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Abstract (word count 198) 

 

Circulating plasma proteins play key roles in human health and could be used to measure 

biological aging to predict risk of mortality, disease, and multimorbidity beyond chronological 

age. We developed a proteomic age clock using 1,459 plasma proteins (Olink Explore) in two 

prospective biobanks in the UK (n=45,117) and China (n=2,026) and explored its utility to 

predict incident risk of 26 major age-related diseases and all-cause mortality. We identified 226 

proteins that accurately predicted chronological age (Pearson r=0.92). Individuals in the top 

versus bottom deciles of accelerated proteomic aging differed by approximately 10 years of 

biological aging. In the UK population, accelerated proteomic aging was associated with 25 

aging phenotypes (e.g., telomere length, IGF-1, creatinine, cystatin C, hand grip strength, 

cognitive function, frailty index), 18 chronic diseases (e.g., diseases of the heart, liver, kidneys, 

lungs; diabetes; neurodegeneration; cancers), multimorbidity, and all-cause mortality. In the 

smaller Chinese population, accelerated proteomic aging was associated with ischemic heart 

disease, stroke, and all-cause mortality. Our results demonstrate that plasma proteins are a 

reliable instrument for prediction of multiple common diseases in diverse populations and can 

be used as a robust biochemical aging signature to improve early detection and management of 

common diseases. 
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Main 

 

Age is one of the most important risk factors for the development of most common diseases and 

causes of death.1,2 Aging involves a progressive loss of physiological integrity and function over 

time, which leads to an increased vulnerability to age-related diseases and death. Major chronic 

diseases such as ischemic heart disease (IHD), stroke, diabetes, liver and kidney disease, 

neurodegenerative disease, and some cancers all have varying rates of increasing risk with 

age.2,3 Importantly, there is significant variation across individuals in how quickly age-related 

diseases develop and how steeply mortality risk increases with age. How fast we age ultimately 

shapes the extent of middle and late life morbidity and disability, and determines whether 

premature mortality or longevity is achieved.2 The ability to quantify, and possibly intervene 

upon, rates of aging may therefore have important consequences for prevention of premature 

death by increasing population healthspan (years of disease-free life) and attenuating 

increasing rates of disease and multimorbidity.4  

Chronological age is an imperfect surrogate measure of aging-related morbidity trajectories. 

Instead, aging-related biological changes can be estimated more precisely by using so-called 

biological aging clocks to capture the rate of age-related biological decline present more 

accurately in an individual. Some of the earliest and most successful biological aging clocks 

developed to date have used DNA methylation (DNAm).5,6 Loss of proteostasis is another 

primary hallmark of aging,7 and protein expression levels may provide a more direct mechanistic 

and functional insight into aging biology compared with DNAm.6 While several previous studies 

have systematically examined aging-related proteins (APs) and developed proteomic aging 

clocks,8-11 these studies have been constrained by smaller sample sizes (typically < 10k 

samples), lack of geographical diversity in their study populations, and inability to systematically 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 13, 2023. ; https://doi.org/10.1101/2023.09.13.23295486doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.13.23295486
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

evaluate associations between proteomic aging, biological markers of aging, aging-related 

physical and cognitive decline, and incidence of common diseases. To date, no studies have 

been reported that comprehensively assess the associations between accelerated biological 

aging (either DNAm or proteomic) and incidence of common diseases or major causes of death. 

To address this gap in evidence, we explore the utility of using blood proteomic information to 

capture biological aging in a geographically diverse sample of participants from the UK Biobank 

(UKB) and China Kadoorie Biobank (CKB). We systematically assess the influence of 

accelerated proteomic aging (ProtAgeAccel; measured as the difference between protein 

predicted age and chronological age) on 27 aging-related phenotypes related to physical and 

cognitive decline, all-cause mortality, and 26 common age-related diseases that are either in the 

top 20 causes of death in the UKB or are highly prevalent in aging populations (rheumatoid 

arthritis, macular degeneration, osteoarthritis, osteoporosis).  

 

Proteomic aging clock 

 

A schematic representation of our study design is shown in Fig. 1. Plasma proteomic profiling 

was conducted on 45,117 UKB participants (54% women, 46% men) between the ages of 39-71 

years at baseline (mean 57.4 ± 8.2 years), as well as 2,026 CKB participants (62% women, 

38% men) aged 30-78 years at baseline (mean 51.3 ± 10.5 years). Age distributions across 

cohorts are shown in Fig 2a. Across 11-16 years of follow-up in the UKB and 11-14 years of 

follow-up in the CKB, there were 4,784 (10.6%) and 182 deaths (9%) deaths, respectively (Fig. 

2b). The prevalence and incidence rates of all 14 common diseases studied in the UKB are 

shown in Fig. 2c.  
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We randomly split both the UKB and CKB cohorts into 70% training and 30% test sets, and 

within the combined training sets (n=32,999) we trained a single LightGBM machine learning 

model including normalized expression of all 1,459 proteins to predict chronological age. Boruta 

feature selection identified a subset of 226 APs (Supplementary File SF1). Protein predicted 

age (ProtAge) from our models using the subset of 226 APs explained a high degree of 

variation in chronological age (R2: 0.78-0.85) and was strongly correlated with chronological age 

(Pearson r: 0.89-0.92) in both the UKB (n=13,536) and CKB (n=608) holdout test sets, as well 

as the combined test sets (n=14,144) (Fig. 2d-f). Using the subset of 226 APs did not result in 

an appreciable decline in model performance compared with the predictive model using all 

1,459 proteins (R2 in combined test data: 0.856). ProtAgeAccel showed similar distributions in 

both datasets, and showed similar distributions in women and men in both cohorts, across self-

reported ethnicities in the UKB, and across geographical regions in the CKB (Fig. 2g-i). While 

our ProtAge clock was developed using a combined UKB and CKB sample, ProtAgeAccel was 

tested in relation to diseases and aging phenotypes in each cohort separately, with most 

association analyses carried out in just the UKB because of the small sample size in the CKB. 

The reliability of each AP’s association with age was tested using repeat protein expression 

measurements for subsets of UKB participants with repeat protein expression data available. 

Specifically, repeat protein measurements were available for a subset of n=114 participants at 

the imaging study visit (2014+) and n=108 participants at the repeat imaging visit (2019+). 

Associations of each of the 226 APs with age were tested during the baseline visit in addition to 

the two follow-up visits using linear regression. The beta coefficients across all three time points 

were strongly correlated with each other (Pearson r = 0.81-0.84), confirming the stability of 

associations between the 226 APs and age across repeat visits spanning at least 9-13 years 

(Extended Data Fig. 1).  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 13, 2023. ; https://doi.org/10.1101/2023.09.13.23295486doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.13.23295486
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

 

Biological functions and interaction networks of proteomic aging 

 

The 226 proteins we identified as predictive of age provide a preliminary map of APs from the 

Olink Explore 1536 assay in the UKB and CKB. Testing for functional enrichments among the 

226 APs according to Gene Ontology (GO) biological processes and molecular function, as well 

as Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome, identified many 

statistically significant enrichments (Fig. 3a-d). The strongest enrichments (top 20 pathways for 

each database according to FDR) can be organized thematically into several larger categories 

of biological functions: (i) cellular signaling and regulation, (ii) development and growth, (iii) 

immune responses and inflammation, (iv) cell adhesion and extracellular matrix (ECM) 

interactions, (v) metabolic processes and regulation, (vi) apoptosis and cell death, and (vii) 

disease-related processes. 

Overall, these 226 APs showed a large number of protein-protein interactions (PPIs). Among 

these 226 APs, we identified a highly interconnected subnetwork of proteins consisting of 83 

proteins with at least 2 node connections in a PPI network using co-expression information from 

the STRING database (Fig. 3e). The key proteins with the greatest numbers of connections to 

other proteins were EGFR (involved in cancer drug resistance, brain structure, and platelet 

count), ACAN (an integrin protein involved in body mass index [BMI], blood pressure, lipid 

metabolism, and renal agenesis), ITGAV (an integrin protein implicated in body height, 

handedness, dyslexia, and albumin/creatinine metabolism), CXCL9 (implicated in T-cell function 

and inflammation), and CD8A (a CD8 antigen implicated in the innate immune system).  

We also used SHAP interaction values from our trained ProtAge model to calculate a second 

PPI network that represents the interactions of proteins together in the model to predict age 

(Fig. 3f). The key proteins with the largest numbers of connections to other proteins according to 
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SHAP interaction values were EDA2R (involved in the NF-κB and innate immune pathways and 

implicated in baldness, estradiol, testosterone and HDL metabolism), LTPB2 (a protein involved 

in BMI, blood pressure, neuroticism and anxiety, glaucoma and retina pathology, lung function 

and mortality), CXCL17 (a chemokine interacting with CXCL9, that plays a role in tumor 

genesis, antimicrobial defense through monocytes, macrophages, and dendritic cells), and 

GDF15 (implicated in BMI, liver function, systemic lupus erythematosus, and COVID-19). This 

second network provides a visual representation of how the most influential APs in our ProtAge 

model interacted in the prediction of age, whereas the STRING-based PPI network represents 

interactions related to known biological connections between proteins. Overall, we found quite 

distinct results when using a data driven approach to modelling PPIs using interactions from our 

machine learning models versus using experimental biological knowledge from the STRING 

database. 

 

Proteomic aging predicts frailty and biological decline even before disease onset 

 

To understand how accelerated proteomic aging may influence aging-related physiological and 

cognitive decline, we tested associations in the UKB between ProtAgeAccel and: (i) a 

comprehensive frailty index (see Methods); (ii) 16 individual measures of physical (e.g., slow 

walking pace, grip strength) and cognitive (reaction time, fluid intelligence) decline, and (iii) 10 

measures of biological aging and blood biochemistry (e.g., telomere length, IGF-1, creatinine). 

After adjustment for chronological age, sex, and major sociodemographic and lifestyle 

confounders, ProtAgeAccel aging was significantly associated with all measures tested except 

for alanine aminotransferase (ALT) and total bilirubin (Fig. 4a-b).  
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Among biological aging mechanisms tested (Fig. 4a), increasing ProtAgeAccel was associated 

with increasing levels of Cystatin C, Creatinine, aspartate aminotransferase (AST), C-reactive 

protein, and gamma-glutamyl transferase (GGT); and was associated with decreased levels of 

albumin, IGF-1, and telomere length.  

Among physical measures tested (Fig. 4b), increasing ProtAgeAccel was associated with poor 

self-rated health, slow walking pace, self-rating one’s face as older than average, sleeping 10+ 

hours per day, feeling tired every day, and having frequent insomnia. It was also associated with 

increased values of a comprehensive frailty index, as well as increased blood pressure, longer 

(slower) reaction time, greater arterial stiffness, and greater BMI. Moreover, ProtAgeAccel was 

associated with decreased bone mineral density, fluid intelligence, lung function, and hand grip 

strength. 

Associations between ProtAgeAccel and all aging phenotype measures were also tested in the 

subset of UKB participants with no lifetime diagnoses of any of the 26 diseases studied 

(n=20,211). Among these participants, we found that ProtAgeAccel remained significantly 

associated with nearly all markers tested (Fig. 4c-d). Of the physical measurements, only 

sleeping for 10+ hours/day, and feeling tired every day were no longer significantly associated 

with ProtAgeAccel. Interestingly, albumin was no longer significant in this subset of participants, 

despite being significantly inversely associated with ProtAgeAccel in the full dataset. ALT 

became significant while not being significant in the full dataset. All other biochemical markers 

remained significantly associated with ProtAgeAccel in the disease-free subsample. 
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Proteomic age acceleration is a strong predictor of common diseases 

 

UKB participants in the top, median, and bottom deciles of ProtAgeAccel showed dramatically 

divergent age-specific incidence rates of all-cause mortality and the 14 common non-cancer 

diseases studied (Fig. 5a). The average years of biological age acceleration among the top 10% 

of ProtAgeAccel was 5.6 years and the average among the bottom 10% was -5.4 years, 

resulting in an average difference of approximately 10 years in biological aging between the top 

and bottom deciles of ProtAgeAccel. For those aged 65 years at recruitment, the highest 

cumulative incident rates (equivalent to absolute risk) across the study follow-up period of 11-16 

years for the top decile of ProtAgeAccel were observed for osteoarthritis (76.65%), all-cause 

mortality (60.02%), chronic kidney diseases (CKD; 53.27%), IHD (47.60%) and type II diabetes 

(47.49%). Neurodegenerative diseases (Parkinson’s disease, all-cause dementia, Alzheimer’s 

disease [AD]) and ischemic stroke all showed cumulative incident rates below 1% in the bottom 

decile of ProtAgeAccel across all ages. Diseases with the greatest difference in cumulative 

incidence rate between the top and bottom deciles of ProtAgeAccel among those aged 65 years 

at recruitment included osteoarthritis (Δ 66.02%), all-cause mortality (Δ 56.03%), CKD (Δ 

51.17%), type II diabetes (Δ 43.74%), and IHD (Δ 42.26%). Cumulative incidence risk 

trajectories according to these deciles of ProtAgeAccel looked similar when plotted separately in 

women and men (Extended Data Fig. 2-3). For all diseases, cumulative incidence rates in the 

UKB across follow-up for those aged 50-65 years at recruitment are shown in Table S1.  

In the CKB, we also calculated cumulative incidence rates according to deciles of ProtAgeAccel, 

although the smaller sample size restricted the number of diseases that could be reliably 

analyzed. Plots for incident outcomes with greater than 50 incident cases across the 3 deciles of 

ProtAgeAccel (mortality, IHD, all stroke, ischemic stroke) are shown in Fig. 5b. For those aged 
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60 years at recruitment, the cumulative incidence rates across the study follow-up period for the 

top decile of ProtAgeAccel were 47.64% (all stroke), 45.61% (ischemic stroke), 32.65% (all-

cause mortality), and 28.69% (IHD). Cumulative incidence plots for all diseases with at least one 

incident case in each of the 3 deciles of ProtAgeAccel are shown in Fig. S1. Cumulative 

incidence rates in the CKB across follow up for those aged 36-65 years at recruitment are 

shown in Table S2.  

We further tested whether associations of ProtAgeAccel with mortality and the 14 common 

diseases were robust to adjustment for chronological age, sex, smoking, physical activity, 

sociodemographics, and clinical risk factors using multivariable Cox proportional hazards 

models. ProtAgeAccel showed a significant association with mortality and all disease outcomes 

across all models tested in the UKB (Fig. 6). In the fully adjusted model that also included 

covariates for BMI and prevalent hypertension (Model 3), ProtAgeAccel showed the largest 

effect size for AD (HR: 1.18; 95% CI: 1.15-1.22), followed by all-cause dementia (HR: 1.15; 95% 

CI: 1.12-1.18) and CKD (HR: 1.13; 95% CI: 1.11-1.14). Hazard ratios for each outcome are 

given per year increase of ProtAgeAccel, therefore those in the top 10% of ProtAgeAccel have 

on average a 2.6 times higher risk of AD than those with no acceleration (HR of 1.185.6 = 2.6), 

and a 6.5 times higher risk of AD (HR of 1.18(5.6+[-5.4])) than those in the bottom 10% of biological 

age acceleration. For CKD, the increases in risk are 1.9 (top 10% vs. 0) and 3.7 times (top 10% 

vs. bottom 10%), and for mortality the increases in risk are 1.8 (top 10% vs. 0) and 3.1 times 

(top 10% vs. bottom 10%).  

In the UKB, we also investigated the relationships between ProtAgeAccel and incident cancer 

diagnoses (Fig. 7), but associations from Cox models were less robust to adjustment for age 

and other confounders. ProtAgeAccel was associated with only four cancers (esophageal, liver, 
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lung, non-Hodgkin lymphoma) after adjustment for age, sex, sociodemographics, and lifestyle 

factors (Extended Data Fig. 4).   

Although the analyses described above were adjusted for smoking status, we conducted further 

sensitivity analyses testing associations of ProtAgeAccel with all-cause mortality and all 14 non-

cancer common diseases in never smokers. Among never smokers, ProtAgeAccel remained 

significantly associated with all outcomes except Parkinson’s disease (Extended Data Fig. 5). In 

a similar sensitivity analysis restricted to those within a normal weight range (BMI ≥ 18.5 & BMI 

< 25), ProtAgeAccel remained significantly associated with all outcomes except Parkinson’s 

disease and macular degeneration (Extended Data Fig. 6). These results indicate that 

ProtAgeAccel picks up a significant biological aging signature that is independent of smoking 

and extreme BMI profiles. 

 

Years of ProtAgeAccel increase linearly with multimorbidity 

 

We also investigated whether ProtAgeAccel is an informative marker of multimorbidity status in 

the UKB. We defined multimorbidity as lifetime diagnosis of any of the 26 diseases included in 

our study, and categorized participants according to having 0, 1, 2, 3, or 4+ lifetime diagnoses. 

We found that average years of ProtAgeAccel increased linearly with increasing number of 

comorbid conditions (Fig. 8a-b). We also found that this effect was more pronounced for 

younger participants at recruitment (aged 40-50 years; Fig. 8a), among whom presence of 

disease was less common (Fig. 8c). On average, those aged 40-50 years at recruitment with 4+ 

comorbid conditions had approximately 1.8 greater years of ProtAgeAccel compared to those 

with no lifetime diagnoses (Fig. 8a), whereas those aged 51-65 years at recruitment with 4+ 
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comorbid conditions had approximately 0.9 greater years of ProtAgeAccel compared to those 

with no lifetime diagnoses (Fig. 8b). Average ProtAgeAccel also increased linearly with self-

reported health, with those reporting excellent health showing and average -0.2 years of 

ProtAgeAccel (indicating that they are younger biologically than chronologically) and those with 

poor self-reported health showing and average 0.9 years of ProtAgeAccel (Fig. 7d). 

 

Discussion 

 

In the analyses presented here using data from both UK and Chinese populations, we 

demonstrate that ProtAgeAccel is strongly associated with a large and diverse range of markers 

related to physical frailty and cognitive decline, as well as measures of biological aging (e.g., 

telomeres, IGF-1, creatinine, cystatin C). While previous research has shown that DNAm aging 

is not related to telomere length,12 we show that proteomic aging is strongly inversely 

associated with telomere length – a key cellular hallmark of aging.7 Our study provides 

important new evidence that proteomic aging is a common feature underlying most aging-

related frailty, cognitive decline, and biological decline. Importantly, our study also provides the 

most comprehensive evidence to date cataloguing the incident disease outcomes that are 

associated with proteomic aging, and provides the first systematic evidence within a single 

study that biological aging is a common signature underlying all common adult diseases. We 

find that ProtAgeAccel is a robust predictor of mortality and many of the most common causes 

of death in the UK, including all 14 common diseases tested and four cancers (esophageal, 

liver, lung, non-Hodgkin lymphoma).  
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Recently, there has been growing interest in using plasma proteins to study biological aging and 

create proteomic aging clocks. We specifically compared our findings to three of the largest 

published studies: (1) a systematic review of studies (n=32) reporting protein associations with 

age (Johnson et al. 20209), in which the authors developed a proteomic age clock using 85 

proteins associated with age in at least three previous studies and validated it in the INTERVAL 

cohort (n=3,301); (2) a recent study that identified 273 APs across several cohorts (Coenen et 

al. 20238) (n=37,650); and (3) a clock consisting of 373 APs developed in the INTERVAL and 

LonGenity cohorts (Lehallier et al. 201910) (n=4,263). To our knowledge, neither these nor any 

previous study has directly tested associations between proteomic aging and disease or 

multimorbidity in the comprehensive manner described here.  

Furthermore, for outcomes that were measured in these previous proteomic clock analyses, our 

ProtAge clock shows improved performance. For the Lehallier et al. 2019 clock, p-values (but 

not betas) for associations with physical and cognitive frailty measures were reported. For 

similar traits, our ProtAgeAccel measure shows remarkably stronger p-values (e.g., hand grip 

strength: -log10 p-value of 43.6 in our study vs 3.8 in Lehallier et al. 2019), although this may be 

explained by a much larger sample in our analysis (n=45,117 vs. n=4,263). Coenen et al. 2023 

report associations of their aging clock acceleration measure with select blood clinical markers. 

Their clock only showed marginally significant partial correlations with blood uric acid and 

magnesium, but non-significant correlations with the other 57 blood markers tested, including 

albumin, creatinine, GGT, and C-reactive protein, all of which were strongly associated with 

ProtAgeAccel in our study. The Johnson et al. clock was not tested against mortality, morbidity, 

or any frailty or cognitive measures. It is unclear whether lack of greater overlap between 

ProtAge APs and those from these previous papers is due to differences between measurement 

on the Olink and SOMAscan platforms. Previous research comparing SOMAscan and Olink 
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platforms directly demonstrated substantial discrepancies in protein-phenotype associations and 

protein quantitative trait loci (pQTL) mapping between the two platforms.17   

Our ProtAge clock also provides a technical advantage over many state-of-the-art DNAm 

clocks. Although the so-called ‘first generation’ DNAm clocks (e.g., Horvath clock) were able to 

accurately capture the chronological passage of time, they do not effectively capture aging-

related biological decline.5,6 Newer DNAm clocks were subsequently developed that are not 

trained on chronological age itself, but rather are trained to predict composite variables that are 

usually weighted combinations of age and other biological aging markers (e.g., albumin, 

creatinine, C-reactive protein).13-15 This has been key to developing DNAm clocks that are more 

predictive of mortality, morbidity, and frailty.5 In contrast, we demonstrate that a proteomic aging 

clock can be constructed by training on age itself and remain a strong predictor of mortality, 

disease, multimorbidity, and frailty without the need for creating more complicated biological 

aging phenotypes used to train initial models. Compared to DNAm-based measures, the 

proteome appears to be a more powerful measure of biological aging because it is a functional 

layer directly involved in biological decline that is much more proximal to disease itself.  

Proteins selected by our model showed very little overlap with corresponding genes from 

leading DNAm clocks, including the Horvath clock,16 PhenoAge,13 and DunedinPACE15 

(Extended Data Fig. 7a). Six corresponding genes from ProtAge overlapped with genes mapped 

to CpGs (by proximity) in the Horvath clock (CCL27, DKK3, ENPP2, LAG3, LGALS1, MCAM), 

and nine ProtAge genes overlapped with proximity genes mapped to PhenoAge (ACP5, CALB1, 

CST6, CTSF, DPEP2, KLK10, KLK8, LHB, MATN3). Only one ProtAge gene overlapped with 

proximity genes mapped to DunedinPACE (TNXB). While the proteins selected by our model 

showed somewhat greater overlap with those found in existing proteomic clocks, 149 ProtAge 

APs (66%) were not identified in any of these major previous studies on proteomic aging 
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(Extended Data Fig. 7b). Despite representing a largely novel set of APs, ProtAge also includes 

16 APs present in the Johnson et al., Coenen et al., and Lehallier et al. analyses (Extended 

Data Fig. 7b, Extended Data Table 1). Interestingly, none of these 16 proteins overlap with 

corresponding genes from any of the DNAm clocks, indicating that DNAm and proteomic clocks 

appear to converge on differing gene sets. The overlap between the 226 ProtAge APs and all 

previous studies described here is represented in Supplementary File SF1. 

Finding common pathways and upstream targets across major common diseases will be key to 

developing preventative measures to curb globally increasing rates of multimorbidity.4 We show 

that ProtAgeAccel is a common biological signature underlying most of the major non-

communicable causes of death in the UK, and that years of ProtAgeAccel increase linearly with 

increasing comorbid conditions. Importantly, we also show that ProtAgeAccel is associated with 

nearly all measures of frailty and physical, cognitive, and biological decline even among those 

who have no lifetime diagnoses of any of the 26 common diseases studied. This indicates that 

proteomic age acceleration is a biological signature of frailty and disease susceptibility that can 

be measured and detected before the onset of disease itself. We posit that studying accelerated 

proteomic aging is a strategic starting point for understanding the common pathways driving 

disease multimorbidity. We find that ProtAge APs are significantly enriched for cell signaling, 

immune response, metabolic regulation, and inflammation pathways, which converges with 

results from previous studies of proteomic aging.11 

Our functional enrichment analyses of ProtAge APs identified several cancer-related pathways, 

and our Cox regression results showed consistent associations between ProtAgeAccel and 4 

cancers (lung, liver, esophageal, non-Hodgkin lymphoma). The reasons why the remaining 

cancers tested did not associate with ProtAgeAccel remain unclear. Some had extremely few 

cases, which likely influenced power to detect associations. For other cancers with adequate 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 13, 2023. ; https://doi.org/10.1101/2023.09.13.23295486doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.13.23295486
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

sample size (e.g., prostate cancer), it may be that the Olink panel we used doesn’t contain the 

relevant proteins for that cancer or that there is not a reliable signature in blood. 

The lack of associations between ProtAgeAccel and ALT and total bilirubin are interesting and 

warrant further research. One plausible explanation is that some liver enzymes tend to reflect 

more acute liver injury,18 which may not necessarily reflect long term aging-related liver function 

decline or inflammation. In contrast, albumin is more reflective of liver function and 

productivity,18 as well as broader nutritional status, which may be more reflective of aging-

related decline. Our functional analyses showed that the 226 ProtAge APs are significantly 

enriched for proteins involved in signaling of MAPK, JAK-STAT, PI3K-Akt, and IGF-1, all of 

which show altered expression in senescent hepatocytes (linked to chronic liver disease).19  

Our study was conducted in the largest sample size to date for a proteomic aging clock, 

included a geographically diverse training population, and included a wide range of phenotypes 

and diseases. Furthermore, our use of LightGBM brings significant improvements over existing 

DNAm and proteomic clock approaches, since our model allows for non-linearities and accounts 

for interactions between all proteins. Our study also has several limitations to note. First, our 

model only uses the Olink Explore 1536 assay currently available in the UKB, and therefore did 

not capture all proteins covered in the larger Olink Explore + Expansion panel or larger 

SOMAscan panels. Second, we have analyzed both UKB and CKB protein data together in the 

combined training dataset without the use of bridging samples, which were not available. It is 

likely that there may be differences in normalization between the UKB and CKB, but the protein 

expression ranges were remarkably similar between the two cohorts. Third, our datasets do not 

have DNAm data that would allow for direct comparisons between proteomic and DNAm clocks.  

In summary, our analyses provide strong evidence that plasma proteomics are a powerful tool 

for measuring biological age and can be used to quantify a biological aging signature that is 
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involved in most common age-related diseases. Moreover, our study provides an important 

bridge between pathways identified in basic aging research and rates of age-related disease 

and multimorbidity studied in clinical and population research. Further work is needed to refine 

quantification of proteomic aging and to elucidate the genetic and environmental determinants 

of accelerated proteomic aging. Our work demonstrates that development of proteomic aging 

clocks can be used as a robust tool to help to identify protein targets or pathways for possible 

drug treatment or lifestyle modifications to reduce premature and delay the onset of major age-

related diseases.  
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Figures 

 
 
Fig. 1. Overview of the study design. a) UK Biobank (UKB) and China Kadoorie Biobank 
(CKB) participants were both split into 70/30 training/test sets. b) The training sets from each 
cohort were combined and used to train the proteomic aging clock model using LightGBM and 
Boruta feature selection. The trained model was then tested on the holdout test set from each 
cohort, as well as the combined test sets. c) Protein predicted age (ProtAge) was then 
calculated in the full sample of all cohorts using 5-fold cross-validation, with proteomic age 
acceleration (ProtAgeAccel) calculated as the difference between ProtAge and chronological 
age in each cohort. ProtAgeAccel was tested in relation to a comprehensive panel of biological 
aging markers and measure of frailty and physical/cognitive decline, as well as mortality, 14 
common diseases, and 12 cancers. Most association analyses were carried out in the UKB 
only, due to smaller sample size in the CKB. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 13, 2023. ; https://doi.org/10.1101/2023.09.13.23295486doi: medRxiv preprint 

https://doi.org/10.1101/2023.09.13.23295486
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

 

 

Fig. 2. Proteomic aging clock performance across cohorts. a) Density plot of age at 
recruitment in the UK Biobank (UKB) and China Kadoorie Biobank (CKB). b) Density plot of age 
at death in the UKB (4,784 deaths [10.6%]) and CKB (182 deaths [9%]). c) Counts of prevalent 
and incident cases of all common diseases studied in the UKB sample (n=45,117). d) 
Performance of the trained proteomic aging model in the UKB holdout test set (n=13,536). e) 
Performance of the trained proteomic aging model in the CKB holdout test set (n=608). f) 
Performance of the trained proteomic aging model in the combined UKB and CKB holdout test 
sets (n=14,144). g) Sex distributions of ProtAgeAccel in the UKB and CKB. h) Distributions of 
ProtAgeAccel according to self-reported ethnicity in the UKB. i) Distributions of ProtAgeAccel 
according to geographic region of residence in the CKB. Correlation coefficients shown in d-f 
are Pearson correlation coefficients. Violin plots in g-i show both the median (white dot) and 
interquartile range. COPD: chronic obstructive pulmonary disease, ProtAge: protein predicted 
age, ProtAgeAccel: proteomic age acceleration (in years).  
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Fig. 3. Protein-protein interaction network and pathway enrichments of ProtAge. The top 
20 most FDR significant pathway enrichments are shown for the 226 ProtAge APs according to: 
a) GO biological process, b) GO molecular function, c) KEGG, and d) Reactome. e) Protein-
protein interaction (PPI) network from the STRING database for a highly interconnected 
subnetwork of 83 proteins in ProtAge with at least 2 node connections. f) PPI network for a 
highly interconnected subnetwork of 78 ProtAge APs using SHAP interaction values from the 
trained ProtAge model. In e and f, nodes are colored by number of connections (degrees). 
Darker nodes have fewer connections, whereas light nodes have more connections. APs: 
aging-related proteins, ECM: extracellular matrix, FDR: false discovery rate, GO: Gene 
Ontology, KEGG: Kyoto Encyclopedia of Genes and Genomes. 
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Fig. 4. ProtAgeAccel is associated with age-related biological, physical, and cognitive 
decline. a) Associations between ProtAgeAccel and biological aging mechanisms in the full 
UKB sample (n=45,117). b) Associations between ProtAgeAccel and measures of physiological 
and cognitive (reaction time, fluid intelligence) decline in the full UKB sample (n=45,117). c) 
Associations between ProtAgeAccel and biological aging mechanisms in the subsample of UKB 
participants with no lifetime diagnosis of any of the 26 diseases studied (n=20,211). d) 
Associations between ProtAgeAccel and measures of physiological and cognitive decline in the 
subsample of UKB participants with no lifetime diagnosis of any of the 26 diseases studied 
(n=20,211). All models used linear or logistic regression and were adjusted for age, sex, 
Townsend deprivation index, recruitment centre, ethnicity, IPAQ activity group, and smoking 
status. ALT: alanine aminotransferase, AST: aspartate aminotransferase, BMI: body mass 
index, FEV1: forced expiratory volume in 1 second, GGT: Gamma-glutamyl Transferase, IGF-1: 
insulin-like growth factor 1, ProtAgeAccel: proteomic age acceleration (in years). 
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Fig. 5. ProtAgeAccel lead to strongly diverging age-specific mortality and disease risk 
trajectories in the UKB and CKB. Cumulative incidence plots for the top, median, and bottom 
deciles of ProtAgeAccel in a) UK Biobank (UKB; n=45,117) and b) China Kadoorie Biobank 
(CKB; n=2,026) samples. Number of incident cases are shown for each disease – these 
numbers reflect the total number of incident cases present only among those in the 3 deciles 
shown, not the full dataset. Incidence rates are shown for the subsequent 11-16 years (UKB) or 
11-14 years (CKB) of follow-up after recruitment for each given age at recruitment (e.g., the 
cumulative incidence rate shown at age 65 in a) is the rate of incident cases in the 11-16 years 
of follow up for those aged 65 at recruitment). All plots show 95% confidence intervals in lighter 
shading. Diseases shown here for the CKB are those with greater than 50 cases across the 
three deciles of ProtAgeAccel. Plots for all diseases in the CKB are shown in Fig. S1. 
ProtAgeAccel: proteomic age acceleration (in years).  
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Fig. 6. Effect size of ProtAgeAccel on mortality and common diseases is largely invariant 
to covariate adjustment. Associations between ProtAgeAccel and mortality or diseases in Cox 
proportional hazards models with increasing levels of covariate adjustment. All models were run 
in the UK Biobank (UKB; n=45,117). a). Model 1 is adjusted for age and sex. b) Model 2 is 
adjusted for age, sex, Townsend deprivation index, recruitment centre, IPAQ activity group, and 
smoking status. c) Model 3 is adjusted for age, sex, Townsend deprivation index, recruitment 
centre, IPAQ activity group, smoking status, BMI, and prevalent hypertension. ProtAgeAccel: 
proteomic age acceleration (in years). 
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Fig. 7. ProtAgeAccel and age-specific cancer risk trajectories in the UKB. Cumulative 
incidence plots for the top, median, and bottom deciles of ProtAgeAccel in the UK Biobank 
(UKB; n=45,117). Number of incident cases are shown for each cancer – these numbers reflect 
the total number of incident cases present only among those in the 3 deciles shown, not the full 
dataset. Incidence rates are for the 11-16 years after recruitment. Incidence rates are shown for 
the subsequent 11-16 years of follow up after recruitment for each given age at recruitment 
(e.g., the cumulative incidence rate shown at age 65 is the rate of incident cases in the 11-16 
years of follow for those aged 65 at recruitment). All plots show 95% confidence intervals in 
lighter shading. Certain plots show 0 twice on the y-axis because these represent decimal 
values < 0.5 and the y-axis values are rounded to a single digit. ProtAgeAccel: proteomic age 
acceleration (in years). 
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Fig. 8. ProtAgeAccel increases linearly with increasing disease multimorbidity. a) 
Average years of ProtAgeAccel in those with 1 disease diagnosis or 2, 3, 4+ comorbid 
conditions compared with average ProtAgeAccel in those with no diagnoses among UK Biobank 
(UKB) participants 40-50 years old at recruitment. b) Average years of ProtAgeAccel in UKB 
participants with 1 disease diagnosis or 2, 3, 4+ comorbid conditions compared with average 
ProtAgeAccel in those with no diagnoses aged 51-65 years old at recruitment. c) Percentages 
of the UKB population with 0, 1, 2, 3, and 4+ lifetime disease diagnoses. d) Average years of 
ProtAgeAccel according to levels of self-rated health in the UKB. In a) and b), values on the y-
axis represent the average years of ProtAgeAccel for each group compared with the average in 
those with no diagnoses (calculated as the difference in average ProtAgeAccel between the two 
groups). Multimorbidity is defined as the number of lifetime diagnoses of any of the 26 diseases 
analyzed in this study. In a, b, and d, error bars are shown as the standard error of the mean. 
ProtAgeAccel: proteomic age acceleration (in years).  
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Extended Data Figures 

 

Extended Data Fig. 1. Stability of ProtAge protein associations with age across 3 time 
points. a) Comparison of betas for the association between each of the 226 ProtAge APs and 
age during baseline (n=45,117) and during the imaging visit (n=118). b) Comparison of betas for 
the association between each of the 226 ProtAge APs and age during baseline (n=45,117) and 
during the repeat imaging visit (n=108). c) Comparison of betas for the association between 
each of the 226 ProtAge APs and age during the imaging visit (n=118) and during the repeat 
imaging visit (n=108). Shown in each plot are the Pearson correlation coefficient (r), p-value for 
the correlation, and the model slope (λ). APs: aging-related proteins.  
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Extended Data Fig. 2. ProtAgeAccel leads to strongly diverging age-specific mortality 
and disease risk trajectories (women only). Cumulative incidence plots for the top, median, 
and bottom deciles of ProtAgeAccel among UK Biobank women (n=24,409). Number of incident 
cases are shown for each disease – these numbers reflect the total number of incident cases 
present only among those in the 3 deciles shown, not the full dataset. Incidence rates are 
shown for the subssequent 11-16 years of follow-up after recruitment for each given age at 
recruitment (e.g., the cumulative incidence rate shown at age 65 is the rate of incident cases in 
the 11-16 years of follow up in those aged 65 years at recruitment). All plots show 95% 
confidence intervals in lighter shading. ProtAgeAccel: proteomic age acceleration (in years). 
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Extended Data Fig. 3. ProtAgeAccel leads to strongly diverging age-specific mortality 
and disease risk trajectories (men only). Cumulative incidence plots for the top, median, and 
bottom deciles of ProtAgeAccel among UK Biobank men (n=20,708). Number of incident cases 
are shown for each disease – these numbers reflect the total number of incident cases present 
only among those in the 3 deciles shown, not the full dataset. Incidence rates are shown for the 
subssequent 11-16 years of follow-up after recruitment for each given age at recruitment (e.g., 
the cumulative incidence rate shown at age 65 is the rate of incident cases in the 11-16 years of 
follow up in those aged 65 years at recruitment). All plots show 95% confidence intervals in 
lighter shading. ProtAgeAccel: proteomic age acceleration (in years). 
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Extended Data Fig. 4. Associations between ProtAgeAccel and cancers in the UKB. 
Associations between ProtAgeAccel and and incident cancer diagnoses in Cox proportional 
hazards models with increasing levels of covariate adjustment. All models were run in the UK 
Biobank (UKB; n=45,117). a). Model 1 is adjusted for age and sex. b) Model 2 is adjusted for 
age, sex, Townsend deprivation index, recruitment centre, IPAQ activity group, and smoking 
status. c) Model 3 is adjusted for age, sex, Townsend deprivation index, recruitment centre, 
IPAQ activity group, smoking status, BMI, and prevalent hypertension. ProtAgeAccel: proteomic 
age acceleration (in years). 
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Extended Data Fig. 5. Effect size of ProtAgeAccel on mortality and disease among non-
smokers. Associations between ProtAgeAccel and mortality or diseases in Cox proportional 
hazards models using model 2 (adjusted for age, sex, Townsend deprivation index, recruitment 
centre, and IPAQ activity group). The sample was subset to only UK Biobank participants who 
report being never smokers (n=24,360). ProtAgeAccel: proteomic age acceleration (in years). 
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Extended Data Fig. 6. Effect size of ProtAgeAccel on mortality and disease among those 
in normal weight range. Associations between ProtAgeAccel and and mortality or diseases in 
Cox proportional hazards models using model 2 (adjusted for age, sex, Townsend deprivation 
index, recruitment centre, and IPAQ activity group). The sample was subset to only UK Biobank 
participants with a BMI ≥ 18.5 and BMI < 25 (n=14,453). ProtAgeAccel: proteomic age 
acceleration (in years). 
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Extended Data Fig. 7. Overlap of ProtAge APs with existing DNAm and proteomic clock 
publications. a) Overlap between genes coding for the 226 ProtAge APs versus genes 
mapped by proximity to CpGs from common DNAm clocks. b) Overlap between 226 ProtAge 
APs versus a recent systematic review of APs (Johnson et al. 2020), a recent comprehensive 
analysis of SOMAscan proteins associated with age (Coenen et al. 2023), and a recent 
proteomic aging clock created using SOMAscan data (Lehallier et al. 2019). APs: aging-related 
proteins, DNAm: DNA methylation. 
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Extended Data Tables 

UniProt ID Gene Protein Name 
O00253 AGRP Agouti-related protein 
Q76M96 CCDC80 Coiled-coil domain-containing protein 80 
Q4KMG0 CDON Cell adhesion molecule-related/down-regulated by oncogenes 
P36222 CHI3L1 Chitinase-3-like protein 1 
Q9BU40 CHRDL1 Chordin-like protein 1 
O60911 CTSV Cathepsin L2 
P00533 EGFR Epidermal growth factor receptor 
P25445 FAS Tumor necrosis factor receptor superfamily member 6 
Q99988 GDF15 Growth/differentiation factor 15 
P39900 MMP12 Macrophage metalloelastase 
P16860 NPPB Natriuretic peptides B 
P01298 PPY Pancreatic prohormone 
P21246 PTN Pleiotrophin 
Q9BQB4 SOST Sclerostin 
O00300 TNFRSF11B Tumor necrosis factor receptor superfamily member 11B 
Q14508 WFDC2 WAP four-disulfide core domain protein 2 

 
 
 
Extended Data Table 1. ProtAge APs also associated with age in other major 
publications. Proteins listed are those also reported to associate with age in Johnson et al. 
(2020), Coenen et al. (2023), and Lehallier et al. (2019). APs: aging-related proteins. 
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Methods  

 

Study participants 

The UK Biobank (UKB) is a prospective cohort study with extensive genetic and phenotype data 

available for 502,505 individuals resident in the United Kingdom who were recruited from 2006-

2010.20 The full UK Biobank protocol is available online. We restricted our UKB sample to those 

participants with Olink Explore 1536 data available at baseline who were randomly sampled 

from the main UKB population (n=45,117). 

The China Kadoorie Biobank (CKB) is a prospective cohort study of 512,724 adults aged 30-79 

years who were recruited from ten geographically diverse (five rural and five urban) areas 

across China during 2004-2008. Details on the CKB study design and methods have been 

previously reported.21 We restricted our CKB sample to those participants with Olink Explore 

data available at baseline who were randomly sampled from the main CKB population, and who 

were genetically unrelated to each other and had no prior history of cardiovascular disease or 

statin use at baseline (n=2,026). 

 

Proteomic profiling 

Proteomic profiling in the UKB and CKB was carried out for protein analytes measured via the 

Olink Explore 1536 platform that links four Olink panels (Cardiometabolic, Inflammation, 

Neurology, and Oncology). The random subsample of UKB proteomics participants (n=45,117) 

were selected by removing those in batches 0 and 7. Randomized participants selected for 

proteomic profiling in the UKB have been shown previously to be highly representative of the 
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wider UKB population.22 UKB Olink data are provided Normalized Protein eXpression (NPX) 

values on a log2 scale, with details on sample selection, processing, quality control, and 

normalization documented online.  

In the CKB, stored baseline plasma samples from participants were retrieved, thawed, and sub-

aliquoted to multiple aliquots, with one (100 µL) shipped on dry ice to the Olink Bioscience 

Laboratory at Uppsala, Sweden, for proteomic analysis using a multiplex proximity extension 

assay. To minimize inter- and intra-run variation, the samples were randomized across plates 

and normalized using both an internal control (extension control) and an inter-plate control and 

then transformed using a pre-determined correction factor. The limit of detection (LOD) was 

determined using negative control samples (buffer without antigen). A sample was flagged as 

having QC warning if the incubation control deviated more than a pre-determined value (±0.3) 

from the median value of all samples on the plate (but values below LOD were included in the 

analyses). The pre-processed data were provided in the arbitrary NPX unit on a log2 scale.  

We excluded three proteins from analysis that were missing in over 10% of the UKB sample 

(CTSS, PCOLCE, NPM1), leaving a total of 1,459 proteins for analysis. Protein expression 

values were not imputed, as the LightGBM model used can handle missing values. 

 

Outcomes 

UKB aging biomarkers were measured using baseline non-fasting blood serum samples as 

previously described.23 Biomarkers were previously adjusted for technical variation by the UKB, 

with sample processing and quality control procedures described on the UK Biobank website. 

Field IDs for all biomarkers and measures of physical and cognitive decline are shown in Table 

S3. Poor self-rated health, slow walking pace, self-rated facial aging, feeling tired/lethargic every 
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day, and frequent insomnia were all binary dummy variables coded as all other responses 

versus responses for “Poor” (overall health rating; Field ID 2178), “Slow pace” (usual walking 

pace; Field ID 924), “Older than you are” (facial aging; Field ID 1757), “Nearly every day” 

(frequency of tiredness / lethargy in last 2 weeks; Field ID 2080), and “Usually” (sleeplessness / 

insomnia; Field ID 1200), respectively. Sleeping 10+ hours/day was coded as a binary variable 

using the continuous measure of self-reported sleep duration (Field ID 160). Systolic and 

diastolic blood pressure were averaged across both automated readings. Standardized lung 

function (FEV1) was calculated by dividing the FEV1 best measure (field ID 20150) by standing 

height squared (field ID 50). Hand grip strength variables (field ID 46,47) were divided by weight 

(Field ID 21002) to normalize according to body mass. Frailty index was calculated using the 

algorithm previously developed for UK Biobank data by Williams et al. (2019).24 Components of 

the frailty index are shown in Table S4.  

Detailed information about the linkage procedure with national registries for mortality and cause 

of death information in the UKB is available online. Mortality data were accessed from the UKB 

data portal on May 23, 2023, with a censoring date of November 30, 2022 for all participants 

(12-16 years of follow-up). 

Data used to define prevalent and incident chronic diseases in the UKB are outlined in Table 

S5. In the UKB, incident cancer diagnoses were ascertained using ICD diagnosis codes and 

corresponding dates of diagnosis from linked cancer and mortality register data. Incident 

diagnoses for all other diseases were ascertained using ICD diagnosis codes and 

corresponding dates of diagnosis taken from linked hospital inpatient, primary care, and death 

register data. Primary care read codes were converted to corresponding ICD diagnosis codes 

using the lookup table provided by the UKB. Linked hospital inpatient, primary care, and cancer 

register data were accessed from the UKB data portal on May 23, 2023, with a censoring date 
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of October 31, 2022; July 31, 2021; or February 28, 2018 for participants recruited in England, 

Scotland, or Wales, respectively (8-16 years of follow-up). 

In the CKB, information about incident disease and cause-specific mortality was obtained by 

electronic linkage, via the unique national identification number, to established local mortality 

(cause-specific) and morbidity (for stroke, IHD, cancer and diabetes) registries and to the health 

insurance system that records any hospitalization episodes and procedures.21,25 All disease 

diagnoses were coded using the Tenth International Classification of Diseases (ICD-10), blinded 

to any baseline information and participants were followed up to death, loss-to-follow-up or the 1 

January 2019. ICD-10 codes used to define diseases studied in the CKB are shown in Table 

S6. 

 

Missing data imputation 

Missing values for all UKB data except for Olink expression data, age, and incident health 

outcomes were imputed using the R package missRanger,26 which combines random forest 

imputation with predictive mean matching. We imputed a single dataset using a maximum of 10 

iterations and 200 trees. All other random forest hyperparameters were left at their default. The 

imputation dataset included all baseline variables available in the UKB as predictors for 

imputation, excluding variables with any nested response patterns. Responses of “do not know” 

were set to NA and imputed. Responses of “prefer not to answer” were not imputed and set to 

NA in the final analysis dataset. CKB data had no missing values to impute. 
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Calculation of chronological age measures 

We calculated ourselves a chronological age at recruitment variable as a decimal in the UKB, 

since age at recruitment (field ID 21022) is only provided as a whole integer value. This was 

done by taking month of birth (field ID 52) and year of birth (field ID 34) and creating an 

approximate date of birth for each participant as the first day of their birth month and year. Age 

at recruitment as a decimal value was then calculated as the number of days between each 

participant’s recruitment date (field ID 53) and approximate birth date divided by 365.25. Age at 

the first imaging follow-up (2014+) and the repeat imaging follow-up (2019+) were then 

calculated by taking the number of days between the date of each participant’s follow-up visit 

and their initial recruitment date divided by 365.25 and adding this to age at recruitment as a 

decimal value. Recruitment age in the CKB is already provided as a decimal value. 

 

Calculation of ProtAge 

UKB and CKB data were both split into 70/30 train/test splits. Using the combined train data 

from both cohorts (n=32,999), we trained a model to predict age at recruitment using all 1,459 

proteins in a single LightGBM27 model. First, model hyperparameters were tuned via 5-fold 

cross-validation using the Optuna module in Python,28 with parameters tested across 300 trials 

and optimized to maximize the average R2 of the models across all folds. We then carried out 

Boruta feature selection via the shap-hypetune module. Boruta is an algorithm developed to 

select all relevant features in a prediction model by comparing the performance of real features 

to randomly permuted shadow features.29 When running Boruta, we used 200 trials and a 

threshold of 100% to compare shadow and real features (meaning that a real feature is selected 

if it performs better than all shadow features). Third, we re-tuned model hyperparameters for a 
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new model with the subset of selected proteins using the same procedure as before. Both tuned 

LightGBM models before and after feature selection were checked for overfitting and validated 

by performing 5-fold cross-validation in the combined train set and testing the performance of 

the model against the combined holdout test sets from both cohorts, as well as individually 

using the holdout test set from each cohort separately. Across all analysis steps, LightGBM 

models were run with 5,000 estimators, 20 early stopping rounds, and using R2 as a custom 

evaluation metric to identify the model that explained the maximum variation in age (according 

to R2).  

Once the final model was trained and validated, we calculated protein predicted age (ProtAge) 

for the entire combined sample of both cohorts (n=47,143) using 5-fold cross-validation. Within 

each fold, a LightGBM model was trained using the final hyperparameters and predicted age 

values were generated for the test set of that fold. We then combined the predicted age values 

from each of the folds to create a measure of protein predicted age (ProtAge) for the entire 

sample. ProtAge was then mapped to the participant IDs in each cohort and separated into 

each cohort dataset. Finally, we calculated proteomic aging acceleration (ProtAgeAccel) by 

taking the difference of ProtAge minus chronological age at recruitment separately in each 

cohort. 

 

Statistical analysis 

All statistical analyses were carried out using Python v.3.6 and R v.4.2.2. All associations 

between ProtAgeAccel and aging biomarkers and physical/cognitive decline measures in the 

UKB were tested using linear/logistic regression using the statsmodels module.30 All models 

were adjusted for age, sex, Townsend deprivation index, assessment center, self-reported 
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ethnicity (Black, white, Asian, Mixed, Other), IPAQ activity group (low, moderate, high), and 

smoking status (never, previous, current). P-values were not corrected for multiple comparisons. 

 All associations between ProtAgeAccel and incident outcomes (mortality, 26 diseases) were 

tested using Cox proportional hazards models using the lifelines module.31 Survival outcomes 

were defined using follow-up time to event and the binary incident event indicator. For all 

incident disease outcomes, prevalent cases were excluded from the dataset before models 

were run. For all incident outcome Cox modelling in the UKB, three successive models were 

tested with increasing numbers of covariates. Model 1 included adjustment for age at 

recruitment and sex. Model 2 included all model 1 covariates, plus Townsend deprivation index 

(Field ID 22189), assessment center (Field ID 54), physical activity (IPAQ activity group; Field 

ID 22032), and smoking status (Field ID 20116). Model 3 included all model 3 covariates plus 

BMI (Field ID 21001) and prevalent hypertension (definition in Table S5). P-values were not 

corrected for multiple comparisons. 

Functional enrichments (GO biological processes, GO molecular function, KEGG, Reactome) 

and protein-protein interaction (PPI) networks were downloaded from STRING (v.11.5) using 

the STRING API in Python. Since the Olink Explore panel consists of a subset of proteins 

selected to be involved in disease, it represents a possibly biased background and we did not 

use the subset of Olink Explore proteins as a custom background for enrichment analyses. We 

only considered PPIs from STRING at a high level of confidence (>0.7) from the co-expression 

data. 

SHAP interaction values from the trained LightGBM ProtAge model were retrieved using the 

shap module.32,33 SHAP-based PPI networks were generated by first taking the average of the 

absolute value of each protein-protein SHAP interaction score across all samples. We then 

used an interaction threshold of 0.009 and removed all interactions below this threshold, which 
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yielded a subset of variables similar in number to the node degree > 2 threshold used for the 

STRING PPI network. Both SHAP-based and STRING34-based PPI networks were visualized 

and plotted using the NetworkX module.35  

Cumulative incidence curves and survival tables for deciles of ProtAgeAccel were calculated 

using KaplanMeierFitter from the lifelines module. Since our data were right-censored, we 

plotted cumulative events against age at recruitment on the x-axis. All plots were generated 

using matplotlib36 and seaborn.37 
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