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Supplementary Material 

 

Methods 

Participants 

 

Supplementary Figure 1 CONSORT flow diagram of participant recruitment and 

randomization 

  



 

Image processing 

 

Anatomical data preprocessing 

A total of 2 T1-weighted (T1w) images were found within the input BIDS dataset. All 

of them were corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection (1), 

distributed with ANTs 2.3.3 (2), RRID:SCR_004757). The T1w-reference was then skull-

stripped with a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), 

using OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid 

(CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w 

using fast (FSL 5.0.9, RRID:SCR_002823, (3). A T1w-reference map was computed after 

registration of 2 T1w images (after INU-correction) using mri_robust_template (FreeSurfer 

6.0.1, (4). Brain surfaces were reconstructed using recon-all (FreeSurfer 6.0.1, 

RRID:SCR_001847, (5), and the brain mask estimated previously was refined with a custom 

variation of the method to reconcile ANTs-derived and FreeSurfer-derived segmentations of 

the cortical gray-matter of Mindboggle (RRID:SCR_002438, (6). Volume-based spatial 

normalization to two standard spaces (MNI152NLin2009cAsym, MNI152NLin6Asym) was 

performed through nonlinear registration with antsRegistration (ANTs 2.3.3), using brain-

extracted versions of both T1w reference and the T1w template. The following templates 

were selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical template version 

2009c (7), RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym], FSL’s MNI 

ICBM 152 non-linear 6th Generation Asymmetric Average Brain Stereotaxic Registration 

Model((8), RRID:SCR_002823; TemplateFlow ID: MNI152NLin6Asym). 

Functional data preprocessing 



For each of the 2 BOLD runs found per subject (across all tasks and sessions), the 

following preprocessing was performed. First, a reference volume and its skull-stripped 

version were generated using a custom methodology of fMRIPrep. A B0-nonuniformity map 

(or fieldmap) was estimated based on two (or more) echo-planar imaging (EPI) references 

with opposing phase-encoding directions, with 3dQwarp (9) (AFNI 20160207). Based on the 

estimated susceptibility distortion, a corrected EPI (echo-planar imaging) reference was 

calculated for a more accurate co-registration with the anatomical reference. The BOLD 

reference was then co-registered to the T1w reference using bbregister (FreeSurfer) which 

implements boundary-based registration(10). Co-registration was configured with six degrees 

of freedom. Head-motion parameters with respect to the BOLD reference (transformation 

matrices, and six corresponding rotation and translation parameters) are estimated before any 

spatiotemporal filtering using mcflirt (FSL 5.0.9,(11)). BOLD runs were slice-time corrected 

using 3dTshift from AFNI 20160207 ((9)x, RRID:SCR_005927). The BOLD time-series 

(including slice-timing correction when applied) were resampled onto their original, native 

space by applying a single, composite transform to correct for head-motion and susceptibility 

distortions. These resampled BOLD time-series will be referred to as preprocessed BOLD in 

original space, or just preprocessed BOLD. The BOLD time-series were resampled into 

standard space, generating a preprocessed BOLD run in MNI152NLin2009cAsym space. 

First, a reference volume and its skull-stripped version were generated using a custom 

methodology of fMRIPrep. All resamplings can be performed with a single interpolation step 

by composing all the pertinent transformations (i.e. head-motion transform matrices, 

susceptibility distortion correction when available, and co-registrations to anatomical and 

output spaces). Gridded (volumetric) resamplings were performed using 

antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize the 



smoothing effects of other kernels (Lanczos 1964 (12)). Non-gridded (surface) resamplings 

were performed using mri_vol2surf (FreeSurfer). 

Resting state post-processing of fmriprep outputs 

The eXtensible Connectivity Pipeline (XCP) (13, 14) was used to post-process the 

outputs of fMRIPrep version 20.2.7 (15, 16), RRID:SCR_016216). XCP was built with 

Nipype 1.8.5 (Gorgolewski et al. 2011, RRID:SCR_002502). For each of the two BOLD runs 

found per subject (across all tasks and sessions), the following post-processing was 

performed. In order to identify high-motion outlier volumes, framewise displacement was 

calculated using the formula from Power, Mitra (17), with a head radius 40.0 mm. Volumes 

with framewise displacement greater than 0.4 mm were flagged as high-motion outliers for 

the sake of later censoring (17). In total, 36 nuisance regressors were selected from the 

preprocessing confounds, according to the ‘36P’ strategy. These nuisance regressors included 

six motion parameters, mean global signal, mean white matter signal, mean CSF signal with 

their temporal derivatives, and the quadratic expansion of six motion parameters, tissues 

signals and their temporal derivatives (13, 14). Finally, linear trend and intercept terms were 

added to the regressors prior to denoising. The BOLD data were despiked with 3dDespike. 

Nuisance regressors were regressed from the BOLD data using linear regression, as 

implemented in nilearn 0.10.0 (18). Any volumes censored earlier in the workflow were then 

interpolated in the residual time series produced by the regression. The interpolated 

timeseries were then band-pass filtered using a(n) second-order Butterworth filter, in order to 

retain signals within the 0.01-0.08 Hz frequency band. The filtered, interpolated time series 

were then re-censored to remove high-motion outlier volumes. The denoised BOLD was 

smoothed using Nilearn with a Gaussian kernel (FWHM=6.0 mm). 



Processed functional timeseries were extracted from the residual BOLD signal with 

Nilearn’s (version 0.10.0, (18)) NiftiLabelsMasker was used for the Schaefer 17-network 400 

parcel atlas (19). Corresponding pair-wise functional connectivity between all regions was 

computed for each atlas, which was operationalized as the Pearson’s correlation of each 

parcel’s unsmoothed timeseries. In cases of partial coverage, uncovered voxels (values of all 

zeros or NaNs) were either ignored, when the parcel had >50.0% coverage, or were set to 

zero, when the parcel had <50.0% coverage. 

Many internal operations of XCP use AFNI (9, 20), ANTS (21), TemplateFlow 

version 0.8.1 (22), matplotlib version 3.4.3 (23), Nibabel version 5.0.1 (Brett et al. 2022), 

Nilearn version 0.10.0 (18), numpy version 1.22.4 (24), pybids version 0.15.5 (Yarkoni et al. 

2019) (25), and scipy version 1.9.1(26). For more details, see the xcp_d website https://xcp-

d.readthedocs.io. 
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Supplementary Results 

Supplementary Table 1 Linear Mixed Effects models for AUQ 

 

T0 (Baseline) T1 (During Treatment) T0 vs T1 Full model 

Predictors  β  CI  p  β CI  p  β CI  p  

(Intercept) 31.89 13.89 – 49.88 .001 33.84 18.80 – 48.88 <.001 29.86 14.90 – 44.82 <.001 

Treatment (NAC) -3.52 -12.18 – 5.13 .425 -5.97 -13.21 – 1.26 .105 -2.23 -10.49 – 6.02 .596 

Pre/Post Scan (Post) 5.27 -2.14 – 12.68 .164 -5.52 -17.10 – 6.07 .35 1.26 -12.70 – 15.22 .86 

Age -0.28 -0.64 – 0.07 .12 -0.33 -0.63 – -0.03 .029 -0.24 -0.53 – 0.05 .104 

Treatment (NAC) * Pre/Post Scan (Post) 0.19 -3.37 – 3.75 .916 -0.63 -6.20 – 4.94 .825 -0.64 -9.56 – 8.28 .888 

Pre/Post Scan * age -0.09 -0.24 – 0.05 .216 0.12 -0.11 – 0.35 .311 -0.01 -0.28 – 0.26 .942 

Session (T1) 
      

-0.43 -5.98 – 5.12 .88 

Session (T1) * Treatment (NAC) 
      

-0.68 -9.55 – 8.19 .88 

Session * Pre/Post Scan 
      

-0.57 -8.42 – 7.28 .887 

Session * Treatment * Pre/Post Scan 
      

-0.65 -13.20 – 11.90 .919 

Random Effects    

σ2  8.32 20.35 56.13 

τ00  89.87 ID 48.29 ID 39.49 ID 

ICC  0.92 0.7 0.41 

N  22 ID 22 ID 23 ID 

Observations  44 44 92 

Marginal R2 / Conditional R2  0.167 / 0.929 0.245 / 0.776 0.115 / 0.480 



Note. Reference category for predictor shown in brackets. σ2 = random effects variance; τ00 = random intercept variance ICC = intra-class correlation coefficient; ID = 

individual participants (random factor). 
 



Cue reactivity Exploratory Whole Brain Analyses 

Across the whole sample, irrespective of treatment group, the Alcohol images elicited 

increased BOLD activation compared to the Control images during fMRI cue reactivity. This 

was seen in 5 clusters, including one encompassing the left parahippocampal gyrus and 

fusiform gyrus (PFWE-corr < .030, 280 voxels) and one cluster including the right 

parahippcampal and fusiform gyrus (PFWE-corr < .014, 454 voxels). Two clusters were 

observed within the occipital cortex and adjacent regions, primarily the left supramarginal 

gyrus, angular gyrus, and middle temporal gyrus(PFWE-corr < .023, 318 voxels),  the right 

angular gyrus and supramarginal gyrus (PFWE-corr < .038, 237 voxels). One cluster 

encompassed the posterior cingulate and left precuneus  (PFWE-corr < .030, 277 voxels).  

No other main effects of time or treatment group were found, and no main effects of 

covariates. No two-way interactions were seen between condition, time, treatment group were 

seen. There was a significant three-way interaction of condition, time, and antidepressant use 

in a cluster that spanned the bilateral thalamus, and right medial dorsal nucleus of the 

thalamus, extra-nuclear,  and extending into the left middle and superior temporal gyri and 

left insula (PFWE-corr < .013, 682 voxels). 

ALC > CON contrasts at T0 

Results are presented in Supplementary Table 2. There were no significant effects 

observed at T0 for any of the 5 ROIs according to any of the variables including treatment 

group, drinks per drinking day, age, ArLD, or antidepressant use, or any two-way interactions 

(p’s > .0413), indicating that there were no differences in cue reactivity at baseline according 

to treatment group. 

ALC > CON contrasts at T1 



Results are presented in Supplementary Table 2. At T1 no significant main treatment 

effect seen for the ROIs. There was a significant effect for covariates, with a significant main 

effect of presence of alcoholic liver disease for the right DLPFC, with those with ArLD 

showing increased alcohol cue reactivity overall (p =.024). There was also a main effect of 

antidepressant use with those on antidepressants showing increased alcohol cue reactivity (p 

= .013).  



Supplementary Table 2 ANCOVAs for ALC > Con contrast across 5 ROIs during T0 and T1 

Predictors  Bl VMPFC L Caudate Body  R Caudate Body L DLPFC R DLPFC 

T0      

Treatment F(1,15)=1.2, p = .292 F(1,15)=0.15, p = .704 F(1,15)=0.13, p = .724 F(1,15)=0.02, p = .878 F(1,15)=0.04, p = .841 

Age F(1,15)=2.59, p = .129 F(1,15)=0.22, p = .646 F(1,15)=0.25, p = .627 F(1,15)=0.09, p = .769 F(1,15)=1.38, p = .258 

Alcoholic Liver Disease (Yes) F(1,15)=3.66, p = .075 F(1,15)=0.1, p = .762 F(1,15)=0.12, p = .737 F(1,15)=0.44, p = .518 F(1,15)=0.4, p = .536 

Antidepressant Use (Yes) F(1,15)=0, p = .99 F(1,15)=0.53, p = .477 F(1,15)=0.91, p = .356 F(1,15)=0.14, p = .718 F(1,15)=1.56, p = .231 

Drinks per drinking day F(1,15)=1.08, p = .315 F(1,15)=0.01, p = .922 F(1,15)=0.21, p = .657 F(1,15)=0.18, p = .674 F(1,15)=0.01, p = .913 

Treatment * Age F(1,15)=0.02, p = .884 F(1,15)=0.19, p = .668 F(1,15)=0.3, p = .595 F(1,15)=0, p = .991 F(1,15)=0.04, p = .844 

T1      

Treatment F(1,14)=0.27, p = .614 F(1,14)=1.6, p = .227 F(1,14)=0.08, p = .776 F(1,14)=2.01, p = .178 F(1,14)=0.18, p = .682 

Age F(1,14)=0, p = .954 F(1,14)=0, p = .971 F(1,14)=0, p = .99 F(1,14)=4.54, p = .051 F(1,14)=6.04, p = .028 

Alcoholic Liver Disease (Yes) F(1,14)=2.25, p = .156 F(1,14)=0.05, p = .834 F(1,14)=0, p = .983 F(1,14)=2.96, p = .107 F(1,14)=1.1, p = .312 

Antidepressant Use (Yes) F(1,14)=0.03, p = .865 F(1,14)=0.79, p = .389 F(1,14)=0.19, p = .667 F(1,14)=0, p = .979 F(1,14)=0.39, p = .541 

Drinks per drinking day F(1,14)=2.46, p = .139 F(1,14)=8.73, p = .011 F(1,14)=1.74, p = .208 F(1,14)=4.59, p = .05 F(1,14)=0, p = .959 

Treatment Days F(1,14)=1.78, p = .203 F(1,14)=4.78, p = .046 F(1,14)=1.36, p = .263 F(1,14)=3.8, p = .072 F(1,14)=1.98, p = .182 

Treatment * Age F(1,14)=0.87, p = .366 F(1,14)=0.42, p = .527 F(1,14)=0.36, p = .559 F(1,14)=2.89, p = .111 F(1,14)=0.57, p = .462 

 

  



 

Supplementary Table 3 Linear Mixed Models for ALC vs CON contrast across 5 ROIs 

  Bl VMPFC L Caudate R Caudate L DLPFC R DLPFC 

Predictors  β  CI  p  β CI  p  β CI  p  β CI  p  β CI  p  

(Intercept) 0.22 -0.20 – 0.64 .296 -0.12 -0.52 – 0.27 .534 -0.06 -0.45 – 0.32 .747 -0.04 -0.38 – 0.29 .803 -0.11 -0.56 – 0.34 .623 

Session -0.14 -0.36 – 0.09 .227 0 -0.21 – 0.21 .999 -0.01 -0.22 – 0.19 .905 -0.07 -0.24 – 0.10 .421 -0.12 -0.33 – 0.08 .236 

Treatment -0.06 -0.33 – 0.20 .631 0.1 -0.15 – 0.34 .43 0.08 -0.17 – 0.32 .531 0.02 -0.19 – 0.22 .878 0 -0.26 – 0.27 .982 

Age 0 -0.01 – 0.01 .906 0 -0.01 – 0.01 .724 0 -0.01 – 0.01 .796 0 -0.01 – 0.01 .974 0 -0.01 – 0.01 .782 

Antidepressant 

Use 
-0.13 -0.33 – 0.06 .177 -0.09 -0.28 – 0.09 .321 -0.07 -0.25 – 0.11 .451 -0.05 -0.21 – 0.10 .501 -0.05 -0.26 – 0.16 .656 

Alcoholic Liver 

Disease 
0.11 -0.09 – 0.31 .278 0.14 -0.05 – 0.33 .137 0.09 -0.09 – 0.27 .334 0.14 -0.02 – 0.30 .086 0.17 -0.05 – 0.38 .129 

Session * 

Treatment 
0.19 -0.17 – 0.54 .3 0.04 -0.29 – 0.38 .796 -0.02 -0.34 – 0.31 .912 0.12 -0.15 – 0.40 .364 0.07 -0.25 – 0.40 .651 

Random 

Effects 
               

σ2  0.09 0.08 0.07 0.05 0.07 

τ00  0.00 ID 0.00 ID 0.00 ID 0.00 ID 0.01 ID 

ICC   
  

0.03 0.16 

N  23 ID 23 ID 23 ID 23 ID 23 ID 

Observations  46 46 46 46 46 

Marginal R2  0.084 0.079 0.035 0.093 0.085 

P-threshold < .029 (Bonferroni's adjustment corrected) 

Note. Reference category for predictor shown in brackets. σ2 = random effects variance; τ00 = random intercept variance ICC = intra-class correlation coefficient; ID = 

individual participants (random factor); Bl = bilateral, L = left, R = right, DLPFC = dorsolateral prefrontal cortex.



 

Supplementary Table 4 Connections with significant seed region posterior cingulate 9 

from Schaeffer-400 atlas parcellation 

Seed ROI Connection  Test statistic p-unc 

p-

FDR 

 Side Connection target    

Dorsal Attentional 

Posterior Cingulate 9   F(2,17)=20.75 0.000027 .010 

 Right Somatomotor A 6 T(18)=-6.13 0.000009 .003 

 Right Somatomotor A 10 T(18)=-5.06 0.000081 .013 

 Left Somatomotor A 7 T(18)=-4.95 0.000104 .013 

 Left Somatomotor A 10 T(18)=-4.76 0.000156 .015 

 Left 

Visual B Striate 

Calcarine 1 T(18)=-4.52 0.000266 .020 

 Left 

Somatomotor B 

Central 5 T(18)=-4.42 0.000332 .021 

 Right Somatomotor A 2 T(18)=-4.11 0.000657 .035 

 Right Somatomotor A 7 T(18)=-4.04 0.000765 .036 

 Right Somatomotor A 4 T(18)=-3.63 .002 .081 

 Right Temporal Parietal 2 T(18)=-3.51 .002 .093 

 Right Somatomotor A 11 T(18)=-3.47 .003 .094 

 Right 

Salience/Ventral 

Attention B Medial 

Posterior PFC 1 T(18)=-3.37 .003 .106 

 Right 

Visual B Extra-

striate Superior 2 T(18)=-3.3 .004 .116 

 Left Somatomotor A 3 T(18)=-3.21 .005 .130 

 Right 

Visual A Extra-

striate Inferior 10 T(18)=-3.16 .005 .131 

 Left Somatomotor A 13 T(18)=-3.15 .006 .131 

 Right Somatomotor A 3 T(18)=-2.98 .008 .161 

 Left 

Somatomotor B 

Central 4 T(18)=-2.94 .009 .161 



 Left Temporal Parietal 3 T(18)=-2.94 .009 .161 

 Left 

Visual B Striate 

Calcarine 2 T(18)=-2.93 .009 .161 

 Right 

Visual B Striate 

Calcarinel 1 T(18)=-2.91 .009 .161 

 Left 

Visual A 

Extrastriate 10 T(18)=-2.91 .009 .161 
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