15 score (mixed white European ancestry). No other EpiScores for either 283 

GDF15 or NT-proBNP exist in the literature to our knowledge; these EpiScores can therefore be 284 

utilised as new tools for risk stratification and can be projected into any cohort with Illumina-based 285 

DNAm. We provide EpiScore weights trained on both the 450k and EPIC arrays for use in future 286 

research. 287 

Generation Scotland is one of the world’s largest single cohort resources with DNAm, protein 288 

measures, and extant data linkage to electronic health records. This allowed for direct comparisons 289 

between protein and EpiScore measures in the context of incident disease analyses, which has only 290 

recently been possible owing to the expansion of the cohort’s epigenetic resource. As DNAm may 291 

record chronic exposure to a range of environmental risk factors (30) and biological processes such 292 

as inflammation (20,31), EpiScores may be reflective of a range of biological pathways that occur 293 

upstream of disease diagnoses. Given that GDF15 and Nt-pro-BNP are promising biomarkers for a 294 

range of diseases, our EpiScores are well-positioned candidates with many potential use-cases. The 295 

results of inclusion of the PRS for proteins in incremental variance models suggested that EpiScore 296 
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signals were largely independent of genetic architectures on the proteins, as additive improvements 297 

in incremental variance observed when PRS and EpiScores were modelled together. This is in 298 

concordance with previous studies that found additive epi/genetic heritability estimates for plasma 299 

protein levels (32,33). While we have previously regressed out protein quantitative trait loci (pQTLs) 300 

from proteins prior to training EpiScores (25), there is an argument that EpiScores capturing a 301 

combination of genetic and epigenetic signatures may enhance the disease-predictive signal 302 

available. Both approaches are likely viable for the creation of new biomarkers. 303 

The higher proportion of variance explained by the GDF15 EpiScore as compared to the NT-proBNP 304 

EpiScore suggests that GDF15 was better-characterised by DNAm differences across the genome. 305 

This may be due to its association with chronic inflammation, as we have observed particularly 306 

strong DNAm signatures associated with inflammatory proteins in previous work (25,34). A stronger 307 

DNAm signature was also observed for GDF15 in our EWAS analyses. To our knowledge, this 308 

represents the first EWAS of NT-proBNP. The only other EWAS of GDF15 levels was performed by 309 

us previously, using GDF15 measures from the SomaLogic assay (34), where we identified no 310 

associations for GDF15 passing Bonferroni correction. The improved power to detect associations in 311 

the present study (17,489 rather than 774 individuals) may have facilitated identification of 312 

associations in the present study.  There were two CpG sites associated with both GDF15 and NT-313 

proBNP (cg03546163 in FKBP5 and cg13108341 in DNAH9), which suggests a partially-shared 314 

DNAm signature across the proteins. FK506-binding protein 5 (FKBP5) is implicated in cellular 315 

stress response (35). One previous study found cg03546163 to be differentially methylated in 107 316 

individuals with type 2 diabetes that went onto develop end stage renal disease, versus 253 controls 317 

who did not (36). 318 

The lack of associations with incident ischaemic heart disease in the Generation Scotland test set 319 

may be due to limited sample size, as an association between protein NT-proBNP and ischaemic 320 

heart disease was observed in the full Generation Scotland sample. Additionally, the GDF15 321 
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EpiScore association with incident dementia observed in Generation Scotland did not replicate in 322 

LBC1936. This may be due to differences in the way the phenotypes were defined across LBC1936 323 

(consensus committee) versus Generation Scotland (Read and ICD codes only), or different cohort 324 

sampling frames and recruitment strategies. 325 

Our findings support previous work identifying associations between GDF15 and Nt-proBNP protein 326 

levels and severe COVID-19 outcomes in hospitalised individuals (12,13). Although very few 327 

hospitalisation cases were available (n=28), both proteins (sampled a mean of 11 years prior to 328 

COVID-19 diagnoses) associated with subsequent hospitalisation due to COVID-19. GDF15 is likely 329 

to be elevated in individuals with multiple morbidities that may contribute towards greater risk of 330 

hospitalisation due to viral illnesses. Diabetes has been associated with increased risk of 331 

hospitalisation and adverse outcomes in COVID-19 (37,38). Both proteins (and equivalent 332 

EpiScores) should be investigated in populations that have DNAm quantified nearer to, or at 333 

COVID-19 diagnoses to further resolve these signals. 334 

This study has several limitations. First, whereas it was advantageous to have common ancestry 335 

across both (Scottish) training and validation datasets, future studies should test EpiScores across 336 

larger populations that include non-European ancestries and larger age ranges as data become 337 

available. Second, emerging evidence has quantified differences in genetic associations with the 338 

measurements of the same proteins across panels that use antibody-based versus aptamer-based 339 

quantification methods (39). A particular example of interest from this study was GDF15 levels, 340 

which was highlighted as a protein that may have different conformational shapes (isoforms) that are 341 

targeted by the two assay methods (39). While it is likely that increased training sample size led to 342 

improved performance of our GDF15 score versus the GrimAge GDF15 score in the LBC1936 test 343 

set, it is possible that technical or biological variability across protein assays may also underlie 344 

differences in performance of scores. EpiScores trained on protein measurements from different 345 

panels should be therefore be compared further when data become available. Similarly, differences 346 
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in the protein assay method across the previous EWAS of GDF15 (aptamer-based) that we ran and 347 

the present study (immunochemiluminescence) may also introduce variability and EWAS across 348 

multiple protein panels should be compared when samples are available. 349 

Conclusions 350 

In conclusion, EpiScores for blood-based GDF15 and NT-proBNP levels are generated in this study 351 

and have been found to be useful indictors of disease risk stratification, with disease-specific use-352 

cases. The EpiScores can be derived in any population with Illumina-based DNAm measurements 353 

and may be integrated into epigenetic screening panels in future to better-identify high-risk 354 

individuals. 355 

Methods 356 

 357 

Generation Scotland 358 

Generation Scotland is a population-based cohort study that includes ~8,000 families from across 359 

Scotland (26,27). Study recruitment of 23,960 participants occurred between 2006 and 2011, while 360 

participants were aged between 18 and 99 years.  In addition to completing health and lifestyle 361 

questionnaires, participants donated blood samples for biomarker and omics measurement. Details 362 

on DNAm quality control in Generation Scotland are provided in Supplementary Information. The 363 

quality-controlled DNAm dataset comprised a total of 18,413 individuals with 760,838 CpG sites 364 

available on the EPIC array. GDF15 and NT-proBNP measurement details are provided in 365 

Supplementary Information. There were 18,413 individuals with GDF15 measures 366 

(Supplementary Table 1) and these were subset to 17,489 individuals that had DNAm (mean 367 

1038.7 pg/mL [SD 928]). There were 17,863 individuals with NT-proBNP measures, with 16,963 368 

that had DNAm available (mean 94.6 pg/mL [SD 211.2]). Electronic health records via data linkage 369 

to GP records (Read 2 codes) and hospital records (10th revision of the International Classification of 370 
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Diseases codes [ICD-10 codes]) were assessed prospectively from the time of blood draw. Incident 371 

data for all-cause dementia, type 2 diabetes, ischaemic stroke and ischaemic heart disease were 372 

considered with censoring date October 2020. Dementia cases were defined as per a previous review 373 

of dementia linkage codes (40), whereas code lists for all other diseases are available in 374 

Supplementary Tables 12-14. Prevalent cases (ascertained via retrospective linkage or self-report 375 

from a baseline questionnaire) were excluded from each disease trait, leaving only incident 376 

diagnoses. Dementia analyses were limited to cases/controls with age of event/censoring ≥ 65 years. 377 

Type 1 and juvenile diabetes cases were treated as control observations in the type 2 diabetes 378 

analyses. Death was treated as a censoring event. 379 

Lothian Birth Cohort 1936 380 

The Lothian Birth Cohort 1936 (LBC1936) is a longitudinal study of ageing of people residing in 381 

Edinburgh and surrounding areas in Scotland (N = 1,091) (28,29). Individuals were born in 1936 and 382 

completed an intelligence test when they were 11 years old. They were later recruited to the cohort at 383 

a mean age of 70 years old and have been followed up triennially for a series of cognitive, clinical, 384 

social and physical measurements in five Waves (mean ages 70, 73, 76, 79 and 82 – all with SD 385 

below 1 for measures at each Wave). Blood samples were taken and used to derive protein, 386 

epigenetic and genetic measurements. Sample measurement details for the DNAm measures 387 

available in LBC1936 are provided in Supplementary Information. DNAm is available at the four 388 

successive waves of the study (N=895, 787, 619 and 507 in Waves 1, 2, 3 and 4, respectively). Both 389 

GDF15 (N=322) and NT-proBNP (N=500) serum levels were measured at Wave 4 of the study 390 

(mean age 79 years, SD 0.6) and were used to externally test EpiScore performance. From Wave 2 of 391 

the LBC1936, individuals consented for linkage to health records for research. Dementia cases were 392 

defined by a consensus committee that completed decisions in August 2022 (41).  Potential cases 393 

were identified through a combination of electronic health record linkage, death certificate data and 394 

clinician visits to individuals that were suspected of having cognitive impairments or dementia. Of 395 
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the 865 individuals who had provided linkage consent at Wave 2, 118 were confirmed as having 396 

dementia.  397 

Epigenome-wide association studies in Generation Scotland 398 

The xBayesR+ software implements penalised Bayesian regression on complex traits (30). The 399 

BayesR method has been found to outperform linear and mixed model approaches and implicitly 400 

adjusts for probe correlations, data structure (such as relatedness) and unobserved confounders 401 

(30,32). Prior mixture variances for the methylation data (760,838 CpG sites) were set to 0.001, 0.01 402 

and 0.1 and epigenome-wide associations studies (EWAS) were run for GDF15 (N=17,489) and NT-403 

proBNP (N=16,963) levels in Generation Scotland. Protein measurements were transformed by rank-404 

based inverse normalisation, regressed onto age, sex and 20 genetic principal components and scaled 405 

to have a mean of 0 and variance of 1. DNAm measurements in beta format were regressed onto age, 406 

sex and processing batch and scaled to have a mean of 0 and variance of 1. Houseman immune cell 407 

estimates were included as fixed effect covariates (42). Effect size estimates were obtained through 408 

Gibbs sampling over the posterior distribution, conditional on input data. The Gibbs protocol had 409 

10,000 samples, with 5,000 samples of burn-in followed by a thinning of 5 samples to reduce 410 

autocorrelation. Methylation probes that had a posterior inclusion probability of ≥�95% were 411 

deemed to be significant for each protein. 412 

EpiScore development 413 

Elastic net penalised regression was used to train EpiScores for GDF15 and Nt-pro-BNP levels. As 414 

Generation Scotland has extensive phenotyping and extant linkage to primary care and hospital 415 

records, EpiScores were first trained and tested in subsets of the full sample that were unrelated to 416 

one another to facilitate direct comparisons between EpiScore and protein levels in associations with 417 

incident diseases. EpiScores were then retrained on the full Generation Scotland sample and tested in 418 

LBC1936 – an external cohort. For both analyses, DNAm beta values were considered with missing 419 
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CpG measurements mean imputed. To generate alternative versions of the EpiScores that can be 420 

applied to existing cohort studies with older Illumina array data (450k array), CpGs were filtered to 421 

the intersection of the 450k and EPIC array sites. A total of 760,838 EPIC array probes and 390,461 422 

450k probes were available. CpG measurements were scaled to have a mean of 0 and variance of 1, 423 

prior to training. Protein measurements in training samples were transformed by rank-based inverse 424 

normalisation, regressed onto age, sex and 20 genetic principal components and scaled to have a 425 

mean of 0 and variance of 1. Penalised regression models were performed using Big Lasso (Version 426 

1.5.1) in R (Version 4.0) (43). GDF15 and NT-proBNP protein levels were the outcomes. An elastic 427 

net penalty was specified (alpha=0.5). In the within-Generation Scotland analyses 10-fold cross 428 

validation was applied to select the lambda value that minimised the mean prediction error, whereas 429 

20-fold cross validation was applied when training EpiScores in the full Generation Scotland sample.  430 

A summary of the individuals with protein measurements available that were used to train and test 431 

EpiScores in the initial, within-Generation Scotland analyses is provided in Supplementary Fig. 2. 432 

Briefly, individuals that were part of the same family as disease cases in the test sample were 433 

excluded from the training sample. In the test subset of Generation Scotland, control individuals that 434 

were related to those in the training sample were excluded. A total of 8,207 individuals with GDF15 435 

and 8,002 individuals with NT-proBNP measurements were therefore used to train EpiScores, while 436 

2,954 individuals with GDF15 and 2,808 individuals with NT-proBNP measurements comprised the 437 

test samples. When retraining the EpiScores on the full Generation Scotland sample, there were 438 

17,489 and 16,963 individuals available for the GDF15 and NT-proBNP EpiScores, respectively. 439 

Supplementary Fig. 3 summarises the training and testing samples used, which included 500 440 

individuals with NT-proBNP and 322 individuals with GDF15 measures in the external LBC1936 441 

test set. 442 

EpiScore testing 443 
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To test EpiScores, the additional variance in protein levels that the EpiScores explained over a null 444 

model was quantified by running the following models: 445 

Model 1: protein ~ age + sex 446 

Model 2: protein ~ age + sex + protein EpiScore 447 

The incremental variance (R2) in protein levels explained due to the protein EpiScore was calculated 448 

by subtracting the R2 derived from model 1 from that in model 2. In these models, scaled, rank-based 449 

inverse normalised protein levels were used for testing. Pearson correlation coefficients were also 450 

calculated between GDF15 and NT-proBNP levels and their respective EpiScores in the test set and 451 

plotted. Protein EpiScores were tested using the described approach in both the Generation Scotland 452 

test subset (N≥2,808) and the individuals in Wave 4 of the LBC1936 external cohort that had 453 

measures of the proteins available (NGDF = 322, NNT-proBNP = 500). To assess the incremental variance 454 

that could be attributed to genetic architectures of the proteins, polygenic risk scores (PRS) for the 455 

proteins were calculated using genome-wide association study (GWAS) summary statistics generated 456 

in the Generation Scotland population via BOLT-LMM (44) (see Supplementary Information). A 457 

summary of sentinel protein quantitative trait loci (pQTLs) identified by conditional and joint 458 

analyses (COJO) via Genome-wide Complex Trait Analysis (GCTA) software (45) for the GWAS 459 

results is available in Supplementary Table 15. PRS were derived using PRSice software (46). The 460 

PRS utilised pQTLs that had P < 5x10-8, with clumping (parameters: R2 = 0.25, distance = 250kb, p1 461 

= 1). PRS were modelled in incremental variance assessments singularly and additively with the 462 

EpiScores in the test sets in relation to measured proteins. 463 

Cox proportional hazards analyses in Generation Scotland 464 

Cox proportional hazards mixed effects regression models were used to assess the relationship 465 

between measured levels of GDF15 (N=17,489) and NT-proBNP (N=16,693) levels in the baseline 466 

Generation Scotland sample and four incident morbidities. The same model structure was also used 467 
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in the test subset of the Generation Scotland sample where proteins and EpiScores were available for 468 

direct comparisons. All models were run using coxme (47) (Version 2.2-16) with a kinship matrix 469 

accounting for relatedness. Cases included those diagnosed after baseline who had died, in addition 470 

to those who received a diagnosis and remained alive. Controls were censored if disease free at time 471 

of death, or at the end of the follow-up period. Date of censoring was set to October 2020, which was 472 

the latest date of the GP data linkage information. Protein levels were rank-based inverse normalised 473 

and scaled to have a mean of 0 and variance of 1 prior to analyses. Basic models were run adjusting 474 

for age and sex. Fully-adjusted models further controlled for alcohol consumption (units consumed 475 

in the previous week); social deprivation (assessed by the Scottish Index of Multiple Deprivation 476 

(48)); body mass index (kilograms/height in metres squared); educational attainment (an 11-category 477 

ordinal variable) and a DNAm-based score for smoking status (49). Each of these covariates was 478 

sampled at baseline. 479 

An FDR multiple testing correction P < 0.05 was applied to basic model associations across all 480 

diseases tested. Basic associations were considered to be significant if they had FDR P < 0.05. 481 

Associations in fully-adjusted models were considered to be significant if they had unadjusted P < 482 

0.05. Proportional hazards assumptions were checked through Schoenfeld residuals (global test and a 483 

test for the protein variable) using the coxph and cox.zph functions from the survival package (50) 484 

(Version 3.2-7). For each association failing to meet the assumption (Schoenfeld residuals P < 0.05), 485 

a sensitivity analysis was run across yearly follow-up intervals. There were minimal differences in 486 

hazard ratios between follow-up periods that did not violate the assumption and those that did. All 487 

associations were therefore retained. 488 

COVID-19 analyses in Generation Scotland 489 

Associations between measured levels of GDF15 and NT-proBNP and subsequent long-COVID 490 

(derived through CovidLife study survey 3 questionnaire (51)) or COVID-19 hospitalisation (derived 491 
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through hospital linkage) were tested in the full Generation Scotland population. The preparation of 492 

the two binary outcome variables (long-COVID or hospitalisation due to COVID-19) is detailed in 493 

Supplementary Information. Logistic regression models with either hospitalisation (28 of 491 494 

possible individuals) or long-COVID status (87 of 269 possible individuals) were run, with 495 

standardised (measured) proteins as the independent variables. Controls were defined as individuals 496 

that had COVID-19 but did not experience hospitalisation or long-COVID. Sex and age at COVID 497 

testing were adjusted for in the models. The latter was defined as the age at positive COVID-19 test 498 

or 1st January 2021 if COVID-19 test data were not available.  499 

EpiScore associations with brain health traits in LBC1936 500 

As longitudinal cognitive testing and brain morphology measures are available in LBC1936, 501 

structural equation models (SEM) were used to examine the relationship between each EpiScore and 502 

brain health traits (cross-sectionally and longitudinally). Outcomes included: general cognitive 503 

ability (g), total brain volume, normal-appearing white matter volume, global grey matter volume 504 

and white matter hyperintensity volume. Cognitive test data were available at all measurement 505 

Waves (mean ages 70, 73, 76, 79 and 82) and brain magnetic resonance imaging (MRI) data were 506 

available from the second Wave (mean ages 73, 76, 79 and 82). Information on how the SEM 507 

analyses were constructed, with information on the number of individuals with cognitive and brain 508 

imaging measures at each Wave is included in Supplementary Information. Basic models were run 509 

with adjustment for age and sex, whereas fully-adjusted models included further covariates: DNAm-510 

derived immune cell proportion estimates, DNAm-derived smoking score (49), self-reported alcohol 511 

consumption, BMI and the Scottish Index of Multiple Deprivation (52) . Intercept (cross-sectional 512 

associations) and slope (longitudinal change) coefficients were extracted. A total of 1,091 individuals 513 

were modelled as part of the SEM analyses, with 895 individuals that had EpiScore measures 514 

available at Wave 1. 515 
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Individuals consented to share disease information from electronic health records from Wave 2 of the 516 

study onwards. Cox PH models were run to test associations between Wave 2 GDF15 and NT-517 

proBNP EpiScores and incident dementia diagnoses after Wave 2 baseline, with basic adjustments 518 

for age and sex. The test population included 780 individuals who had dementia ascertainment and 519 

EpiScore information available at Wave 2, with 108 of these individuals having received a dementia 520 

diagnosis post-baseline (mean time-to-event 8.6 years [SD 3.4]). For the 108 incident cases, time-to-521 

event was calculated using age at diagnosis. For controls who had died age at death was used for 522 

censoring, whereas age at the date of the dementia consensus meeting decision was taken forward for 523 

controls that remained alive. 524 

List of abbreviations 525 

BMI – Body mass index 526 

CI – Confidence interval 527 

COJO – Conditional and joint analyses 528 

COVID-19 – Coronavirus disease 2019 529 

CpG – Cytosine-phosphate-guanine 530 

DNAm – DNA methylation 531 

EpiScore – Epigenetic score 532 

EWAS – Epigenome-wide association study  533 

FDR – False discovery rate 534 

GCTA – Genome-wide Complex Trait Analysis  535 

GDF15 – Plasma growth differentiation factor 15  536 

GWAS – Genome-wide association study 537 

HbA1c – Glycated haemoglobin 538 

HR – Hazard ratio 539 
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IHD – Ischaemic heart disease 541 

IgG – Immunoglobulin G 542 
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MRI – Magnetic resonance imaging 543 

NT-proBNP – N�terminal pro�B�type natriuretic peptide 544 

LBC1936 – The Lothian Birth Cohort of 1936 545 

OR – odds ratio 546 

PH – Proportional hazards 547 

PIP – Posterior inclusion probability 548 

pQTL – Protein quantitative trait loci  549 

PRS – Polygenic risk score 550 

SD – Standard deviation 551 

SE – Standard error 552 

SEM – Structural equation model 553 

 554 

Declarations 555 

Ethics approval and consent to participate 556 

All components of Generation Scotland received ethical approval from the NHS Tayside Committee 557 

on Medical Research Ethics (REC Reference Number: 05/S1401/89). Generation Scotland has also 558 

been granted Research Tissue Bank status by the East of Scotland Research Ethics Service (REC 559 

Reference Number: 20-ES-0021), providing generic ethical approval for a wide range of uses within 560 

medical research.  561 

LBC1936 ethical approval was obtained from the Multicentre Research Ethics Committee for 562 

Scotland (Wave 1, MREC/01/0/56), the Lothian Research Ethics Committee (Wave 1, 563 

LREC/2003/2/29), and the Scotland A Research Ethics Committee (Waves 2-5, 07/MRE00/58). All 564 

participants provided written informed consent. 565 

Consent for publication 566 

Not applicable. 567 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 19, 2023. ; https://doi.org/10.1101/2023.10.18.23297200doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.18.23297200
http://creativecommons.org/licenses/by/4.0/


26 

 

 26

Availability of data and materials 568 

The source datasets from the cohorts that were analysed during the current study are not publicly 569 

available due to them containing information that could compromise participant consent and 570 

confidentiality. Data can be obtained from the data owners. Instructions for accessing Generation 571 

Scotland data can be found here: https://www.ed.ac.uk/generation-scotland/for-researchers/access; 572 

the ‘GS Access Request Form’ can be downloaded from this site. Completed request forms must be 573 

sent to access@generationscotland.org to be approved by the Generation Scotland Access 574 

Committee. According to the terms of consent for Generation Scotland participants, access to data 575 

must be reviewed by the Generation Scotland Access Committee. Applications should be made to 576 

access@generationscotland.org.  577 

LBC1936 data are available on request from the Lothian Birth Cohort Study, University of 578 

Edinburgh https://www.ed.ac.uk/lothian-birth-cohorts/data-access-collaboration. 579 

All correspondence and material requests should be sent to Riccardo Marioni at 580 

riccardo.marioni@ed.ac.uk. All R code used in analyses is provided at: 581 

https://github.com/DanniGadd/EpiScores-GDF15-NT-proBNP. Latent Curve Growth Model 582 

(LCGM) LBC cognitive code that was adapted for these analyses is also available at: 583 

https://www.ed.ac.uk/lothian-birth-cohorts/summary-data-resources. 584 

Competing interests 585 

R.E.M is an advisor to the Epigenetic Clock Development Foundation, and has received consultant 586 

fees from Optima partners. A.M.M has previously received speaker’s fees from Illumina and Janssen 587 

and research grant funding from The Sackler Trust. R.F.H. has received consultant fees from 588 

Illumina and Optima partners. D.A.G. has received consultant fees from and is currently employed in 589 

part-time capacity by Optima partners. D.L.M. is currently employed in part-time capacity by 590 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 19, 2023. ; https://doi.org/10.1101/2023.10.18.23297200doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.18.23297200
http://creativecommons.org/licenses/by/4.0/


27 

 

 27

Optima partners. PW reports grant income from Roche Diagnostics in relation to and outside of the 591 

submitted work, as well as grant income from AstraZeneca, Boehringer Ingelheim, and Novartis, 592 

outside the submitted work and speaker fees from Novo Nordisk, and Raisio outside the submitted 593 

work. NS has consulted for Afimmune, Amgen, AstraZeneca, Boehringer Ingelheim, Eli Lilly, 594 

Hanmi Pharmaceuticals, Merck Sharp & Dohme, Novartis, Novo Nordisk, Pfizer, and Sanofi; and 595 

received grant support paid to his University from AstraZeneca, Boehringer Ingelheim, Novartis, and 596 

Roche Diagnostics outside the submitted work. All other authors declare no competing interest. 597 

Funding 598 

This research was funded in whole, or in part, by the Wellcome Trust [104036/Z/14/Z, 599 

108890/Z/15/Z, 221890/Z/20/Z, 218493/Z/19/Z]. For the purpose of open access, the author has 600 

applied a CC BY public copyright licence to any Author Accepted Manuscript version arising 601 

from this submission D.A.G. is supported by funding from the Wellcome Trust 4 year PhD in 602 

Translational Neuroscience: training the next generation of basic neuroscientists to embrace clinical 603 

research [108890/Z/15/Z]. R.F.H is supported through a MRC IEU Short-term Fellowship. E.B. and 604 

R.E.M are supported by Alzheimer’s Society major project grant AS-PG-19b-010. Hannah Smith is a 605 

student on the Translational Neuroscience PhD Programme and is funded by Wellcome grant 606 

[218493/Z/19/Z]. 607 

Generation Scotland received core support from the Chief Scientist Office of the Scottish 608 

Government Health Directorates (CZD/16/6) and the Scottish Funding Council (HR03006). 609 

Genotyping and DNAm profiling of the GS samples was carried out by the Genetics Core 610 

Laboratory at the Edinburgh Clinical Research Facility, Edinburgh, Scotland and was funded by the 611 

Medical Research Council UK and the Wellcome Trust (Wellcome Trust Strategic Award 612 

STratifying Resilience and Depression Longitudinally (STRADL; Reference 104036/Z/14/Z). The 613 

DNAm data assayed for Generation Scotland was partially funded by a 2018 NARSAD Young 614 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 19, 2023. ; https://doi.org/10.1101/2023.10.18.23297200doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.18.23297200
http://creativecommons.org/licenses/by/4.0/


28 

 

 28

Investigator Grant from the Brain & Behavior Research Foundation (Ref: 27404; awardee: Dr David 615 

M Howard) and by a JMAS SIM fellowship from the Royal College of Physicians of Edinburgh 616 

(Awardee: Dr Heather C Whalley). Recruitment to the CovidLife study was facilitated by SHARE - 617 

the Scottish Health Research Register and Biobank. Roche Diagnostics supported this study through 618 

provision of free reagents and a grant for measurement of NT-proBNP and GDF-15 in Generation 619 

Scotland. 620 

LBC1936 is supported by the Biotechnology and Biological Sciences Research Council, and the 621 

Economic and Social Research Council [BB/W008793/1] (which supports S.E.H.), Age UK 622 

(Disconnected Mind project), the Milton Damerel Trust, and the University of Edinburgh. S.R.C. is 623 

supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal 624 

Society (221890/Z/20/Z). Methylation typing was supported by Centre for Cognitive Ageing and 625 

Cognitive Epidemiology (Pilot Fund award), Age UK, The Wellcome Trust Institutional Strategic 626 

Support Fund, The University of Edinburgh, and The University of Queensland. 627 

J.M.W., is funded by the UK Dementia Research Institute Ltd which is funded by the Medical 628 

Research Council, Alzheimer’s Society and Alzheimer’s Research UK Institute (award no. UKDRI – 629 

Edin002, DRIEdi17/18, and MRC MC_PC_17113). D.M.K. is supported by a British Heart 630 

Foundation Intermediate Basic Science Research Fellowship (FS/IBSRF/23/25161). 631 

 632 

Authors' contributions 633 

D.A.G., and R.E.M. were responsible for the conception and design of the study. D.A.G. carried out 634 

all data analyses. D.A.G. and R.E.M. drafted the article. O.C., H.S., E.B., Y.C., R.F.H., D.M., 635 

C.F.R., and D.L.Mc. contributed to methodology. A.C., R.F., S.W.M., R.M.W., K.L.E., S.E.H., D.P., 636 

A.M.M., C.H., T.R., R.M.W., P.W. and N.S. contributed to the data collection and preparation. D.P., 637 

A.T., J.C. and S.R.C. collected and processed LBC1936 data. M.E.B., J.M.W., M.D.C.V.H., and 638 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 19, 2023. ; https://doi.org/10.1101/2023.10.18.23297200doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.18.23297200
http://creativecommons.org/licenses/by/4.0/


29 

 

 29

S.M.M., derived brain imaging variables in LBC1936. R.E.M. supervised the project. All authors 639 

read and approved the manuscript.  640 

Acknowledgements 641 

We acknowledge the participants of the Generation Scotland and Lothian Birth Cohort studies for 642 

their involvement in the data that have made this work possible. The authors thank all LBC1936 and 643 

Generation Scotland study research team members who have contributed, and continue to contribute, 644 

to ongoing studies.  645 

References 646 

1. Hageman SHJ, McKay AJ, Ueda P, Gunn LH, Jernberg T, Hagström E, et al. Estimation of recurrent 647 

atherosclerotic cardiovascular event risk in patients with established cardiovascular disease: the 648 

updated SMART2 algorithm. Eur Heart J. 2022 May 7;43(18):1715–27.  649 

2. SCORE2 working group and ESC Cardiovascular risk collaboration. SCORE2 risk prediction algorithms: 650 

new models to estimate 10-year risk of cardiovascular disease in Europe. Eur Heart J. 2021 Jul 651 

1;42(25):2439–54.  652 

3. Pence BD. Growth Differentiation Factor-15 in Immunity and Aging. Front Aging. 2022 Feb 9;0:8.  653 

4. Wang Z, Yang F, Ma M, Bao Q, Shen J, Ye F, et al. The impact of growth differentiation factor 15 on the 654 

risk of cardiovascular diseases: two-sample Mendelian randomization study. BMC Cardiovasc Disord. 655 

2020 Dec 1;20(1):1–7.  656 

5. Tanaka T, Basisty N, Fantoni G, Candia J, Moore AZ, Biancotto A, et al. Plasma proteomic biomarker 657 

signature of age predicts health and life span. eLife. 2020 Oct 1;9:1–24.  658 

6. Gadd DA, Hillary RF, Kuncheva Z, Mangelis T, Admanit R, Gagnon J, et al. Blood protein levels predict 659 

leading incident diseases and mortality in UK Biobank [Internet]. medRxiv; 2023 [cited 2023 May 22]. p. 660 

2023.05.01.23288879. Available from: 661 

https://www.medrxiv.org/content/10.1101/2023.05.01.23288879v1 662 

7. Shrivastava A, Haase T, Zeller T, Schulte C. Biomarkers for Heart Failure Prognosis: Proteins, Genetic 663 

Scores and Non-coding RNAs. Front Cardiovasc Med. 2020 Nov 23;7:252.  664 

8. Birukov A, Eichelmann F, Kuxhaus O, Polemiti E, Fritsche A, Wirth J, et al. Opposing Associations of NT-665 

proBNP With Risks of Diabetes and Diabetes-Related Complications. Diabetes Care. 2020 Dec 666 

1;43(12):2930–7.  667 

9. Noveanu M, Breidthardt T, Potocki M, Reichlin T, Twerenbold R, Uthoff H, et al. Direct comparison of 668 

serial B-type natriuretic peptide and NT-proBNP levels for prediction of short- and long-term outcome in 669 

acute decompensated heart failure. Crit Care. 2011 Jan 5;15(1):1–15.  670 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 19, 2023. ; https://doi.org/10.1101/2023.10.18.23297200doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.18.23297200
http://creativecommons.org/licenses/by/4.0/


30 

 

 30

10. Myhre PL, Vaduganathan M, Claggett B, Packer M, Desai AS, Rouleau JL, et al. B-Type Natriuretic Peptide 671 

During Treatment With Sacubitril/Valsartan: The PARADIGM-HF Trial. J Am Coll Cardiol. 2019 Mar 672 

26;73(11):1264–72.  673 

11. Zile MR, Claggett BL, Prescott MF, McMurray JJV, Packer M, Rouleau JL, et al. Prognostic Implications of 674 

Changes in N-Terminal Pro-B-Type Natriuretic Peptide in Patients With Heart Failure. J Am Coll Cardiol. 675 

2016 Dec 6;68(22):2425–36.  676 

12. Myhre PL, Prebensen C, Strand H, Røysland R, Jonassen CM, Rangberg A, et al. Growth Differentiation 677 

Factor 15 Provides Prognostic Information Superior to Established Cardiovascular and Inflammatory 678 

Biomarkers in Unselected Patients Hospitalized With COVID-19. Circulation. 2020 Dec 12;142(22):2128.  679 

13. Gao L, Jiang D, Wen XS, Cheng XC, Sun M, He B, et al. Prognostic value of NT-proBNP in patients with 680 

severe COVID-19. Respir Res. 2020 Apr 15;21(1):1–7.  681 

14. McGrath ER, Himali JJ, Levy D, Conner SC, Decarli C, Pase MP, et al. Growth Differentiation Factor 15 and 682 

NT-proBNP as Blood-Based Markers of Vascular Brain Injury and Dementia. J Am Heart Assoc [Internet]. 683 

2020 Oct 6 [cited 2021 Nov 24];9(19). Available from: https://pubmed.ncbi.nlm.nih.gov/32921207/ 684 

15. Walker KA, Chen J, Zhang J, Fornage M, Yang Y, Zhou L, et al. Large-scale plasma proteomic analysis 685 

identifies proteins and pathways associated with dementia risk. Nat Aging. 2021 May 14;1(5):473–89.  686 

16. Gadd DA, Hillary RF, McCartney DL, Zaghlool SB, Stevenson AJ, Nangle C, et al. Epigenetic scores for the 687 

circulating proteome as tools for disease prediction. bioRxiv. 2021 Jul 7;8(5):2020.12.01.404681.  688 

17. Cheng Y, Gadd DA, Gieger C, Monterrubio-Gómez K, Zhang Y, Berta I, et al. DNA Methylation scores 689 

augment 10-year risk prediction of diabetes. medRxiv. 2021 Nov 21;2021.11.19.21266469.  690 

18. Chybowska AD, Gadd DA, Cheng Y, Bernabeu E, Campbell A, Walker RM, et al. Augmenting clinical risk 691 

prediction of cardiovascular disease through protein and epigenetic biomarkers [Internet]. medRxiv; 692 

2022 [cited 2023 Jan 5]. p. 2022.10.21.22281355. Available from: 693 

https://www.medrxiv.org/content/10.1101/2022.10.21.22281355v1 694 

19. Stevenson AJ, Gadd DA, Hillary RF, Mccartney DL, Campbell A, Walker RM, et al. Creating and validating 695 

a DNA methylation-based proxy for interleukin-6. [cited 2021 Mar 9]; Available from: 696 

https://academic.oup.com/biomedgerontology/advance-article/doi/10.1093/gerona/glab046/6141415 697 

20. Zaghlool SB, Kühnel B, Elhadad MA, Kader S, Halama A, Thareja G, et al. Epigenetics meets proteomics in 698 

an epigenome-wide association study with circulating blood plasma protein traits. Nat Commun. 2020 699 

Dec 1;11(1):15.  700 

21. Conole ELS, Stevenson AJ, Maniega SM, Harris SE, Green C, Valdés Hernández MDC, et al. DNA 701 

Methylation and Protein Markers of Chronic Inflammation and Their Associations With Brain and 702 

Cognitive Aging. Neurology. 2021 Dec 7;97(23):e2340–52.  703 

22. Stevenson AJ, McCartney DL, Hillary RF, Campbell A, Morris SW, Bermingham ML, et al. Characterisation 704 

of an inflammation-related epigenetic score and its association with cognitive ability. Clin Epigenetics. 705 

2020 Jul 27;12:113.  706 

23. Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, et al. DNA methylation GrimAge strongly predicts 707 

lifespan and healthspan. Aging. 2019 Jan 1;11(2):303–27.  708 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 19, 2023. ; https://doi.org/10.1101/2023.10.18.23297200doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.18.23297200
http://creativecommons.org/licenses/by/4.0/


31 

 

 31

24. Hillary RF, Stevenson AJ, McCartney DL, Campbell A, Walker RM, Howard DM, et al. Epigenetic clocks 709 

predict prevalence and incidence of leading causes of death and disease burden. Clin Epigenet. 710 

2020;12(115).  711 

25. Gadd DA, Hillary RF, McCartney DL, Zaghlool SB, Stevenson AJ, Cheng Y, et al. Epigenetic scores for the 712 

circulating proteome as tools for disease prediction. eLife. 2022 Jan 1;11.  713 

26. Smith BH, Campbell A, Linksted P, Fitzpatrick B, Jackson C, Kerr SM, et al. Cohort profile: Generation 714 

scotland: Scottish family health study (GS: SFHS). The study, its participants and their potential for 715 

genetic research on health and illness. Int J Epidemiol. 2013;42(3):689–700.  716 

27. Smith BH, Campbell H, Blackwood D, Connell J, Connor M, Deary IJ, et al. Generation Scotland: The 717 

Scottish Family Health Study; a new resource for researching genes and heritability. BMC Med Genet. 718 

2006;7:74.  719 

28. Taylor AM, Pattie A, Deary IJ. Cohort profile update: The Lothian birth cohorts of 1921 and 1936. Int J 720 

Epidemiol. 2018;47(4):1042r.  721 

29. Deary IJ, Gow AJ, Pattie A, Starr JM. Cohort profile: The lothian birth cohorts of 1921 and 1936. Int J 722 

Epidemiol. 2012;41(6):1576–84.  723 

30. Trejo Banos D, McCartney DL, Patxot M, Anchieri L, Battram T, Christiansen C, et al. Bayesian 724 

reassessment of the epigenetic architecture of complex traits. Nat Commun. 2020;11.  725 

31. Gadd DA, Hillary RF, McCartney DL, Shi L, Stolicyn A, Robertson N, et al. Integrated methylome and 726 

phenome study of the circulating proteome reveals markers pertinent to brain health. Zenodo 727 

[Internet]. 2022 Jul 6 [cited 2022 Jul 6]; Available from: https://zenodo.org/record/6801458 728 

32. Hillary RF, Trejo-Banos D, Kousathanas A, McCartney DL, Harris SE, Stevenson AJ, et al. Multi-method 729 

genome- And epigenome-wide studies of inflammatory protein levels in healthy older adults. Genome 730 

Med. 2020 Jul 8;12:60.  731 

33. Hillary RF, McCartney DL, Harris SE, Stevenson AJ, Seeboth A, Zhang Q, et al. Genome and epigenome 732 

wide studies of neurological protein biomarkers in the Lothian Birth Cohort 1936. Nat Commun. 2019 733 

Dec 1;10(1):3160.  734 

34. Gadd DA, Hillary RF, McCartney DL, Shi L, Stolicyn A, Robertson NA, et al. Integrated methylome and 735 

phenome study of the circulating proteome reveals markers pertinent to brain health. Nat Commun. 736 

2022 Aug 9;13(1):4670.  737 

35. Zannas AS, Wiechmann T, Gassen NC, Binder EB. Gene–Stress–Epigenetic Regulation of FKBP5: Clinical 738 

and Translational Implications. Neuropsychopharmacology. 2016 Jan;41(1):261–74.  739 

36. Smyth LJ, Kilner J, Nair V, Liu H, Brennan E, Kerr K, et al. Assessment of differentially methylated loci in 740 

individuals with end-stage kidney disease attributed to diabetic kidney disease: an exploratory study. 741 

Clin Epigenetics. 2021 May 1;13(1):99.  742 

37. Rawshani A, Kjölhede EA, Rawshani A, Sattar N, Eeg-Olofsson K, Adiels M, et al. Severe COVID-19 in 743 

people with type 1 and type 2 diabetes in Sweden: A nationwide retrospective cohort study. Lancet Reg 744 

Health – Eur [Internet]. 2021 May 1 [cited 2023 Aug 20];4. Available from: 745 

https://www.thelancet.com/journals/lanepe/article/PIIS2666-7762(21)00082-X/fulltext 746 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 19, 2023. ; https://doi.org/10.1101/2023.10.18.23297200doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.18.23297200
http://creativecommons.org/licenses/by/4.0/


32 

 

 32

38. Ortega E, Corcoy R, Gratacòs M, Claramunt FXC, Mata-Cases M, Puig-Treserra R, et al. Risk factors for 747 

severe outcomes in people with diabetes hospitalised for COVID-19: a cross-sectional database study. 748 

BMJ Open. 2021 Jul 1;11(7):e051237.  749 

39. Pietzner M, Wheeler E, Carrasco-Zanini J, Kerrison ND, Oerton E, Koprulu M, et al. Synergistic insights 750 

into human health from aptamer- and antibody-based proteomic profiling. Nat Commun 2021 121. 2021 751 

Nov 24;12(1):1–13.  752 

40. Wilkinson T, Schnier C, Bush K, Rannikmäe K, Henshall DE, Lerpiniere C, et al. Identifying dementia 753 

outcomes in UK Biobank: a validation study of primary care, hospital admissions and mortality data. Eur 754 

J Epidemiol. 2019 Jun 15;34(6):557–65.  755 

41. Mullin DS, Stirland LE, Buchanan E, Convery CA, Cox SR, Deary IJ, et al. Identifying dementia using 756 

medical data linkage in a longitudinal cohort study: Lothian Birth Cohort 1936. BMC Psychiatry. 2023 757 

May 1;23:303.  758 

42. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, et al. DNA 759 

methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics. 2012;13:86.  760 

43. R. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical 761 

Computing, Vienna, Austria. URL https://www.R-project.org/. Accessed April 2021. 2020.  762 

44. Loh PR, Kichaev G, Gazal S, Schoech AP, Price AL. Mixed model association for biobank-scale data sets. 763 

Nat Genet. 2018 Jul;50(7):906–8.  764 

45. Yang J, Ferreira T, Morris AP, Medland SE, Madden PAF, Heath AC, et al. Conditional and joint multiple-765 

SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat 766 

Genet. 2012 Apr;44(4):369–75.  767 

46. Euesden J, Lewis CM, O’Reilly PF. PRSice: Polygenic Risk Score software. Bioinformatics. 2015 May 768 

1;31(9):1466–8.  769 

47. Therneau TM. coxme: Mixed Effects Cox Models. R package version 2.2-16. https://CRAN.R-770 

project.org/package=coxme. Accessed April 2021. 2020;  771 

48. GovScot. Scottish Government. The Scottish Index of Multiple Deprivation (SIMD); 1-20. (2016). 772 

Available from: http://www.gov.scot/ Resource/0050/00504809.pdf. Accessed April 2021. 2016.  773 

49. Bollepalli S, Korhonen T, Kaprio J, Anders S, Ollikainen M. EpiSmokEr: A robust classifier to determine 774 

smoking status from DNA methylation data. Epigenomics. 2019;11(13):1469–86.  775 

50. Therneau TM. A Package for Survival Analysis in R. R package version 3.2-7, https://CRAN.R-776 

project.org/package=survival. Accessed April 2021. 2020;  777 

51. Fawns-Ritchie C, Altschul DM, Campbell A, Huggins C, Nangle C, Dawson R, et al. CovidLife: a resource to 778 

understand mental health, well-being and behaviour during the COVID-19 pandemic in the UK. 779 

Wellcome Open Res 2021 6176. 2021 Jul 7;6:176.  780 

52. GovScot Scottish Government. Scottish Index of Multiple Deprivation 2006: Technical Report. Available 781 

at: https://www.gov.scot/publications/scottish-index-multiple-deprivation-2006-technical-report/. 782 

Accessed August 2023.  783 

 784 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 19, 2023. ; https://doi.org/10.1101/2023.10.18.23297200doi: medRxiv preprint 

https://doi.org/10.1101/2023.10.18.23297200
http://creativecommons.org/licenses/by/4.0/

