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Background. Cranial dural arteriovenous fistulas (dAVF's) are rare complex vascular 15 
malformations that have a bleeding risk with potential lethal consequences. Despite this, 16 
the vascular architectural features associated with the rupture risk are not always clearly 17 
defined.  18 
Methods. We retrospectively analyzed cranial arteriovenous fistulas in terms of their 19 
anatomical and angio-architectural features as evaluated on conventional subtraction 20 
angiography: Location of the fistula, fistula architecture, venous ectasia, reflux in cortical 21 
draining veins, presence of pial feeders, outflow stenosis, presence of a major sinus 22 
thrombosis, flow-associated arterial aneurysms as well as presenting symptoms. 23 
Patterns in the data were identified after multiple components analysis followed by 24 
automatic k-means clustering and their predictive power was confirmed using a neural 25 
network and a random forest classifier. 26 
Results. New relevant features predictive of hemorrhage (venous outflow stenosis and 27 
fistula architecture) were identified using distinct but surprisingly converging modeling 28 
paradigms. Both the neural network and the random forest classifier achieved a 29 
relatively high performance metric, with area under the receiver operating characteristic 30 
curve (ROC AUC)) of 0.875 [95% CI, 0.75-1.0]. The relevance of these findings was 31 
verified by performing a multiple correspondence analysis followed by k-means 32 
clustering in the angiographic feature vector space. There was good agreement 33 
between the ground truth (hemorrhage) and the cluster labels (adjusted Rand score 34 
0.273, purity index 0.82).  35 
Conclusion. Machine learning approaches confirmed the importance of previously 36 
described features (reflux in a cortical vein and venous ectasia) but also uncovered 37 
novel relevant characters (outflow stenosis and fistula architecture) for the hemorrhage 38 
risk of dAVF’s. 39 
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 40 
Introduction 41 
 42 
Cranial dural arteriovenous fistulas (dAVF's) are abnormal direct arteriovenous shunts 43 
within the dura with multifactorial pathogenesis, which are acquired and can develop 44 
spontaneously, after traumatic head injury or e.g. after thrombosis of the venous sinus. 45 
dAVFs are making up around 10% of all intracranial vascular malformations and have 46 
an incidence around 0,15-0,29 per 100,000 adults per year(1, 2). Patients harboring 47 
these malformations are typically middle-aged, but the lesions can, although less 48 
frequently, occur in children. The symptoms are presumed to depend on the presence 49 
or absence of venous hypertension and can vary from benign symptoms (e.g. tinnitus) 50 
up to severe hemorrhage in any of the three compartments (intracerebral, subdural 51 
and/or subarachnoidal) or non-hemorrhagic neurologic deficits (NHNDs) such as 52 
seizures(2). Regardless of presentation, the first line imaging tools are computed 53 
tomography and CT-angiography, less frequently magnetic resonance 54 
imaging/angiography/venography (MRI, MRA, MRV), whereas digital subtraction 55 
angiography (DSA) represents the gold standard for diagnosis and therapy(3).  56 
There are several classification and grading systems, aiming to stratify the risk and 57 
guide treatment decisions, of which the Cognard and the Borden classifications are 58 
commonly used(4, 5). Higher-grade fistulas, associated with venous hypertension and 59 
consequently ectatic cortical veins, are presumed to carry an increased hemorrhage 60 
risk, have poorer outcomes and thus are prone to a more aggressive treatment 61 
approach(6-8). 62 
We hypothesized that venous hypertension is the result of nonlinear interactions of 63 
features that have a direct angiographic correspondence (not necessarily in the form of 64 
dilated cortical veins, as evidenced by symptomatic fistulas that do not exhibit this 65 
character), that the hemorrhage risk of dAVF's may largely depend on these features, 66 
and that these dependencies, given their nonlinear nature, are not likely captured by 67 
traditional statistical methods. Our goal was to explore the use of machine learning in 68 
identifying potential relevant, hidden, angio-architectural features of dural arteriovenous 69 
fistulas helping neurosurgeons and interventional neuroradiologists in clinical decision-70 
making process. 71 
 72 
Methods 73 
 74 
Our retrospective cohort comprised 23 cranial dural arteriovenous fistulas that 75 
underwent digital subtraction angiography at the Department of Neurosurgery of the 76 
Cologne-Merheim Medical Center between January 2017 and December 2022. 77 
Additionally, all patients that presented with hemorrhage or non-hemorrhagic 78 
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neurological deficits received at least a CT scan or CT-angiography.  The recorded 79 
imaging parameters were location of the fistula, fistula architecture, venous ectasia, 80 
cortical venous drainage, presence of pial feeders, outflow stenosis, presence of a 81 
major sinus thrombosis and flow-associated arterial aneurysms. The clinical variables 82 
included age, sex and symptoms at presentation.  83 
The machine learning was implemented by means of custom-written routines in Python. 84 
We applied a dimensionality reduction algorithm (multiple correspondence analysis 85 
(MCA), prince python package (9)) to identify the direction of largest variance by 86 
performing a singular value decomposition of the chi-square distance matrix followed by 87 
automatic k-means clustering in the resulting low-dimensional space.  88 
Both the random forest classifier as well as the neural network (based on the multi-layer 89 
perceptron (MLP) classifier, supplemental figure 1 A) were implemented by means of 90 
the scikit-learn Python package(10). The shallow feedforward neural network had one 91 
output and one input layer as well one hidden layer comprising 12 neurons with rectified 92 
linear activation functions (ReLU) and standard backpropagation with gradient descent 93 
(Adam) with the goal to minimize the objective function (binary cross-entropy loss). 94 
 95 
Results 96 
 97 
The median age at the time of diagnosis was 59 years (range: 28-84). There were 70% 98 
males (16/23) and 30% female (7/23) patients. The angiographic features, anatomical 99 
location, Cognard class of the fistula as well as the presenting symptoms are 100 
summarized in Table 1 and illustrated in Figure 1. 101 
In order to extract hidden and relevant features for the hemorrhage risk from the 102 
conventional subtraction angiography, we trained (80% of the data) and tested (20% of 103 
the data) a shallow feed-forward neural network (ANN), where the input was a list of 104 
fistula characters and the output was the probability of being in one of two categories 105 
(hemorrhage vs non-hemorrhage). The model achieved a relatively high receiver 106 
operating characteristic area under the curve (ROC AUC) score of 0.875 [95% CI,  0.75-107 
1.0] and an accuracy of 0.8, indicating good performance in predicting the outcome of 108 
interest. Independently checking the model performance with 5-fold cross-validation 109 
resulted in a cross-validation accuracy of 0.82 ± 0.094 (supplemental figure 1 B and C). 110 
We next looked at the importance scores of the different input features, as represented 111 
by the sum of the weight values for individual input features across all the layers. We 112 
found the largest score for reflux in a cortical draining vein, venous outflow stenosis and 113 
presence of pial feeders.  114 
Next, we asked if the same results can be reproduced by applying a different 115 
supervised learning algorithm. To this end, we turned to a random forest classifier, 116 
applied to the same dataset. Again, the model achieved a relatively high receiver 117 
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operating characteristic area under the curve (ROC AUC) score of 0.875 [95% CI, 0.75-118 
1.0] indicating also good performance in predicting the outcome. Interestingly and 119 
importantly, the most significant three features in making accurate prediction within the 120 
model were venous outflow stenosis, venous ectasia and presence of pial feeders. 121 
Thus, the analysis of feature importance of two distinct models revealed a consistent 122 
pattern: presence of venous outflow stenosis and pial feeders, next to venous ectasia 123 
and reflux in a cortical draining vein emerged as pivotal contributors to the classification 124 
task. 125 
To verify these findings, we performed a dimensionality reduction by means of multiple 126 
correspondence analysis followed by k-means clustering in the dAVF's feature vector 127 
space. We found that the characters of the fistula that correlate best with the first two 128 
components (the eigenvectors with the largest eigenvalue, thus explaining most of the 129 
variance in the data) were the architecture of the fistula, venous outflow stenosis, 130 
venous ectasia and reflux in a cortical draining vein (supplemental figure 2 A). The 131 
automatic k-means clustering in this low-dimensional space was verified by checking 132 
the agreement between the ground truth (actual outcome) and the cluster labels 133 
(adjusted Rand score of 0.273 (range -1 to 1, values closer to 1 indicate better fit), purity 134 
index=0.82) (supplemental figure  2 B). 135 
 136 
Discussion 137 
 138 
Here we describe a novel approach to identify bleeding risk factors for cranial dural 139 
arteriovenous fistulas, by revealing patterns and their features in the data that best 140 
discriminate hemorrhagic/non-hemorrhagic lesions using MCA coupled with automatic 141 
k-means clustering and confirming the relevance of these hidden, important 142 
angiographic features that best predict hemorrhage using a shallow artificial neural 143 
network and a random forest classifier. This approach achieved 80% accuracy in 144 
correctly classifying those dAVF's that present with hemorrhage, and showed the 145 
importance of new, previously ignored features such as venous outflow stenosis and 146 
angio-architecture of the fistula. Additionally, the machine learning approach confirmed 147 
the relevance of previously deemed important characters such as pial feeder and 148 
venous ectasia(4, 11, 12). Intriguingly, this analysis suggest, for the first time, that the 149 
same character (venous outflow stenosis) that is associated with increased rupture risk 150 
in other, more frequent shunting vascular malformation such as the cerebral 151 
arteriovenous malformation (AVM)(13) presumably play the same role in dAVF’s. 152 
The presence of pial feeding arteries(14) and cortical venous drainage with or without 153 
abnormal venous dilatation(6) have been considered independent risk factors for 154 
predicting the natural history of dAVF’s. As such, some of these characters (reflux in a 155 
cortical vein, venous ectasia) are part of the widely used classifications of Borden and 156 
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Cognard that guide treatment decision(5, 6). Despite the caveats of applying machine 157 
learning to small datasets (but see Olson et al., 2018 for a sound argument against 158 
this)(15), our work confirms and extends the findings of prior studies and makes the 159 
argument that the concomitant presence of these four features on the conventional 160 
angiography may be sufficient to achieved greater discrimant power regarding the 161 
bleeding risk. The congruence between the classification performance of the shallow 162 
neural network and random forest classifier underscores the stability of our findings and 163 
emphasizes their robust discriminatory power across distinct model paradigms. To our 164 
knowledge, this is the first study in literature that applies machine learning in evaluating 165 
features of dAVF’s predictive for hemorrhage risk and is an approach that can be 166 
applied to other lesions and organs.  167 

 168 
Conclusions 169 
 170 
Using machine learning, we show the importance of two new angiographic features 171 
(venous outflow stenosis and fistula architecture) for the evaluation of dAVF’s. Their 172 
presence, independent or in addition to cortical venous drainage, venous ectasia and 173 
pial feeders, can predict with relative high accuracy the hemorrhagic risk of these 174 
lesions. This shows that simple machine learning algorithms can identify potential 175 
relevant, hidden, angio-architectural features of dural arteriovenous fistulas helping 176 
neurosurgeons and interventional neuroradiologists in the clinical decision-making 177 
process. Our approach can be applied to larger and more complex datasets as well to 178 
other vascular or non-vascular lesions. 179 
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 238 
 239 
 240 
 241 
Figure legends 242 
 243 
Figure 1. Angiographic characters of dural arteriovenous fistulas. (A) 3D reconstruction 244 
of a common carotid injection showing ectatic cortical vein (yellow arrowhead), 245 
segmental stenosis of the draining vein (white arrow) as well as a flow-associated 246 
aneurysm (red arrow). (B) Same patient as in A, CT scan showing cerebellar 247 
hemorrhage. (C) External carotid injection in another case showing a multiple feeder 248 
(black arrows) spread out type of fistula. (D) Left internal carotid injection showing a 249 
flow-associated aneurysm as well as dilated cortical vein (color-coding as in A). Note 250 
the prominent ophthalmic artery (white arrowhead). (E) 3D reconstruction of the 251 
previous angiography, viewed anterograde, demonstrating additionally a segmental 252 
stenosis of the draining vein (white arrow, color-coding as in A). (F) Same patient as in 253 
D and E, CT scan at presentation demonstrating a small left sided acute, non-traumatic 254 
subdural hematoma. 255 
 256 
Table 1. Summary of the anatomical and angiographic characters of the dAVF. 257 
(*)Venous ectasia was defined as a cortical dilated vein of more than 5mm diameter. 258 
(**)Outflow stenosis was considered where there was a 50% abrupt change in the 259 
diameter of the cortical draining vein. (***) Total bleeding events is less than the sum of 260 
compartment events (parenchyma, subdural and/or subarrachnoidal space) due to 261 
concomitant presence of blood in more than one compartment. 262 
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Table 1

Pattern Number (%)

Fistula location 
• transverse-sigmoid junction 
• ethmoid 
• tentorial 
• petrosal 
• convexity cortical vein 
• foramen magnum

6/23 (26%) 
1/23 (6%) 

7/23 (30%) 
2/23 (8%) 

5/23 (21%) 
2/23 (8%)

Fistula architecture 
• multi feeder spread-out 
• multi feeder converging 
• single feeder

14/23 (60%) 
8/23 (36%) 
1/23 (4%)

Reflux in a cortical vein 20/23 (86%)

Venous ectasia* 12/23 (52%)

Pial feeder 9/23 (39%)

Venous outflow stenosis** 15/23 (65%)

Venous sinus thrombosis 6/23 (26%)

Flow-associated aneurysm 3/23 (13%)

Presenting symptoms

Hemorrhage*** 
• parenchymal 
• subdural 
• subarrachnoidal

9/23 (39%) 
5/23 (22%) 
7/23 (30%) 
2/23/(8%)

Seizures 3/23 (13%)

Tinnitus 8/23 (34%)

Visual field defects 1/23 (4%)

Asymptomatic 2/23 (8%)

Cognard classification

• I 
• IIa 
• IIb 
• III 
• IV 
• V

1/23 (4%) 
1/23 (4%) 

5/23 (21.7%) 
4/23 (17%) 
11/23 (48%) 
1/23 (4%)
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