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ABSTRACT  32 

Background. Organ availability limits kidney transplantation, the best treatment for end-33 

stage kidney disease. Deceased donor acceptance criteria have been relaxed to include older 34 

donors with higher risk of inferior posttransplant outcomes. Donor age, although significantly 35 

correlates with transplant outcomes, lacks granularity in predicting graft dysfunction. Better 36 

characterization of the biological mechanisms associated with deceased donor organ damage and 37 

specifically predictive of transplant outcome in recipients is key to developing new assessment 38 

criteria for donor kidneys and developing function-preserving interventions. 39 

Methods. 185 deceased donor pretransplant biopsies with clinical and demographic 40 

donor and recipient metadata were obtained from the Quality in Organ Donation biobank 41 

(QUOD), selected on the basis of 12-month paired posttransplant function and deep proteomic 42 

profiles acquired by mass spectrometry. Using a 2/3rd:1/3rd  training:test data split, sampling 43 

equally across posttransplant function, we applied machine learning feature selection followed 44 

by protein-wise relaxed LASSO regression modeling, assessing the performance of the final set 45 

of protein models on the test data. Western blotting validated protein changes, and the biological 46 

relevance of the final set of protein models was externally validated by contextualization against 47 

a published dataset of human healthy and disease kidney transcriptomes. 48 

Results. Our analysis revealed 144 proteins carrying outcome-predictive information, all 49 

of which showed donor-age modulated associations with posttransplant function, as opposed to 50 

age and protein/gene effects being independent terms. Observed associations with inflammatory, 51 

metabolic, protein processing and cell cycle pathways suggest biological targets for possible 52 

interventions pretransplant. Contextualization of our results against external spatial 53 

transcriptomic data suggest a sub-nephrotic spatial localization of the predictive signal. 54 
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Conclusions. Integrating kidney proteome information with clinical metadata enhances 55 

the resolution of donor kidney quality stratification, and the highlighted biological mechanisms 56 

open new research directions in developing predictive models and novel interventions during 57 

donor management or preservation to improve kidney transplant outcome. 58 

 59 

SIGNIFICANCE STATEMENT 60 

Currently, organ quality assessment pretransplant relies on key factors such as donor age or 61 

clinical information, these lack granularity in depicting graft susceptibility and capacity to 62 

function posttransplant. A high-resolution proteomic profiling of 185 pretransplant biopsies of 63 

kidneys with known posttransplant function and complete metadata was performed. Integration 64 

of donor kidney proteomes with 56 clinical metadata variables using regularized regression 65 

modelling resulted in enhancing the resolution of donor kidney quality stratification.  Immuno-66 

metabolic and catabolic processes contributed to donor kidney susceptibility and worse 67 

transplant outcomes in an age modulated pattern, validated by western blotting. Comparison of 68 

kidney proteomes with a recent transcriptomics dataset of healthy and diseased kidneys provide 69 

an additional special single cell resolution to the findings of this study. 70 

 71 
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INTRODUCTION 73 

Kidney transplantation is the optimal treatment for end-stage kidney disease. Compared 74 

to dialysis, transplantation increases life-expectancy, improves quality of life and is cost-75 

effective. Limited availability of suitable donor kidneys impedes treatment of chronic kidney 76 

disease, and often prolongs dialysis, increasing morbidity and mortality. Deceased donor organ 77 

shortages, living donation decline in some countries and emerging ageing populations drive 78 

increased utilization of older deceased donor kidneys, now comprising more than half of offered 79 

organs1,2. 80 

Ageing associates with time-dependent decline of organ function, evidenced in kidneys 81 

by histologic lesions, such as tubular atrophy, interstitial fibrosis, glomerulosclerosis, and 82 

arteriosclerosis. Older kidneys demonstrate fewer functioning glomeruli, less renal mass, 83 

podocyte dysfunction, and impaired cellular repair3. Glomerular diseases are more common and 84 

associated with worse outcomes in older patients4. Age accelerates the transition from Acute 85 

Kidney Injury (AKI) to chronic injury5 and is an independent risk factor of graft dysfunction and 86 

loss for deceased donor kidneys6; furthermore, older donors are more likely to suffer from 87 

additional risk factors such as diabetes, hypertension or cardiovascular disease. 88 

Donor age is incorporated in clinical scoring algorithms to inform kidney allocation 89 

decisions7,8, but is insufficient to consistently predict transplant outcomes. Current front-line 90 

models incorporating further clinical factors such as terminal serum creatinine, history of 91 

hypertension and diabetes8,9 show consistent performance across demographics but lack granular 92 

predictive accuracy10. 93 

Molecular analyses of biopsies plausibly offer higher resolution assessment of organ 94 

state; but require ‘big picture’ understanding of mechanisms associated specifically with poor 95 
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outcome, rather than immediate (but potentially recoverable) acute injury. Deceased donors are 96 

frequently assessed as having sustained damage (i.e. AKI) based on serum creatinine levels11, 97 

however this metric poorly associates with longer term outcomes11–14. 98 

Mass spectrometry (MS) proteomic studies can provide such a ‘big picture’, but have 99 

heretofore lacked cohort capacity to represent demographic diversity15. Advances in high-100 

throughput techniques16 now allow sensitivity and depth without sacrificing throughput capacity. 101 

Developments in machine learning and nonlinear regression analyses furthermore offer tools to 102 

extract maximal knowledge from limited size experimental cohorts, with applications in disease 103 

staging, disease recurrence prediction, treatment response monitoring, and biomarker 104 

identification17,18. 105 

Integration of deep proteomic profiles with heterogenous clinical and demographic 106 

factors using modern statistical tools can empower the next steps toward precision medicine19. 107 

Here, we benefit from the granularity provided by our MS-based proteomic profiling to report 108 

age- and immunometabolism-related proteomic signatures in pre-implantation kidney biopsies 109 

associated with transplant outcomes. 110 

 111 

METHODS 112 

Study Design 113 

Deceased donor pre-transplantation kidney biopsies (n=186; 1 sample excluded during 114 

data processing) were obtained from the Quality in Organ Donor (QUOD) biobank, a national 115 

multi-center UK wide bioresource of deceased donor clinical samples acquired during donor 116 

management and organ procurement. Biopsies were obtained from Donation after Brain Death 117 
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(DBD) donors and Donation after Circulatory Death (DCD) donors at the back table immediately 118 

after kidney procurement. 119 

Selection of biopsies was based on paired 12-month post-transplant outcomes. To 120 

minimize the impact of recipient factors, we only included kidneys for which the contralateral 121 

kidney was transplanted with similar outcome. Kidneys were selected to cover the outcome 122 

continuum i.e. the range of estimated Glomerular Filtration Rate (eGFR) in the recipient at 12 123 

months posttransplant (henceforth, ‘eGFR12’), from primary non-function to eGFR>80 124 

ml/min/1.73 m2, excluding pediatric donors. Samples were linked to corresponding donor and 125 

recipient demographic and clinical metadata, provided by NHS Blood and Transplant National 126 

Registry. 127 

Study Approval and Ethics statement 128 

Informed consent from donor families was obtained prior to sample procurement. 129 

Collection of QUOD samples and research ethics approval was provided by QUOD 130 

(NW/18/0187).  131 

Protein Extraction from Renal Tissue Specimens 132 

Deceased donor biopsies were procured, handled and stored according to consistent, 133 

predefined collection protocols designed to minimize pre-analytical variability. Donor kidney 134 

biopsies were collected ex situ immediately after flush-out and procurement of the kidney in the 135 

donor hospital on the back-table. Biopsies were obtained from the upper pole of the donor kidney 136 

cortex during back table preparation, using a 23mm needle biopsy gun. The obtained biopsies 137 

were divided in two, with one half stored in RNAlater (Thermo Scientific, Illinois, USA), then 138 

liquid nitrogen and the other half stored in formalin. 139 
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RNAlater biopsy samples were homogenized in RIPA buffer (89900, Thermo Scientific, 140 

Illinois, USA) with protease and phosphatase inhibitor cocktail (1861280, Thermo Scientific, 141 

Illinois, USA) using a bead beater (Biorad, Hertfordshire, UK) at 6500rpm for three cycles of 40 142 

seconds with intermediate cooling on wet ice between cycles.  Biopsy protein concentration was 143 

determined using a Pierce Bicinchoninic Acid protein assay kit (23227 Thermo Scientific, 144 

Illinois, USA). 145 

In-Solution Trypsin Digestion 146 

50 µg of protein homogenates were prepared. Disulfide bonds were reduced by adding 147 

200 mM of DTT (Sigma) to a final concentration of 5 mM for 60 mins at room temperature. Free 148 

cysteine residues were alkylated by adding 200 mM of iodoacetamide (Sigma) to a final 149 

concentration of 20 mM and incubated for 60 mins at RT in the dark.  150 

The samples were topped up to 200 µl with 6 M urea, 100 mM TrisHCl pH 8.5. 151 

Methanol/chloroform protein precipitation was used to remove detergents before tryptic 152 

digestion. In brief, 600 µl of Methanol and 150 µl of Chloroform were added and mixed. Then 153 

450 µl of MilliQ-H2O was added and then centrifuged for 1min at 12,000 g. The upper aqueous 154 

layer was carefully removed without disturbing formed protein pellets between layers and 450 µl 155 

of Methanol was added and then centrifuged at 12,000 g for 5 min. The supernatant was removed 156 

and the protein pellets resuspended in 50 µl of 6 M Urea, 100 mM TrisHCl, pH 8.5. Urea 157 

concentration was reduced to 1 M by adding 250 µl of MillQ-H2O. Samples were digested at 37 158 

°C overnight with Trypsin added at a 1:50 ratio (trypsin:protein). Tryptic peptides were acidified 159 

and purified using Sep-Pak C18 cartridges (WAT020515, Waters, Wilmslow, UK) and dried by 160 

Speed Vac centrifugation. Pellets were resuspended in 80 µl of resuspension buffer A (98 % 161 

MilliQ-H2O, 2 % acetonitrile 0.1 % formic acid) for LC-MS/MS analysis. 162 
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Mass Spectrometry Analysis 163 

Generation of Fractionated Pool for Spectral Library Reference 164 

A highly fractionated spectral library was generated as a standard reference for the 165 

subsequent analysis of individual samples. To create this spectral library, a pool sample was 166 

prepared by combining 2 µl of each tryptic digest sample prepared above. Fractionation of the 167 

pooled sample was performed using offline high-pH reverse-phase HPLC on an XBridge BEH 168 

C18 XP column (3 × 150 mm, 2.5 μm pore size, Waters no. 186006710) over a 100-minute 169 

gradient (Buffer A: water, pH10 with ammonium hydroxide. Buffer B: 90 % acetonitrile, 10 % 170 

water, pH10 with ammonium hydroxide) with fractions collected every 2 minutes. The fractions 171 

of the pool sample for the spectral library were analyzed by nanoLC-MS/MS using a Dionex 172 

Ultimate 3000 using a 75 µm x 500 mm (2 µm particle size) C18 EASY-Spray column at 250 173 

nL/min (Thermo Scientific), coupled to an Orbitrap Fusion Lumos mass spectrometer. Peptides 174 

were separated using a 60-minute linear gradient from 2-35 % buffer B (Buffer A: 5 % DMSO, 175 

0.1 % formic acid in water. Buffer B: 5 % DMSO, 0.1 % formic acid in acetonitrile). The 176 

samples were analyzed on the mass spectrometer in Data-Dependent Acquisition mode. MS1 177 

scans were acquired in the Orbitrap with an m/z range of 400 – 1500 m/z at a resolution of 178 

120,000 and an AGC target of 4 x 105. Precursors between charge states 2+ and 7+ were selected 179 

for HCD fragmentation using the Advanced Precursor Determination option with an intensity 180 

threshold of 2.5 x 104. Selected precursors were isolated using the quadrupole with a 1.6 m/z 181 

isolation window and fragmented using HCD with a normalized collision energy of 30%. MS2 182 

spectra were acquired in the Orbitrap using a resolution of 30,000, a maximum injection time of 183 

54 ms and an AGC target of 5 x 104. 184 

LC-MS/MS Analysis of Individual Biological Samples 185 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2023. ; https://doi.org/10.1101/2023.03.31.23288011doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.31.23288011
http://creativecommons.org/licenses/by-nc/4.0/


The individual samples were analyzed on the same nanoLC-MS/MS system as above. A 186 

45-minute linear gradient was used from 2-35 % buffer B with the same buffer composition as 187 

above. In contrast to the pool samples, the individual samples were analyzed using the SWATH 188 

DIA method 16. The sample analysis order was randomized, and analyses of aliquots of the 189 

pooled sample used for library generation were scheduled every 20 runs throughout the sequence 190 

as a quality control. MS1 scans were acquired in the Orbitrap with an m/z range of 350 – 1650 191 

m/z at a resolution of 120,000, an AGC target of 4 x 105 and a 3 second cycle time. MS2 scans 192 

were then acquired in stepped isolation windows with a 1 Th overlap between each window; first 193 

from 350-380 m/z up to 930-960 m/z in increments of 30 Th (i.e. 21 scans with midpoints of 194 

365, 394 … 916, 945), followed by a 100 Th window scan of 959-1059 m/z and a 592 Th scan of 195 

1058-1650 m/z. 196 

Fragmentation of these windows was performed using a normalized collision energy of 25 % 197 

with a stepped collision energy of 10 %. MS2 spectra were acquired in the Orbitrap using a 198 

resolution of 30,000, a maximum injection time of 54 ms, an AGC target of 5 x 104 and a scan 199 

range of 360-1650 m/z. 200 

Western Blot Validation 201 

Samples were compared as 5 Upper Tertile (UT) versus 5 Lower Tertile (LT)within a 202 

single age category (younger; total n=20, or older; total n=20) on each gel. Kidney homogenates 203 

at 1μg/μL of protein were denatured at 90�C in Laemmli buffer and separated using 4-12% pre-204 

cast Bis-Tris gels (Thermo Fisher Scientific, Massachusetts, USA) in the case of VTN and 205 

APOE western blots and 16% pre-cast Tricine gels (Thermo Fisher Scientific, Massachusetts, 206 

USA) in the case of PREB and CST3 western blots, in both cases using MOPS running buffer 207 

and followed by transfer onto a PVDF membrane (Thermo Fisher Scientific, Massachusetts, 208 
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USA). Membranes were then blocked in Intercept (TBS) Blocking Buffer (LiCOR P/N 927-209 

60001) and incubated with primary antibodies overnight at 4�C. Antibodies used were rabbit 210 

polyclonal anti-PREB (Thermo Fisher Scientific PA5-53125), mouse polyclonal anti-Vitronectin 211 

(R&D, MAB2349), rabbit monoclonal anti-APOE (16H22L18) (Thermo Fisher Scientific, 212 

701241),  rabbit monoclonal anti-CST3 (D6U3E) (Cell Signaling Technology, 24840) and 213 

mouse monoclonal anti-β-actin (Sigma, A5316) for protein normalization. The membranes were 214 

then incubated in species appropriate secondary antibodies (RDye® 800CW Goat anti-Mouse 215 

IgG Secondary Antibody and IRDye® 680RD Goat Anti-Rabbit IgG Secondary Antibody, 216 

LiCOR, USA). Finally, blots were imaged using the LI-COR Odyssey system (LiCOR, 217 

Nebraska, USA). Analysis and quantification were performed using LiCOR Image Studio 218 

(Version 2.2). Protein expression was normalized against β-actin and the fold change was 219 

calculated relative to the per-gel mean value of the Upper Tertile group. For each protein, fold 220 

changes relative to UT were combined across all gels within each age category, log2 221 

transformed, and the difference between UT and LT calculated by t-testing without assumption 222 

of equal variance. 223 

Statistical Analyses 224 

Proteomic Data Processing 225 

Both the DDA fractionated pools and all SWATH samples and pool data were analyzed 226 

simultaneously using DIA-NN v1.7.12 20. MS/MS spectra from the DDA pools were searched 227 

against UniProt Reference Homo sapiens database (retrieved 15/10/2020) with default settings, 228 

including 1 missed cleavage, oxidation of methionine as a variable modification and 229 

carbamidomethylation of cysteine as a fixed modification, to generate a spectral library.  This 230 
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was then cross referenced against the SWATH data to quantify peptides, and thus proteins, 231 

within each SWATH sample and pool run. Precursor FDR was set to 1%. 232 

Subsequent analysis of the DIA-NN output and integration with the clinical data was 233 

performed in R v4.0.2. One sample had extremely low average intensity and more than 15% 234 

missing values, so was eliminated from the analysis. Across the remaining 185 samples and 235 

pools, proteins with more than 50% missing values were eliminated. Intensity values were 236 

transformed by VSN (R package ‘vsn’ 21), and the remaining missing values were imputed by a 237 

k-nearest neighbor approach (R package ‘impute’ 22). 238 

Clinical Variable Preprocessing 239 

Clinical variables were subdivided into Donation after Brain Death (DBD)-specific 240 

variables, Donation after Cardiac Death (DCD)-specific variables and jointly applicable 241 

variables (see annotation, Supplementary Table 1). DBD- and DCD-specific variables were 242 

considered for the purposes of assessing correlation with outcome but were not considered for 243 

statistical analyses applied to the full dataset. 244 

For significance testing of outcome differences between donor and recipient 245 

characteristics, and for all modelling, eGFR values for both donor measurements and recipient 246 

measurements at 12-month post-transplantation were stratified into tertiles - Lower Tertile (UT; 247 

eGFR < 40), Intermediate Tertile (IT; 40 ≤ eGFR < 60) and Upper Tertile (UT; eGFR ≥ 60) 248 

based on their distribution. Missing values in the continuous and tertile-stratified forms of the 249 

variables were imputed for each sample by finding the ‘set of neighbors’ by 3-month eGFR, i.e. 250 

the 10 samples with the closest recipient eGFR at 3 months posttransplant, then taking the mean 251 

eGFR12 (ignoring any missing values) within that set of neighbors. 252 
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We curated the non-DBD/DCD specific clinical variables to remove those inappropriate 253 

for modelling (single-instance categories, variables which duplicated another variable in 254 

different units); the final list is given in Supplementary Table 2. HLA mismatches were modelled 255 

as ‘Match Grade’ with levels None; no mismatches, Favorable; no DR and one or fewer B 256 

mismatches, and Non-Favorable; at least one DR or two B mismatches (Supplementary Figure 257 

S2 and Supplementary Table ST1). 258 

For curated clinical variables, missing values were imputed for each sample in a similar 259 

manner. A set of neighbors was built by finding the 10 samples with the smallest Gower’s 260 

distance across all variables (multiple data types). We then took a relevant summary statistic of 261 

the non-missing values within the set of neighbors for each imputed value. For numeric values, 262 

the mean was taken. For categorical values, the most frequent category across the whole dataset 263 

was taken, breaking ties by iteratively shrinking the set of neighbors by removing the most 264 

distant from the sample to be imputed, until there was a single most frequent category. 265 

Outcome Subgroup Comparison 266 

Differences between outcome subgroups within DBD and DCD donor types (separately) 267 

were tested using Fisher’s exact test for categorical variables and t-tests for numeric variables as 268 

appropriate. 269 

Clinical variable association was calculated depending on the type of each variable in 270 

pairwise comparisons. Numeric-numeric comparisons were by Pearson’s r. Numeric-categorical 271 

comparisons were by the square root of the proportion of variance explained (eta) from an 272 

ANOVA model where the numeric variable was taken as the response. Categorical-categorical 273 

comparisons were by Cramér's V. Hierarchical clustering was performed using the single-linkage 274 

method to avoid composition of comparison types. 275 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2023. ; https://doi.org/10.1101/2023.03.31.23288011doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.31.23288011
http://creativecommons.org/licenses/by-nc/4.0/


The proteomic and clinical data were matched in R by sample identifier. Based on an 276 

initial scree plot of the variance distribution, unsupervised clustering of the proteomic data was 277 

performed by k-means clustering with k=4. The number of initial random centroids and the 278 

maximum number of iterations were both set to 10. 279 

Training and Test Data Split 280 

We split our data into a training and test sets, sampling equally across stratified eGFR. Of 281 

the 185 samples, 2/3 were used for training (‘training set’, 118 kidneys), and 1/3 were used for 282 

testing (‘test set’, 61 kidneys). Six paired kidneys (3 pairs) were reserved from both sets and used 283 

to assess MS and model performance (‘QC set’, 6 kidneys). 284 

Machine Learning Feature Selection 285 

Using sample assigned to the training dataset, we modelled the combined dataset of all 286 

protein abundance data plus the curated donor clinical variables (Supplementary Table S2) 287 

against ranked 12 month posttransplant eGFR, using Prediction Rule Ensemble (PRE) modelling 288 

(R package ‘pre’23). We used the ‘gpe’ function allowing linear fits, decision tree fits and 289 

multivariate adaptive regression spline fits (via R package ‘earth’ 24) to be considered for each 290 

ensemble. Decision tree learning was set to be ‘random forest’-like, with 500 initial trees 291 

generated and boosting disabled to allow parallel processing. Other settings (including tree 292 

pruning and the parameters for linear and spline fits) were left as default; tree depth was 293 

therefore limited to the default 3 decision levels. Ensemble modelling was performed in an 294 

iterative manner. At each stage, modelling was performed on the set of predictors that excluded 295 

proteins listed in the final ensemble of all previous models. Clinical variables were never 296 

excluded. Modelling was repeated for 2000 iterations and all proteins appearing in any rule 297 
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ensemble, or with high correlation (Pearson’s r>0.65) to any of these candidates, were selected 298 

for further analysis. 299 

Regression Modelling 300 

Based on the outcome of feature selection, we used regularized regression (relaxed 301 

LASSO, package ‘glmnet’, using the cv.glmnet function with 20-fold cross validation, selecting 302 

as the final model the model that maximized the shrinkage parameter lambda such that it was 303 

within 1 standard error of the lambda value that had the smallest cross-validation error, i.e. the 304 

‘lambda.1se’ model) to regress each protein, donor age and protein:age terms against linearized 305 

outcome, defined as the proportion of eGFR12 values in the NHS Blood and Transplant National 306 

Registry between 2016 and 2021 inclusive (6 years) that were less than the observed eGFR12 307 

(i.e. a normalization to population distribution quantile). An independent age-only model was 308 

also fit against the training dataset using the same parameters. For each protein model and the 309 

age-only model we calculated the prediction root-mean-square error (RMSE). Proteins with a 310 

higher RMSE than the independent donor age model, or whose model did not retain either the 311 

protein or protein:age term were discarded. 312 

Functional Network Analysis 313 

The final list of proteins resulting from regression modelling was queried using the 314 

Enrichr platform (R package ‘enrichR’25) against the Reactome 2022 database. Annotation term 315 

assignments were filtered at 5% FDR. From the set of candidates with at least one assigned term 316 

across all three databases, a connection graph was generated (R package ‘igraph’26) with nodes 317 

representing proteins and edges representing shared annotation terms. Nodes (proteins) were 318 

clustered using the walktrap community detection algorithm27 as implemented in igraph. Within-319 

community enrichment for annotation terms was calculated by Fisher’s exact test. 320 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2023. ; https://doi.org/10.1101/2023.03.31.23288011doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.31.23288011
http://creativecommons.org/licenses/by-nc/4.0/


Age-Protein-Outcome Clustering 321 

For each protein, eGFR12 was predicted using the corresponding relaxed LASSO model 322 

for donor ages 20,21,22…80 and protein quantiles 0,0.01,0.02…1, resulting in a 61x101 matrix. 323 

Matrix-matrix distances were computed using the Frobenius distance (R package 324 

‘StatPerMeCo’28), and proteins were clustered according to these pairwise distances by 325 

hierarchical clustering. 326 

Spatial Correlation Analysis 327 

Processed, normalized AKI and CKD spatial scRNA-seq expression data generated by 328 

Lake et al.29 were obtained from CELLxGENE 329 

(https://cellxgene.cziscience.com/collections/bcb61471- 2a44-4d00-a0af-ff085512674c). 330 

Proteins identified by feature selection and LASSO regression filtering were matched to the 331 

expression dataset by the ‘Genes’ column in the DIA-NN output. AKI:CKD correlation in 332 

matched versus unmatched genes in each characterized spatial location was compared using the 333 

approach described by Fisher30 (R package ‘cocor’31). 334 

 335 

RESULTS  336 

Selected Samples were Demographically Balanced Across Outcome Strata 337 

Samples were selected to provide a balanced representation of the UK donor population 338 

(Table 1) and reproduced generally observed trends in terms of the correlation between eGFR12 339 

and clinical variables; we found the strongest associations were donor age (Pearson’s r=-0.52), 340 

and recipient age (r=-0.28) (Supplementary Figure S1).  341 
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For an interpretable analysis of key clinical factors, we considered our samples by 342 

eGFR12 stratum Lower Tertile (LT; eGFR12 < 40), Intermediate Tertile (IT; 40≤eGFR12<60), 343 

and Upper Tertile (UT; eGFR12≥60) all units ml/min/1.73 m2 (Figure 1). We investigated 344 

associations between clinical variables and stratified eGFR12 subgroups within each donor type, 345 

and between donor types within stratified eGFR12 subgroups (Supplementary Table ST1); the 346 

only variables with significant difference between outcome groups across donor types were the 347 

UK Kidney Donor Risk Index; UKKDRI8 (ANOVA F-test; DBD: p=1.298e-6; DCD: p=3.946e-348 

7), donor age (ANOVA F-test; DBD: p=1.253e-9; DCD: p=1.196e-7), histories of hypertension 349 

(ANOVA F-test; DBD: p=0.0020; DCD: p=0.1069). Histories of diabetes (ANOVA F-test; 350 

p=0.6188; DCD: p=0.2348) and terminal serum creatinine levels (ANOVA F-test; DBD: 351 

p=0.6972; DCD: p=0.6448) were similar across outcome subgroups although the latter was 352 

higher in DBD than in DCD in the UT group (t-test; p=0.0443). 353 

Integration of Kidney Proteomes with Clinical Metadata by Rule Ensemble and Regression 354 

Modelling Identifies Outcome-Associated Proteins 355 

Proteomic analysis quantified 2984 protein groups with 50% or less missing values (out 356 

of 7790 identified protein groups in total) over 185 samples and 20 interspersed sample pools 357 

(Supplementary Figure S2A). Analysis of sample pools showed minimal sample acquisition-358 

related variance (squared mean pairwise Z-corrected Pearson’s r=0.94). The 3 pairs of kidneys 359 

showed high correlation of protein intensity values between donor pairs (Pearson’s r=0.71, 0.92 360 

and 0.91; Supplementary Figure S2B). 361 

We initially explored the proteomic data using Principal Component Analysis (PCA) to 362 

find underlying linear trends. Sample variance concentrated in the first two principal components 363 

(PC1: 20.01%; PC2: 13.38%; Figure S3). K-means clustering identified 4 distinct clusters 364 
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(Figure S3; Figure S4A) which associated with donor type, with a preponderance of DBD 365 

samples towards Cluster 2 and a preponderance of DCD samples towards Cluster 4 (Figure S4B, 366 

upper left panel; p=0.0235), but did not associate strongly with recipient eGFR (p=0.4134),  367 

donor eGFR (p=0.1684), or donor age (p=0.7907) (Figure S4B, upper middle, upper right and 368 

lower left panels). There was a weakly significant association between cluster membership and 369 

donor BMI (p=0.0350) and with donor serum creatinine (p=0.0326) (Figure S4B, lower middle 370 

and lower right panels). 371 

To assess individual protein relationships with outcome, we adopted a descriptive 372 

modelling approach, using a subset of our data (‘training set’; 2/3 of data) to find protein models 373 

which predicted eGFR12 better than donor clinical data alone, then assessing model performance 374 

against unseen (i.e. held out) test data (‘test set’, 1/3 of data). Six of the kidneys analyzed (3 375 

pairs) were pairs from the same donor; these were reserved from both training and test data for 376 

quality control (‘QC set’, 6 kidneys). To create our train/test split, we randomly selected equal 377 

numbers of samples for the training set within each of the eGFR12 strata described above, to 378 

sample equally across outcome range. 379 

To identify possible outcome-associated proteins, relevant clinical variables and potential 380 

protein-clinical variable interactions, we used iterative Prediction Rule Ensembles23 (PRE) 381 

learning on our training set to select features among the set of quantified proteins and donor 382 

type-independent donor clinical variables. Briefly, PRE identifies a minimal ensemble of 383 

explanatory rule (functions of variables) for a given response (here, ranked eGFR12) allowing 384 

for nonlinear associations and variable interactions. To build a catalog (rather than minimal set) 385 

of explanatory proteins, we repeated our analysis 2000 times, removing proteins identified in the 386 

rule ensemble at each iteration from the dataset for future iterations, retaining clinical variables. 387 
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This process generated 195 candidate proteins; we further supplemented this list with proteins 388 

that had high correlation (Pearson’s r>0.65) with any of those candidates; bringing the final list 389 

up to 255 candidates. 390 

 The only donor clinical variable term to feature consistently in rule ensembles was donor 391 

age, appearing in all 2000 ensembles generated. We individually tested each protein candidate 392 

for association with outcome, including protein, donor age, and age:protein interaction terms 393 

using LASSO regression32 to aim for the simplest explanatory models (i.e. that include only the 394 

minimum necessary terms). To ensure models would generalize beyond our data, for the final 395 

modelling we linearized the eGFR12 measurement against UK NHS Blood and Transplant 396 

National Registry data. We discarded candidates whose model discarded both the protein and 397 

age:protein terms, or had a higher root-mean-square error (RMSE) of prediction than a model 398 

built with donor age alone. 399 

After filtering we had identified 144 proteins which associated with outcome 400 

(Supplementary Table 2). The mean RMSE of our protein models was 25.76 ml/min/1.73m2 in 401 

our training data, and fell slightly to 22.25 ml/min/1.73m2 in our test data, indicating the models 402 

were not over-fit (Supplementary Figure S5). 403 

Functional Analysis of Outcome-Associated Proteins Reveals Immuno-Metabolic Pathway 404 

Clusters 405 

We performed a network analysis of shared Reactome pathways (Figure 2A). Walktrap 406 

clustering revealed 4 major clusters of shared-pathway proteins (Table 2); Immune Regulation & 407 

Complement Activation, Metabolism, Protein Metabolism & Modification, and Cell Cycle. To 408 

validate our findings, we selected three representative proteins with available antibodies and 409 

known biological relevance (Vitronectin (VTN); fibrosis, Apolipoprotein E (APOE); CKD risk, 410 
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Cystatin C (CST3); nephron function) and confirmed that all three showed differences between 411 

low and high eGFR outcome sample subgroups by western blot (Figure 2B). Furthermore, all 412 

three proteins consistently predicted similar outcomes for each pair of kidneys within the triple-413 

pair QC set, and correctly separated the two below-median outcome (eGFR12<50) pairs from the 414 

above-median outcome (eGFR12>50) pair (Figure S6). 415 

Association of Proteins with Posttransplant Outcome is Modulated by Donor Age 416 

For all 144 proteins, the minimal model retained an age:protein interaction term where 417 

the predictive effect of protein abundance was modulated by age, independent of the effect of 418 

age alone or protein abundance alone (Supplementary Table 2). To visualize these effects, we 419 

used each model to predict eGFR12 across increasing donor age and protein quantile. The 420 

interplay between protein quantile and age could be broadly grouped (by hierarchical clustering) 421 

into 3 clusters with protein to eGFR12 associations that showed different patterns across donor 422 

age (Figure 3), with about a third (31%) of candidates, including CST3, falling into a cluster with 423 

a profound effect of age on protein to eGFR12 association at high donor age. 424 

Comparison to Spatial scRNA-Seq Data Reveals Localization of Outcome-Associated 425 

Signal 426 

As an independent validation of our findings, we sought to contextualize them in the 427 

wider context of kidney damage. To do this, we compared the expression levels of our candidate 428 

protein set to a recent spatial scRNA-seq dataset comparing AKI and CKD29. This initial 429 

comparison revealed that all 144 of our candidates were matched to transcripts reported in this 430 

external dataset, and, consistent with our proteomic data. Two of our highlighted candidates 431 

associated with outcomes, APOE and CST3, were also highlighted as associated with fibrosis 432 

and inflammation damaged tubules in this dataset. 433 
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We then investigated how the expression levels of transcripts corresponding to our set of 434 

144 proteins changed between AKI and CKD. We reasoned that protein and gene expression 435 

data that carries outcome-predictive information must reflect differences in organ injury. 436 

Therefore, between different injurious scenarios, we would expect gene expression that is 437 

predictive (i.e. discriminatory) to have lower correlation than genes whose expression change 438 

was linked to general inflammation and stress response. We compared the AKI:CKD expression 439 

correlation of our set of candidates versus the expression correlation of all other transcripts in the 440 

dataset. Since the dataset is spatially resolved, we were able to make this comparison across 441 

regions of the nephron. We observed that our candidate protein set had stronger discriminatory 442 

power (i.e. significantly lower correlation; Fisher test, p=4.04e-11) than background in distal 443 

convoluted tubule epithelial cells and in surrounding structures, but not in leukocytes or in 444 

globally aggregated data (Figure 4). 445 

This result gave us confidence that the 144-candidate set we report represents signatures 446 

of specific organ injury, and suggests that proteomic signals in distal convoluted tubule may be 447 

particularly representative of the extent to which injury impacts future functionality. 448 

DISCUSSION  449 

This study presents the first large unbiased human kidney tissue proteomics dataset for 450 

deceased donor kidneys. We examined the relationship between posttransplant kidney function 451 

with pretransplant kidney proteomes by analyzing 185 deceased donor kidneys with complete 452 

donor and recipient associated metadata. Although our study was not aiming to report a single 453 

biomarker, our large cohort, our unique machine learning approach, and finally alignment of 454 

proteomic data with a large spatial single cell transcriptomics dataset on healthy and diseased 455 

kidney substantiates our key findings. We describe an integration of kidney proteome with 456 
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clinical metadata and show that modelling age modulation of proteomic signals provides 457 

enhanced resolution of donor kidney quality stratification and highlights biological mechanisms. 458 

Our analysis reveals the importance of integrating across both subclinical and clinical 459 

data. Exploring our data using iterative PRE feature selection, a substantial number of proteins 460 

were revealed to be relevant, but only one clinical variable, donor age. Donor age is a key 461 

contributor in clinical decisions and is a strongly weighted term in extant kidney allocation 462 

scoring systems 8,33, but in the case of all reported candidate proteins, prediction models retained 463 

a protein:donor age interaction term. This second-order effect has not (to our knowledge) been 464 

explored in transplantation, and may be important to fully understanding molecular predictors. 465 

A clinical variable notable by its omission from our association findings was donor 466 

type34. It is possible that outcome-predictive information ‘carried’ by donor type is also derivable 467 

from the proteome (proteomic data were able to partially distinguish samples based on type even 468 

when considering only variance across linear combinations of proteins; Figure S4). Without 469 

disputing donor type-specific mechanisms of kidney damage35, our data are consistent with the 470 

idea that location and type of damage may be a greater contributor towards recovery potential36 471 

than mechanism of injury. 472 

Kidney metabolism is altered as a result of biological stress occurring during donor 473 

management, in both DBDs and DCDs37. Within our final list of 144 proteins associated with 474 

outcome there is a common theme of implication in immune response to kidney injury (including 475 

both chronic injury, and acute injury) as a result of metabolic disruption, particularly responses 476 

associated with ischemia. We highlighted three proteins from our set of 144 outcome-associated 477 

candidates as a sanity check; all three are examples of known chronic damage indicators that we 478 

find here to have a donor organ pre-transplant predictive association. 479 
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Vitronectin (VTN) is a primary component of the extracellular matrix involved in cell 480 

adhesion, enhancing the activity of plasminogen activator inhibitor-1 and inhibition of the 481 

terminal complement pathway38, and is a potential fibrotic biomarker39. 482 

Apolipoprotein E (APOE) stands out as having previously reported genetic allele age-483 

related associations with disease and organ dysfunction including risk of Alzheimer’s Disease40 484 

(with the strongest effect manifesting around age 6541), macular dysfunction, atherosclerosis and 485 

pulmonary scarring42,43, and evidence for shared allele risk across diseases44. In kidneys, APOE 486 

plays an important role in lipid metabolism to regulate the growth and survival of mesangial cells 487 

and preserve organ function45; it is a marker for outcome in transplant recipients46–48, and there is 488 

evidence for APOE genotype association with kidney dysfunction risk49–51, possibly manifested 489 

by lipidomic differences between allelic profiles52. We have previously reported small (not 490 

statistically significant) increases in APOE due to ischemic reperfusion injuries53 possibly 491 

explained by a role in senescence mediation54. There is existing evidence for similar allele 492 

dependent transplant outcome effects in another apolipoprotein (APOL1)55, suggesting that both 493 

APOE genotype and the broader apolipoprotein allelic profile may play an important role in 494 

posttransplant graft function. 495 

Cystatin C (CST3) is particularly noteworthy as, measured in serum, it is a known and 496 

effective general biomarker for kidney function and has predictive power for outcomes in 497 

transplant recipients56–58. Our evidence indicates a further association between CST3 levels in 498 

donor kidney tissue and outcome; moreover, that this effect is age dependent, starting around age 499 

40. Serum CST3 is relatively independent of age in children and young adults59, but may also 500 

show age association in later years60. 501 
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A potential hurdle in contextualizing our findings in existing orthogonal transcriptomic 502 

data was that proteomes and transcriptomes are generally poorly correlated in terms of 503 

abundance changes61. In order to avoid this problem, we considered how the pattern of injury 504 

scenario-related differences changed between predictive and background signals within the same 505 

transcriptomic dataset29. The spatial component of this dataset further allowed us to show that 506 

injury-specific signals within our 144-protein set localized most strongly to the distal convoluted 507 

tubule (DCT) epithelium. Damage to DCT epithelial cells can be predictive of outcome62; the 508 

interplay of proximal and distal injury is complex63, but previous work has suggested that DCT 509 

epithelial cells can play an important protective and damage repair role across the nephron, 510 

expressing survival and reparative factors in response to injury64. Indications that aging is 511 

associated with accumulation of senescent epithelial cells with a maladaptive stress response29 512 

suggest a mechanism whereby aging related senescent cell accumulation could reduce the ability 513 

of DCT epithelia cells to protect and promote recovery of injury sustained by the proximal 514 

tubules. This would be consistent with our findings (immuno-metabolic and ischemia response 515 

functional association, and spatially localized response) and the negative donor age correlation 516 

with transplant outcome, and might explain recent successes with senescence inhibitors in 517 

treating CKD65, suggesting that routes to stimulate or enhance the DCT regenerative effect could 518 

be avenues for organ preservation. 519 

Our list of outcome-associated candidates cannot be exhaustive. Practicalities of sample 520 

acquisition limited sampling of a wide range of outcomes outside the 30-60 donor age range, 521 

especially limited Upper Tertile outcome events in older donors. Organ allocation algorithms 522 

impose a close link between donor and recipient age in the sample cohort, so while we interpret 523 

these age-moderated effects in terms of organ resilience in older donors, it could also represent a 524 
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greater ability to repair a given level of damage in younger recipients. Further, we consider only 525 

chronological donor age, rather than a more nuanced representation of the epigenomic biological 526 

clock 66, which may to account for some variation observed with respect to both donors and 527 

recipients. 528 

It is immediately clear from our results that the strength of the donor age factor is 529 

enormous relative to any other protein or clinical effect; this age effect is liable to dominate any 530 

prediction weighting and reduce the accuracy of estimated protein contribution. A much larger 531 

cohort could mitigate this issue, especially if paired with variant sequencing to understand 532 

genetic diversity. Advances in high-throughput proteomics techniques continue to increase 533 

feasible cohort sizes67 but fundamental limitations on organ acquisition remain. Archiving at 534 

scale of clinical samples in bioresources such as the QUOD biobank to parallel advancements in 535 

big data analysis and interpretation platforms is therefore necessary for future development of 536 

granular evidence-based decision making. 537 

 However, given the limitations of our dataset, our protein models generalized well to 538 

samples unseen during model training (Figure S5), and showed promise for outcome-539 

classification prediction (Figure S6) suggesting that, with a larger training cohort to address the 540 

caveats acknowledged above, a substantial component of early posttransplant outcome may be 541 

predictable solely using subclinical measurements moderated by donor age. The biological 542 

themes of the 144 proteins identified herein reinforce known immuno-metabolic mechanisms of 543 

kidney injury but raise interesting possibilities for further work, especially with regard to donor 544 

genetic background, and also suggest that the possibility of donor age-moderated weighting 545 

should be considered as a matter of course in future work. 546 

 547 
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SUPPLEMENTARY MATERIALS 548 

Supplementary Table ST1: Clinical variable p-values for association with donor type and 549 

outcome. 550 

Supplementary Table ST2: Summary of results for all candidate proteins. 551 

Note that coefficient values provided are for linearized eGFR12, i.e. they relate to 552 

eGFR12 quantile ranging from 0 to 1. 553 

Supplementary Figure S1: Donor and recipient clinical and demographic data association with 554 

recipient 12-month eGFR rank. 555 

Single-linkage hierarchical clustering of curated, imputed clinical variables by relative 556 

association strength (taking distance as 1-association). The outcome variable (ranked 557 

recipient eGFR at 12 months post-transplantation) is highlighted in red. 558 

Supplementary Figure S2: Protein quantification quality. 559 

A: Missingness comparison: Proteins are shown ranked by the number of missing values 560 

across all samples and the twenty standard pools, excluding one run which was removed 561 

due to low signal. 2984 proteins had missing values in 50% or less runs. 562 

B: Paired Kidney Comparison: Protein abundance values from paired kidneys (left/right) 563 

from 3 individual donors were compared, as these are effectively biological replicates. x 564 

axes: value in left kidney. y axes: value in right kidney. Inset: Pearson’s r correlation 565 

coefficient. 566 

Supplementary Figure S3: Scree plot of variance represented by the first ten principle 567 

components in the proteomic data. 568 

A reasonable number for the cluster parameter (k) supplied for k-means clustering (see 569 

Figure S4) lay between 3 and 5 based on the ‘elbow’ method’; we selected k=4. 570 
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Supplementary Figure S4: Unbiased analysis of pretransplant kidney proteomes and cluster 571 

associations. 572 

A: Unbiased analysis of proteomic data by k-means clustering. Sample separation by 573 

Principal Component Analysis. Top Left: Samples were assigned to four clusters by k-574 

means. Bottom & Right: There was a difference in the distribution of DBD and DCD 575 

donors across clusters, with the DBD donors being more heavily concentrated in Cluster 576 

2 (‘+’ symbol; orange shading), and DCD in Cluster 4 (‘x’ symbol; pink shading) 577 

B: There were no associations between proteome clusters and most donor and recipient 578 

factors, except for mildly significant differences in donor BMI and creatinine (selected 579 

comparisons shown; left-right, top-bottom: donor type, recipient 12-month posttransplant 580 

eGFR (outcome), donor eGFR, donor age, donor BMI, donor creatinine at retrieval). 581 

Supplementary Figure S5: Performance of individual protein with age models on unseen data. 582 

For each protein, the protein term plus age term and protein:age interaction term were 583 

modelled against linearized 12-month posttransplant eGFR (eGFR12)  using LASSO. For 584 

proteins passing filtering, with eGFR root-mean-square error (RMSE) better than an age-585 

only model, we compared the RMSE achieved on the model training data against the 586 

RMSE achieved on held-out test data. We observed that the models actually achieved 587 

slightly better performance on the test data, reassuring us that no model was over-fit to 588 

the training data (i.e. all models generalized well to unseen data). 589 

Supplementary Figure S6: Performance of VTN, APOE and CST3 models on paired kidney data. 590 

Six of the analyzed kidneys were paired (i.e. two came from each of three donors). These 591 

data were not used for training or testing but reserved for QC of the proteomics (Figure 592 

S2). Although our analysis was focused on identification of outcome-associated protein 593 
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signals rather than prediction of eGFR12 (due to cohort size limitations, we do not claim 594 

to have a maximally biologically representative training set), we nevertheless used these 595 

paired kidneys to assess the consistency of our modelling in predicting above/below 596 

median outcomes in the three proteins we highlighted as particularly interesting. In all 597 

three pair cases the outcomes in (different) recipients were similar within each pair, and 598 

for all three proteins the model consistently predicted the correct above/below median 599 

classification for all six kidneys. 600 

 601 
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FIGURES AND TABLES 823 

 824 
Figure 1: Experimental design to discover donor kidney proteome associations with transplant outcome 825 
We selected biopsies from QUOD biobank taken from one kidney from each donor pair. Donor kidney samples 826 
were selected randomly from pairs where both recipients had similar outcomes. The biopsy samples were subjected 827 
to proteomic analysis to yield a snapshot of the organ proteome at kidney retrieval. We analyzed donor 828 
characteristics and clinical variables and protein abundances in a combined model against recipient eGFR at 12 829 
months posttransplant (eGFR12; units given in ml/min/1.73 m2).  830 
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Donor Type   DBD   DCD  

12m Outcome Tertile 
ml/min/1.73 m2 

Lower 
eGFR<40 

Intermediate 
40≤eGFR<60 

Upper 
eGFR≥60 

Lower 
eGFR<40 

Intermediate 
40≤eGFR≤60 

Upper 
eGFR≥60 

n 31 31 38 31 28 26 

Donor Age, y 
56.84 

± 12.29 
51.32 

± 12.24 
39.05 

± 14.12 
55.48 
± 9.34 

53.57 
± 9.75 

38.31 
± 12.28 

Donor Sex 
      

    Male 
15 

(48.4%) 
16 

(51.6%) 
19 

(50.0%) 
22 

(71.0%) 
16 

(57.1%) 
16 

(61.5%) 

    Female 
16 

(51.6%) 
15 

(48.4%) 
19 

(50.0%) 
9 

(29.0%) 
12 

(42.9%) 
10 

(38.5%) 

Donor Ethnicity 
      

    White 
30 

(96.8%) 
30 

(96.8%) 
36 

(94.7%) 
30 

(96.8%) 
28 

(100.0%) 
25 

(96.2%) 

    Other 
1 

(3.2%) 
1 

(3.2%) 
2 

(5.3%) 
1 

(3.2%) 
0 

(0.0%) 
1 

(3.8%) 

Donor Weight, kg 
82.53 

± 18.20 
76.61 

± 18.07 
81.38 

± 17.72 
80.58 

± 14.95 
82.43 

± 17.20 
78.67 

± 13.96 

Donor Height, cm 
168.42 
± 9.37 

169.52 
± 7.67 

174.82 
± 11.16 

169.97 
± 7.98 

171.64 
± 9.73 

174.65 
± 8.98 

Donor S-Cr terminal, 
µmol/l 

86.54 
± 40.81 

82.57 
± 49.65 

90.19 
± 67.36 

73.37 
± 19.03 

70.31 
± 39.02 

59.60 
± 22.39 

Donor CIT, h 
15.80 
± 3.88 

14.20 
± 4.60 

13.42 
± 4.67 

13.65 
± 5.20 

11.72 
± 3.55 

12.80 
± 4.49 

Donor COD 
      

    Trauma 
1 

(3.2%) 
3 

(9.7%) 
3 

(7.9%) 
4 

(12.9%) 
3 

(10.7%) 
4 

(15.4%) 

    Other 
30 

(96.8%) 
28 

(90.3%) 
35 

(92.1%) 
27 

(87.1%) 
25 

(89.3%) 
22 

(84.6%) 

Donor UKKDRI 
1.41 

± 0.52 
1.10 

± 0.36 
0.85 

± 0.36 
1.31 

± 0.37 
1.21 

± 0.40 
0.73 

± 0.35 

Recipient Age, y 
53.03 

± 12.21 
52.10 

± 14.61 
39.71 

± 16.03 
51.90 
± 9.85 

50.93 
± 11.04 

44.92 
± 12.87 

Recipient Sex 
      

    Female 
15 

(48.4%) 
8 

(25.8%) 
12 

(31.6%) 
11 

(35.5%) 
9 

(32.1%) 
5 

(19.2%) 

    Male 
16 

(51.6%) 
23 

(74.2%) 
26 

(68.4%) 
20 

(64.5%) 
19 

(67.9%) 
21 

(80.8%) 

Recipient Ethnicity 
      

    White 
24 

(77.4%) 
21 

(67.7%) 
29 

(76.3%) 
22 

(71.0%) 
23 

(82.1%) 
20 

(76.9%) 

    Other 
7 

(22.6%) 
10 

(32.3%) 
9 

(23.7%) 
9 

(29.0%) 
5 

(17.9%) 
6 

(23.1%) 

Recipient Posttransplant Kidney Function (mean eGFR, ml/min/1.73 m2) 

    3 months 
29.71 

± 12.06 
50.32 

± 17.28 
78.54 

± 25.97 
31.72 

± 12.24 
46.50 

± 10.34 
77.88 

± 18.57 

    12 months 
26.58 

± 11.98 
49.58 
± 6.10 

85.58 
± 35.84 

25.10 
± 12.01 

48.24 
± 6.29 

80.26 
± 15.91 

HLA Mismatch Groups       

    0 Mismatches 
3 

(10.0%) 
4 

(11.4%) 
9 

(25.7%) 
1 

(2.9%) 
1 

(4.2%) 
0 

(0.0%) 

    0 DR and 0/1 B 
7 

(23.3%) 
13 

(37.1%) 
10 

(28.6%) 
10 

(28.6%) 
6 

(25.0%) 
8 

(30.8%) 
    0 DR and 2 B 
    or 1 DR and 0/1 B 

17 
(56.7%) 

14 
(40.0%) 

13 
(37.1%) 

21 
(60.0%) 

14 
(58.3%) 

14 
(53.8%) 

    1 DR and 2 B 
    or 2 DR 

3 
(10.0%) 

4 
(11.4%) 

3 
(8.6%) 

3 
(8.6%) 

3 
(12.5%) 

4 
(15.4%) 
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Table 1: Donor and recipient clinical and demographic variables 831 
Donor kidney associated metadata. Samples are subdivided by donor type and by final assigned outcome tertile. 832 
Numerical variables are given ± standard deviation. Categorial variables are given alongside percentage of total 833 
cohort  834 
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 835 
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Figure 2: Proteins predicting transplant outcome show immuno-metabolic functional associations, predict 836 
low eGFR outcomes and are consistent with Western Blot assay results. 837 
A: Shared Reactome pathway membership network analysis of filtered features. Nodes are colored by assigned 838 
cluster, and the clusters are annotated according to the top three most enriched pathways within each cluster. 839 
B: Western blots comparing younger (age ≤ 49; mean age 34) and older (age ≥ 58; mean age 64) donors between 840 
Upper Tertile (UT; eGFR12 ≥ 60) and Lower Tertile (LT; eGFR12 < 40) outcomes. As above, Left-Right: VTN, 841 
APOE, CST3. Top row: representative western blots (n=5 per group) from comparison of younger donors. Middle 842 
row: representative western blots (n=5 per group) from comparison of older donors. Bottom row: result values for 843 
all quantified samples relative to the UT mean. UT values in green, LT values in blue. Error bars indicate ±1 844 
standard deviation; the central wider bar indicates mean. Significance stars indicate t-test comparison p-values (***: 845 
p < 0.001, *: p < 0.05). 846 
All eGFR12 units given in ml/min/1.73 m2  847 
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Cluster Label Top 3 Shared Pathways 
Immune Regulation & Complement Activation Immune System 

Innate Immune System 
Regulation of Complement Cascade 

Protein Metabolism and Regulation Metabolism of Proteins 
Post-translational Protein Modification 
Post-translational Protein Phosphorylation 

Metabolism Metabolism 
Metabolism of Amino Acids and Derivatives 
Retinoid Metabolism and Transport 

Cell Cycle Cyclin E Associated Events During G1/S Transition 
Cyclin A:Cdk2-associated Events at S Phase Entry 
PCP/CE Pathway 

Table 2: Major Shared Pathway Network Clusters 848 
Proteins in Figure 2A were clustered by pathway membership, forming 4 major clusters (those with more than a 849 
single member). We assigned summary labels to each cluster based on the top 3 pathways with shared membership 850 
in each cluster.  851 
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 852 
Figure 3: Modelled associations between proteins and kidney transplant outcome change with donor age 853 
Our modelling found that the effect of candidate protein levels on outcome changed with age. 854 
A: We quantile-normalized protein levels to a consistent scale and predicted outcome (12-month posttransplant 855 
eGFR) across a representative donor age range. Using this prediction matrix to compare the interaction with age 856 
between protein models, we found 3 major clusters (Left-Right; blue, pink and green dendrogram branches and 857 
corresponding plot background color) representing increasing levels of age modulation. Moving Left-Right across 858 
each plot, the eGFR12 (color scale, see key on right) contours across protein quantile (y axis) change as donor age 859 
(x axis) increases. 860 
B: Illustrative protein quantile-GFR12 plots are shown for each three proteins in each cluster. Traces are shown for 861 
donor ages between 20 and 80 as labelled on the right end of each trace.  862 
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Figure 4: Independent scRNA-seq Data Indicate Spatial Localization of the Outcome-Associated Signature 863 
We reasoned that proteins/genes which predict outcome should associate with specific facets of organ injury rather 864 
than general inflammatory and stress response, and therefore would be expected to have a lower expression 865 
correlation between acute and chronic damage scenarios than non-predictive other proteins/genes. We explored this 866 
in a spatially resolved public transcriptomic dataset and found that the degree of correlation was significantly lower 867 
for the set of 144 candidate predictors identified by our modelling approach, but that the signal appears to be 868 
spatially localized, primarily to distal convoluted tubule epithelial cells and the epithelia of neighboring tubules 869 
(indicated by red highlighting in right hand diagram). 870 
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