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28 Abstract

29 Since 2014, Yemen is affected by crisis conditions due to armed conflict. Evidence on the impact of this 

30 large-scale crisis on mortality is lacking. We analysed archive very high-resolution satellite imagery from 

31 a sample of Yemeni subdistricts to quantify changes in burial incidence attributable to the crisis.

32 We identified possible cemeteries through remote and ground sources in 24 sampled subdistricts. After 

33 initial triage and extensive steps to improve the interpretability of archive imagery spanning the period 

34 2011 to 2021, a pool of crowd workers, supervised by expert analysts and aided by an automated 

35 algorithm, annotated surface area and grave counts in sequential images from a set of analysis-eligible 

36 cemeteries. We complemented these longitudinal observations with data on different predictors including 

37 three crisis proxies (incidence of insecurity events, price of staple cereal, internal displacement), and 

38 fitted statistical models to compare predicted burials under observed and assumed counterfactual (no 

39 crisis) conditions.

40 We identified 561 potential cemeteries within 24 sampled subdistricts, but excluded most due to inability 

41 to geolocate them or see the cemetery and/or graves in available imagery, yielding an effective sample 

42 of 110 image observations across 35 cemeteries in 10 subdistricts. Burial rate generally decreased 

43 between 2014-2018 and rose sharply thereafter. Alternative regression models suggested that most 

44 cemeteries would have experienced lower burial rate under non-crisis conditions, with a crisis to non-

45 crisis ratio of about two overall. The incidence of insecurity events appeared positively associated with 

46 burial rate.

47 This unprecedented-scale geospatial analysis of cemeteries suggests an increase in burial rates 

48 attributable to crisis conditions in a non-representative, disproportionately urban sample of Yemen. The 

49 study identifies key challenges of such an analysis. We discuss possible methodological ways forward to 

50 further explore the feasibility and validity of this option for mortality estimation in settings with insufficient 

51 vital events registration and limited ground access.
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52 Introduction

53 Since late 2014, Yemen has been affected by armed conflict resulting in worsened food security, internal 

54 displacement and disruption of public services [1]. The country has also been separated into areas 

55 controlled by opposing authorities. The crisis in Yemen has been described as the world’s largest, but 

56 the extent to which it has affected population mortality across the country remains unclear, depriving 

57 response actors and other stakeholders of critical evidence for benchmarking the war’s impacts and the 

58 adequacy of response efforts [2]. While a credible estimate of people killed by war injuries (about 

59 110,000 as of end 2022 [3]) has been established based on media and civil society report monitoring, 

60 the death toll indirectly attributable to the conflict could be substantial, as suggested by the occurrence 

61 over the past few years of repeated phases of food insecurity [4, 5], reduced health service functionality 

62 [6, 7], forced displacement [8] and large-scale epidemics [9]. Against this backdrop, the COVID-19 

63 pandemic would plausibly have resulted in a further mortality increase [10–12].

64 In Yemen, as in many low- and middle-income countries [13, 14], vital events registration is not robust, 

65 necessitating collection of alternative mortality data. In 2019, a United Nations report [15] based on 

66 scenario modelling projected that 166,000 conflict deaths and 316,000 deaths indirectly attributable to 

67 the crisis would occur by 2022, based on a median scenario. In nine purposively selected communities 

68 within Aden and Ta’iz governorates, we combined lists generated by key informants with capture-

69 recapture statistics to estimate adult death rates, suggesting a pattern of considerably elevated mortality 

70 during the war period, compared to baseline [16]. However, this study was limited by underreporting of 

71 child deaths and the purposive nature of the sample. After the first phase of the pandemic, we also 

72 analysed sequential very high-resolution (VHR) satellite images of cemeteries in the city of Aden to 

73 estimate pandemic-attributable mortality, likely the first instance of this method’s use [17]. Here, we 

74 expand methods and scale of this geospatial data-driven approach to explore how the crisis has affected 

75 mortality patterns elsewhere in Yemen.

76

77 Methods

78 Study population and period

79 Our study period was January 2011 to December 2021 (11y). The current armed conflict escalated in 

80 June 2014 (start of the ‘crisis period’ in our analysis), while the first confirmed SARS-CoV-2 infection was 

81 reported on 10 April 2020, with limited testing data suggesting two distinct waves (May to September 

82 2020 and March to May 2021) [18]: we thus consider April 2020 and beyond as the ‘pandemic period’.

83 Yemen is divided into 22 governorates, 335 districts and 2149 subdistricts. The latter had a mean 

84 population of 13,000 based on United Nations projections available in early 2020. We originally intended 

85 to estimate mortality based on a representative sample of Yemeni person-time: we thus selected 24 

86 subdistricts through systematic random sampling based on probability proportional to population size 
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87 along the sampling frame of all sub-districts, sorted by (i) cumulative rate of war injury deaths as reported 

88 by ACLED [19] (https://acleddata.com/data-export-tool/) and (ii) population density (as a proxy of 

89 urbanisation). We sought to collect longitudinal data on incident burials within each cemetery in each 

90 sampled subdistrict. Assuming all decedents were buried in recognisable cemeteries (i.e. burial rate = 

91 death rate), this sample size should have provided 80% power to detect an increase in the crude (all-

92 age, all-cause) death rate of ≥ 10% from the UN-projected baseline for 2010-2015 (6 per 1000 per year), 

93 with 95% significance, design effect of 3.5 and 20% attrition. As the study progressed, however, it 

94 became clear that resource and imagery limitations precluded analysis of all cemeteries, constraining 

95 analysis to a smaller sample within which robust data could be generated (see below).

96

97 Data sources and collection

98 Lists and locations of potential cemeteries

99 Before undertaking cemetery identification in each of the sampled subdistricts, we searched the grey and 

100 peer-reviewed literature non-systematically and interacted with a network of Yemeni researchers and 

101 civil society members formed during a previous research project [16] to explore burial customs and how 

102 these may have changed during the war and pandemic. These information sources indicated that the 

103 vast majority of Yemenis are buried in recognised cemeteries.

104 We composed a longlist of potential cemeteries by (i) asking our network to liaise with contacts in each 

105 subdistrict; (ii) visually inspecting freely available VHR imagery and annotation layers within the 

106 OpenStreetMap (https://www.openstreetmap.org/), Wikimapia (https://wikimapia.org), Google Earth 

107 (https://earth.google.com/web/) and Google Maps (https://www.google.com/maps) applications, guided 

108 by pilot work in Aden [17] and Mogadishu, Somalia [20]; (iii) leveraging a professional network of Yemeni 

109 geographers, who were able to either personally geolocate cemeteries or supply information (e.g. village, 

110 nearby landmarks) to aid remote geolocation. UK- and Yemen-based geographers worked together to 

111 resolve missing coordinates of individual cemeteries, identify duplicates across the three above sources 

112 and exclude cemeteries that were not within the subdistrict boundaries or (rarely) whose surface area 

113 mostly fell outside the subdistrict.

114

115 Satellite imagery

116 At the time of this study, only one satellite imagery provider (Maxar) offered imagery with the resolution 

117 (< 50 cm) required for burial identification. We purchased from Maxar all commercially available, archive 

118 VHR images that covered successfully geolocated candidate cemeteries and were acquired during the 

119 analysis period with a spatial resolution between ~31cm to <50 cm per pixel. Images were supplied by 

120 SecureWatch (https://www.maxar.com/products/securewatch) as Ortho Natural Colour images that have 

121 been, pre-processed, pan-sharpened and corrected for illumination and geometric distortion.
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122

123 Predictor data

124 We used multivariate predictive models to estimate the evolution of burial rate in each cemetery, and 

125 generate counterfactual burial rate levels in the absence of a crisis (see Statistical Analysis). Some 

126 predictor variables for these models came from the geospatial analysis itself, and included image-level 

127 (whether infilling had occurred since the previous image; image quality score; see Geospatial Analysis) 

128 and cemetery-level (under northern or southern government control; urban versus rural setting) 

129 characteristics. Externally sourced predictors included (i) a geospatial dataset of Yemen’s road network 

130 [21], which we transformed into road density (Km per Km2 area); (ii) a crowd-sourced dataset of health 

131 facilities [22], which we combined with reconstructed population denominators [8] to estimate health 

132 facility density per 100,000 people; (iii) governorate-level estimates of under 5y mortality per 1000 live 

133 births as per the 2013 Demographic and Health Survey [23], as a proxy of baseline burial rate; (iv) 

134 georeferenced data on insecurity events and fatalities collected by the Armed Conflict Location and 

135 Event Data Project (ACLED) [19] since 2015 through intensive media monitoring and civil society reports 

136 [3]; (v) the proportion of internally displaced persons (IDPs) within the subdistrict, per month, estimated 

137 separately [8]; (vi) exposure to COVID-19, expressed as the proportion of the inter-image period within 

138 each cemetery that fell within the pandemic period; and (vii) the price of wheat, a key staple and thus 

139 proxy of food insecurity, as collected monthly in four urban markets (Aden, Al Hudaydah, Sana’a, 

140 Sa’ada) by the World Food Programme [24] (we paired each subdistrict with one of these markets based 

141 on proximity and expressed price per 2011 USD adjusted for inflation rates). For time-varying predictors 

142 (insecurity events, wheat price), we calculated the mean value during each inter-image period.

143

144 Geospatial analysis

145 Image inspection and initial shortlisting of cemeteries

146 Initial inspection was conducted for all cemeteries by no fewer than two experienced geospatial analysts.      

147 Potential cemeteries for which boundaries and/or graves were not visible were excluded. Remaining 

148 cemeteries were further shortlisted based on expected ease of demarcating graves and cemetery area 

149 from surrounding terrain given soil type (agricultural, rocky, sand, vegetation), vegetation cover and 

150 available imagery. Only cemeteries for which, according to the analysts, there was a realistic chance of 

151 obtaining data after image enhancement (see below) were taken forward to the next stage of analysis.

152

153 Enhancement and quality scoring of images for shortlisted cemeteries

154 Given available resources, we sought to include between two (below which burial rate was 

155 unobservable) and three images per cemetery, with no more than one image per analysis subperiod 

156 (pre-crisis, crisis and pandemic). To select the best images, we firstly enhanced each available image 
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157 using the scikit-image Python package, in three sequential steps: (i) stripping any alpha channels 

158 from the image, leaving only the UInt-8 RGB (red, green and blue) channels (if an image had only one 

159 channel, we converted it to a greyscale RGB); (ii) Contrast Limited Adaptive Histogram Equalization [25, 

160 26] on the image, with a clip limit of 3% and a kernel size of 1/8th of the image; (iii) merging this contrast-

161 adjusted image with the source image, with an alpha of 30% (i.e. 30% coming from the adjusted image, 

162 70% from the source); and (iv) performing unsharp masking [27] to sharpen the image without unduly 

163 exacerbating noise, with a radius of 10 pixels, amplification (amount) of 0.5 and treating each colour 

164 channel independently. The net result of these transformations is exemplified in S1 Appendix (Fig S1).

165 Next, we employed crowd sourcing to score from 0 (i.e. perfect visibility) to 3 (unusably poor) each 

166 enhanced image 𝑖 according to two dimensions of quality: (i) ‘area clarity’ or 𝑞𝑎,𝑖 (ability to discern the 

167 cemetery’s boundaries and any rows or blocks of graves) and (ii) ‘grave clarity’ or 𝑞𝑔,𝑖 (ability to identify 

168 individual graves): example imagery is shown in S1 Appendix (Fig S2, Fig S3). We relied on a crowd 

169 worker pool (primarily North American [28] and remunerated based on United States living wage, but 

170 with no geographical or educational attainment restriction other than English language comprehension) 

171 provided by Amazon’s Mechanical Turk platform, which has previously supported geospatial projects. 

172 Altogether, 1105 crowd workers contributed analysis, though we omitted instances of inadequate output. 

173 Images submitted to the crowd worker pool were accompanied by extensive help text and examples and 

174 seeded with hidden assessments to remove workers that might have been misunderstanding or gaming 

175 the task (further detail available on request). As mean 𝑞𝑎,𝑖 and 𝑞𝑔,𝑖 (computed from > 5000 individual 

176 scores of 932 images) were highly correlated (S1 Appendix, Fig S4), we combined both into a single 

177 quality score 𝑞𝑖 =  𝑞𝑎,𝑖
2 + 𝑞𝑏,𝑖

2. Notably, image date was not a correlate of quality (data not shown).

178

179 Final selection of images for analysis

180 For each cemetery and subperiod, we focussed on the two images with best (lowest) 𝑞𝑖 and excluded 

181 any whose quality was so poor that we could not identify and place point markers on graves, plus any 

182 sets of images for a given cemetery across which we could not consistently identify at least three static, 

183 ground-level features (e.g. a tree) to support tie-point orthorectification (see below). After applying these 

184 further criteria, cemeteries that had < 2 analysable images over the entire analysis period were 

185 additionally excluded. One of the cemeteries in Aden governorate had been analysed in depth as part of 

186 the previous study [17]: as geospatial methods were compatible, we included data from this cemetery.

187

188 Surface area estimation for included images

189 To achieve orthorectification of images from a given cemetery (i.e. comparable geometries despite 

190 varying satellite angles), we employed the same crowd worker pool to place at least four and up to six 

191 tie-points at consistently identifiable features (e.g. graves, buildings, trees) that appeared in each image: 
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192 we then used the scikit-image package to fit affine transformations to these tie-points; these 

193 transformations generally resulted in negligible (a few pixels) errors on cross-validation. Three tie-points 

194 would have been sufficient for the affine transformation used here, but extra tie-points allowed for a 

195 measure of error and to help identify where transformations were more likely to fail.

196 Within each cemetery, and starting with the highest-quality image, we then relied on a subset of highly 

197 performing crowd workers to annotate the vertices of the cemetery’s borders: the resulting polygon was 

198 used as a starting basis to annotate the previous and next images in the cemetery’s timeline, and so 

199 forth until a surface area polygon was drawn for all images (S1 Appendix, Fig S5, Fig S6). Lastly, we 

200 converted polygons into m2 by translating each to the orthorectified frame of the oldest image from each 

201 cemetery, using this image’s affine transformation to convert to EPSG:4326 coordinates, and then to the 

202 National Snow and Ice Data Center (NSIDC) EASE-Grid 2.0 North coordinate system (EPSG:6931, 

203 https://epsg.io/6931 [29]).

204 Some cemeteries were particularly sparse, with graves dotted across the entire area (S1 Appendix, Fig 

205 S7). In this instance, a polygon was placed around the exterior boundary of the site, but without 

206 computing surface area.

207

208 Grave enumeration for included images

209 We attempted to help crowd workers in this task by automatically identifying and annotating likely graves 

210 through an algorithm optimised through manual inspection. The algorithm combined edge detection and 

211 peak identification techniques and relied on hyperparameters that were only weakly tailored to each 

212 individual cemetery, so as to make it applicable across all sites. More information on the algorithm’s 

213 development is available from the authors. The algorithm was tuned to prefer false negatives to false 

214 positives, as analysts found it easier to add rather than remove grave markers; despite this, it 

215 occasionally resulted in moderate sensitivity and specificity, as exemplified in S1 Appendix, Fig S9. The 

216 algorithm was not used for sparse cemeteries (see above).

217 After automatic annotation, we divided images into small tiles projected to contain no more than ≈ 100 

218 graves in the densest of sites, assuming a minimum surface area per grave of 1.4m2. We then allocated 

219 tiles to crowd workers and asked them to revise and improve automated annotation by manually moving, 

220 adding or deleting algorithm-generated markers; workers also had the option to start from a blank slate 

221 by removing all automated markers, though most chose to retain and amend them. Here too, we used 

222 hidden assessments and extensive validation of crowd worker output by expert analysts to filter out 

223 unacceptable work and reduce the annotator pool to a trusted team. We used agglomerative clustering 

224 in scikit-learn to merge different annotators’ grave markers by assuming that markers up to within 7 

225 pixels (~3.5m) of each other could identify the same grave.

226 Lastly, so as to mitigate the problem of graves disappearing or becoming less visible over time (see 

227 below), we mapped graves forwards in time from the oldest to the most recent image, such that any 
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228 graves missed in more recent images would be identified from older ones. Because orthorectification 

229 does not yield perfectly overlapping images, we resolved the position of each grave over successive 

230 images by minimising the sum of pixel distances from every grave in an older image to every grave 

231 within the same 10-pixel radius in the more recent image (this was done in Python through the 

232 scipy.optimize.linear_sum_assignment function), manually checking that output was 

233 acceptable. The end result is exemplified in Fig 1.

234

235 [FIG 1 HERE]

236 Fig 1. Example of a cemetery at three different time points: graves (coloured in blue) from the earliest time 
237 point are carried over and supplemented by newer graves from the next time point (coloured in orange) and 
238 the latest time point (in green). Over time, walkways separating different cemetery blocks are filled in with 
239 graves, presumably due to space running out. Satellite image © 2021 Maxar Technologies.
240

241 Issues encountered during geospatial analysis

242 The above steps ran up against different recurring issues with the potential to introduce random error or 

243 bias into the analysis: these are listed in Table 1, along with data management decisions taken to 

244 address each.

245

246 Table 1. Issues encountered during geospatial analysis, and corresponding data management decisions.
Issue Potential effect Decision

1. Higher quality of recent images 
reveals previously undetected 
graves. For some cemeteries 
(particularly urban), increased image 
fidelity over time allowed identification 
of graves where previously not enough 
information had been available.

Overestimation of burial rate 
due to an artefactual increase in 
grave counts over time in 
cemetery sections already 
containing graves, an increase 
partly or fully attributable to 
improved signal, rather than 
infilling†.

Ignore grave count in all but the 
highest-quality image for the cemetery. 
Impute these missing grave counts from 
surface area, where possible (see 
Statistical Analysis).

2. Serious degradation of image 
quality over time. This made it
hard to measure surface area changes, 
detect new graves or even perform 
orthorectification of older images.

Underestimation of burial rate, 
or at least potential for high 
inaccuracy.

Omit observations from these images 
from analysis.

3. Vegetation growth covers more 
recent images, partly impeding 
identification of new graves or surface 
area expansion.

Underestimation of burial rate 
due to some sections of the 
cemetery becoming invisible.

Case-by-case inspection of images in 
question: treat observations from these 
images as missing if it is clear that 
infilling† or area expansion are 
occurring in nonvisible sections of the 
cemetery.

4. Sections of cemeteries with very 
different grave sizes, possibly 
constituting separate areas for adults 
and children / infants. Smaller graves 
may be too small to annotate.

Minor data loss. Grave counts 
could not be done for one 
cemetery. Other instances of this 
issue did not impede grave 
annotation.

Omit all observations from this single 
cemetery.

5. Poor tie-point correction, leading 
to inaccuracy in orthorectification (i.e. 
successive images aligning 
imperfectly) due to bad choice of tie-
points or underlying topography.

Negligible under- or 
overestimation of burial rate. This 
issue was largely mitigated 
through re-analysis by expert 
analysts.

Ignore issue.

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 31, 2023. ; https://doi.org/10.1101/2023.08.29.23294777doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.29.23294777
http://creativecommons.org/licenses/by/4.0/


Mortality in Yemen: geospatial and statistical analysis of cemeteries Page 9 of 20

Issue Potential effect Decision
6. No change in surface area or 
grave counts is seen over time, 
suggesting the cemetery may have 
been closed to new burials during the 
entire analysis period.

Uninformative observations. 
Data cannot be used to estimate 
the burial rate.

Omit cemetery from analysis (i.e. retain 
only cemeteries that were ever active 
during the analysis period).

247 † We use the term ‘infilling’ to denote the frequently encountered practice of digging new graves within cemetery sections 
248 Potential cemeteries for which boundaries that are already in use, e.g. by using walkways in between graves or any other 
249 empty space.
250

251 Statistical analysis

252 Datasets and R scripts used for statistical analysis are available on 

253 https://github.com/francescochecchi/yem_burials_satellite_imagery . Our original study design was to 

254 infer countrywide mortality directly based on the sample of subdistricts. However, across subdistricts we 

255 were able to generate data for only a minority of cemeteries (see Results), restricting us to an 

256 exploration of burial patterns within this probably unrepresentative sample of remaining cemeteries.

257 First, we imputed missing grave count values (Table 1) by training a predictive generalised linear mixed 

258 model (GLMM) on longitudinal cemetery observations with complete surface area and grave count (Sq 

259 Appendix, Fig S12). The model estimated new graves since the previous image as a function of the 

260 natural log of new surface area with starting grave count as an offset, cemetery as a random effect and a 

261 negative binomial distributional assumption. We validated the model for prediction using leave-one-out 

262 cross-validation (S1 Appendix, Fig S13). For more detail, see Koum Besson et al. [17].

263 Next, we sought to model the number of new graves between each image observation, so as to explore 

264 either the association of burial with factors considered proxies of crisis exposure (incidence of insecurity 

265 events; price of wheat; proportion of IDPs in the population), adjusted for possible confounders; or the 

266 ratio of predicted burials under observed conditions versus under assumed counterfactual values of the 

267 crisis-proxy predictors. We assumed that counterfactual (i.e. no crisis) conditions would have consisted 

268 of zero insecurity events, zero displacement and the district-specific mean wheat price before the crisis 

269 period (March 2009, start of the price time series, to May 2014). We divided predictions under observed 

270 and counterfactual conditions to compute a burial rate ratio for each cemetery, as well as a crude overall 

271 rate ratio by summing predictions across all cemeteries.

272 We initially fit generalised linear or additive mixed models (with cemetery as random effect) to the counts 

273 of incident graves: both, however, featured extreme coefficient instability due to multi-collinearity, even 

274 after centring and standardising all continuous predictors. This restricted us to approaches that do cope 

275 with multicollinear data, but for which existing, well-documented statistical methods and packages have 

276 limited applicability (some do not account for longitudinal/grouped observations; others do not model 

277 count data). Specifically, we fitted the following alternatives: (i) a random forest (ranger package [30]) 

278 regression of the logged continuous burial rate (graves per day) with 1000 trees, minimum node size of 2 

279 and weights for each observation corresponding to the proportion of all new graves in the sample 

280 accounted for by the cemetery to which the observation belonged; (ii) an elastic net generalised linear 
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281 Poisson model (glmnet package [31]) of the counts of new graves, offset by the duration of each inter-

282 observation period and weighted as above; this model, a compromise between ridge and LASSO 

283 regression, enables selection of a set of predictors even when multicollinearity is high, though it does not 

284 produce easily interpretable coefficients; and (iii) a Bayesian kernel regression machine (BKMR) model 

285 (bkmr [32] and bkmrhat packages) of the logged continuous burial rate, which treats exposures as an 

286 inherently correlated mixture of factors with a potentially hierarchical structure, while selecting out single 

287 exposures that do not contribute significantly to the outcome [33]. BKMR allows for grouped 

288 observations, adjustment variables and non-linear exposure-outcome relationships.

289

290 Ethics statement

291 The study was approved by the Ethics Committee of the London School of Hygiene and Tropical 

292 Medicine (Reference: 22080). No data on live human participants were collected, and as such no 

293 consent was sought. All data has been previously collected for non-research purposes and the resolution 

294 of satellite imagery did not enable identification of people or other unique identifiers.

295

296 Results

297 Composition of the sample

298 Target sample

299 Altogether, the 24 sampled subdistricts contained an estimated 1,956,000 people (about 6% of Yemen’s 

300 total population of 30.9M as of September 2021; Table 2, Fig 3).

301

302 Table 2. Characteristics of sampled subdistricts.

Governorate District Subdistrict Population 
(Jun 2014)

Population 
(Sep 2021)†

Number of IDPs 
(Sep 2021)† Surface area (m2)

Al Mansurah Al Mansurah 157,800 178,700 1,200 35,774,215Aden Al Mu'alla Al Mu'alla 41,400 45,800 1,100 4,123,196
Al Bayda Mukayras Mukayras 54,000 61,400 1,500 771,123,936

Al Khukhah Al Omaysi 17,400 23,400 1,800 297,708,264
Al Marawi'ah Al Marawi'ah 66,900 93,700 5,500 151,186,701Al Hodeidah
Zabid Mahal Ash Shaykh 2,700 3,500 200 5,809,389

Al Mahwit Ar Rujum Bani Al Badi 12,200 14,300 100 103,723,219
Amran Thula Al Khamis 14,000 10,100 200 13,698,328
Dhamar Al Manar Bani Salamah 8,000 10,600 200 30,178,410
Hadramawt Al Qatn Al Qatn 70,500 85,800 400 1,279,715,294
Hajjah Ash shaghadirah Al Hawasilah 3,100 3,000 100 5,475,826

Al Makhadir Ash Sharaf 12,700 13,800 100 21,185,480
Ba'dan Al Manar 17,800 20,400 300 31,731,758
Hazm Al Odayn Al Ahkum 13,600 17,300 200 84,964,277Ibb

Ibb Maytam 33,400 35,900 200 30,268,097
Lahj Al Had Al Had 75,300 91,700 1,600 309,245,868
Raymah As Salafiyyah Al Aslaf 8,700 10,800 500 40,213,839
Sa'dah Sa'dah Al Abdin Gharaz 26,200 35,400 1,500 20,226,793
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Sana'a Nihm Eyal Ghafir 15,400 15,000 200 579,369,715
As Sab'in As Sab'in 449,700 510,200 18,900 51,207,346
As Safiyah As Safiyah 155,500 180,900 7,500 7,599,893Sana'a City
Ma'in Ma'in 370,300 425,200 27,300 28,467,744
Al Misrakh Al Aqrud 52,700 50,400 2,000 40,955,810Ta'iz As Silw Sa'lat Quradah 14,900 18,800 800 7,881,161

303 † Latest time point for which reconstructed population and number of internally displaced persons (IDPs) were available [8].
304

305 Sample attrition

306 The process of identifying possible cemeteries could not be completed in four subdistricts (Table 3). Out 

307 of 800 cemeteries initially listed, 239 were excluded for reasons not entailing potential bias (Fig 2). A 

308 further 467 were excluded at initial inspection as the cemetery was simply not locatable or visible, or 

309 appeared hard or impossible to analyse given available image quality even if some graves were visible. 

310 Notably, 205 cemeteries reviewed at this stage did have some visible graves, representing a minimum 

311 plausible denominator for the true number of cemeteries within the subdistricts. There were further data 

312 losses during geospatial analysis, largely because several cemeteries had < 2 images with robust data. 

313 Only 35 cemeteries in10/24 subdistricts were ultimately included in statistical analysis, namely 17.1% of 

314 those with any visible graves (Fig 2, Table 3, Fig 3). Further detail is provided in S1 Appendix, Table S1.

315

316 Table 3. Composition of the final sample of cemeteries, by subdistrict.
Cemetery identification Triage Final inclusion

Subdistrict Search 
completed

Number of 
cemeteries 

listed

Number 
eligible so 
far (N1)

Number with 
any visible 
graves (N2)

Number 
carried into 

imagery 
analysis

Number 
included in 
statistical 

analysis (n)

Percent included 
out of all 

shortlisted in 
initial triage 

(n/N1)

Percent included 
out of all 

shortlisted with 
visible graves 

(n/N2)
Al Abdin Gharaz yes 16 14 11 5 3 21.4% 27.3%
Al Ahkum yes 18 13 0 0 0 0.0% n/a
Al Aqrud yes 66 58 32 16 1 1.7% 3.1%
Al Aslaf no† 54 38 7 0 0 0.0% 0.0%
Al Had yes 98 87 20 0 0 0.0% 0.0%
Al Hawasilah no‡ 1 1 0 0 0 0.0% n/a
Al Khamis yes 9 9 7 2 0 0.0% 0.0%
Al Manar yes 41 35 28 13 6 17.1% 21.4%
Al Mansurah yes 11 6 4 4 2 33.3% 50.0%
Al Marawi'ah yes 57 10 0 2 0 0.0% n/a
Al Mu'alla yes 11 3 2 2 2 66.7% 100.0%
Al Omaysi yes 45 37 2 2 1 2.7% 50.0%
Al Qatn yes 52 31 23 15 6 19.4% 26.1%
As Sab'in yes 42 23 18 17 9 39.1% 50.0%
As Safiyah yes 8 1 0 1 0 0.0% n/a
Ash Sharaf yes 63 51 7 3 0 0.0% 0.0%
Bani Al Badi yes 10 5 0 0 0 0.0% n/a
Bani Salamah no‡ 0 0 0 0 0 n/a n/a
Eyal Ghafir no‡ 1 0 0 0 0 n/a n/a
Mahal Ash Shaykh yes 36 10 2 0 0 0.0% 0.0%
Ma'in yes 26 9 5 5 3 33.3% 60.0%
Maytam yes 76 64 26 7 2 3.1% 7.7%
Mukayras yes 24 22 10 0 0 0.0% 0.0%
Sa'lat Quradah yes 35 34 1 0 0 0.0% 0.0%
TOTALS 20/24 800 561 205 94 35 6.2% 17.1%

317 †Challenges with thelocal search process. ‡ Subdistrict hard to reach due to security reasons.

318

319
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320

321 [FIG 2 HERE]

322 Fig 2. Flowchart of steps leading to final cemetery sample, with reasons for exclusion.
323

324

325 [FIG 3 HERE]

326 Fig 3. Map of Yemen governorates, with location of sampled subdistricts (orange-coloured polygons) and 
327 number of cemeteries included in analysis within each subdistrict (blue circles).
328

329 Characteristics of included cemeteries

330 Out of the 436 possible cemeteries that passed initial triage and could be geolocated, 18/35 (51.4%) of 

331 cemeteries included were located in an urban setting, compared to 23/378 (5.7%) of those excluded 

332 (Chi-square p < 0.001). Of cemeteries included, 27/35 (77.1%) were on sandy terrain, 4/35 (11.4%) were 

333 surrounded by vegetation and the remainder (4/35, 11.4%) on other terrain types; these proportions 

334 were 240/378 (59.9%), 115/378 (28.7%) and 46/378 (11.4%) among excluded cemeteries, respectively 

335 (Chi-square p = 0.059).

336 Of the 35 included cemeteries, 9 had two, 15 three, 10 four and one (previously analysed in the pilot 

337 Aden study) had seven analysable images, for a total of 110 images (mean = 3.1 per cemetery). Image 

338 availability was highest from mid-2018 onwards (Fig 4). The median starting number of graves was 317 

339 (IQR 36 to 1110). Of 28 cemeteries with measurable surface area (i.e. excluding seven with a sparse 

340 layout: see Methods), the median starting area value was 3593m2 (interquartile range, IQR 1072m2 to 

341 10,312m2).

342

343

344 [FIG 4 HERE]

345 Fig 4. Dates on which analysable images (n = 110) were collected, by cemetery (N = 35).
346

347 Burial rate patterns

348 Across the 35 cemeteries and 75 inter-image periods, the mean burial rate per day ranged from 0.00 to 

349 2.57, with a median of 0.06 (IQR 0.02 to 0.39). When considering inter-image periods after the first in 

350 each cemetery, the mean burial rate tended to decrease during the years 2013 to 2018 and increase 

351 thereafter (note that the last periods overlap fully or partially with the pandemic; Fig 5). Burial rate by 

352 cemetery is shown in S1 Appendix, Fig S14.

353
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354

355 [FIG 5 HERE]

356 Fig 5. Relative change in burial rate from the first inter-image period in each cemetery time series. Each step 
357 function (green line) is one cemetery (all cemeteries start at a baseline of 1, coloured orange).
358

359 Of the three statistical models applied to the data, random forest yielded the best predictive accuracy 

360 despite not accounting for the longitudinal data structure (Fig 6), while the BKMR model was imprecise 

361 and featured considerable downward bias in the largest cemeteries (S1 Appendix, Fig S15). The random 

362 forest and elastic net model suggested that, under observed conditions, overall burials across our 

363 sample were about twice than they would have been if the three crisis proxies (insecurity, wheat price, 

364 displacement) had taken no-crisis counterfactual values, with most cemeteries experiencing elevated 

365 burials. However, the individual-cemetery predicted burial ratios were inconsistent between the two 

366 models (Fig 6). No confidence intervals were computed for these ratios, as no straightforward contrast or 

367 bootstrap method was found to divide random forest predicted distributions given the unknown 

368 correlation between predictions under observed and counterfactual conditions; moreover, the elastic net 

369 regression does not generate meaningful coefficient standard errors. Predictions by cemetery are shown 

370 in S1 Appendix (Fig S16, Fig S17, Fig S18, Fig S19).

371 [FIG 6 HERE]

372 Fig 6. Results of the random forest (panel A) and elastic net (panel B) regression models. The leftmost graphs 
373 show model predictions versus observations (log burial rate for random forest, log incident burials for elastic 
374 net). The rightmost graphs show the ratio of cumulative burials predicted under observed versus 
375 counterfactual (no crisis) conditions for each cemetery and overall, with each square size proportional to the 
376 cemetery’s relative contribution to all burials within the sample: note the very different y-axis scales.
377

378 After fitting a BKMR model, the exposure-outcome relationship for each component of the overall 

379 exposure mixture can be visualised by holding the other components constant, as shown in Fig 7. This 

380 analysis suggests that the log burial rate increases linearly as a function of increasing insecurity events, 

381 with (counterintuitively) the opposite pattern for wheat price and no clear association for IDP proportion. 

382 The posterior probabilities of inclusion in the exposure mixture were 1.00, 0.59 and 0.41.

383

384 [FIG 7 HERE]

385 Fig 7. Relationship between each crisis exposure variable in the assumed mixture and the outcome (log burial 
386 rate), when holding the other exposures at their median values, and all other model covariates at their 
387 observed values, as estimated by Bayesian kernel mixture regression (BKMR). Shaded areas indicate 95% 
388 confidence intervals.
389
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390 Discussion

391 Main findings

392 To our knowledge this is the largest-scale and one of the few published analyses of cemetery burial 

393 patterns as detectable from satellite imagery. While this data source may be of minimal utility in settings 

394 with accurate vital events registration, elsewhere, and especially in hard-to-access locations, it is 

395 potentially valuable to generate robust estimates of mortality and excess mortality due to crises or other 

396 public health threats, such as the COVID-19 pandemic, and thereby illuminate the true toll of these 

397 events in terms of its sheerest metric, namely human survival. Combinations of satellite imagery, ground 

398 observations and drone photography have been used recently to quantify old graves in the United States 

399 [34] and document potential war crimes in Syria [35] and Ukraine [36].

400 Contrary to a pilot study in Aden [17], but consistent with subsequent experience in Mogadishu, Somalia 

401 [20], this study presented numerous challenges with identification of cemeteries, quality image 

402 availability and geospatial analysis, which, taken together, impeded our original objective of countrywide, 

403 representative estimation. However, results suggest some broad patterns in terms of mortality during the 

404 crisis and pandemic periods in Yemen, and lay a foundation for further methods development. In our 

405 limited sample of 35 cemeteries, burial rate mostly decreased from baseline during the first years of the 

406 crisis, but increased sharply from 2019 onwards. Alternative models suggested a general pattern of 

407 increased burials compared to counterfactual scenarios in which key proxy variables for crisis conditions 

408 were held at the assumed no-crisis baseline. The incidence of insecurity events seemed to be 

409 associated with increasing burial rate, but the opposite was seen for the price of wheat. 

410

411 Limitations

412 Despite its nationally representative design, the study achieved a much-reduced sample, with evidence 

413 of selection bias towards urban locations. Rural locations with relatively small and not well-visible 

414 cemeteries, underrepresented in our sample, would plausibly have experienced higher mortality and thus 

415 burial. Therefore, inference about burial patterns across Yemen is severely limited. In addition, statistical 

416 results are potentially subject to random or systematic error due to inaccuracy in the model predictors 

417 used and in geospatial techniques to count graves and measure cemetery surface area. As findings do 

418 not feature confidence intervals, sampling variability and error in the imputation model for missing grave 

419 counts are not visualisable, impeding statistical significance assessment. The predictors and 

420 counterfactual assumptions used in the statistical model are limited and could have included additional 

421 variables that may be proxies of crisis conditions, such as climate.

422 While we attempted to reduce geospatial analysis error by omitting low-quality and otherwise 

423 problematic images from statistical analysis, some error is likely to have affected the final dataset. We 

424 assumed a planar terrain despite Yemen featuring many mountainous areas, which could have produced 
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425 underestimation of surface area and problems with image orthorectification and alignment. Despite 

426 intensive expert supervision, the crowd worker approach carries a risk that serious analyst error may go 

427 unobserved: had resources been greater, this approach should have been validated more rigorously. 

428 Generally, this unprecedented study highlights key challenges (Table 1) of analysing cemetery satellite 

429 images and identifying / counting graves across a variety of terrains and burial typologies given current 

430 imagery resolution. It is also possible that in locations with very high levels of violence, mass graves or 

431 less formal burials would have remained undetected by our analysis.

432

433 Conclusions and ways forward

434 This analysis provides limited evidence on the possible excess in burials and thus population mortality 

435 attributable to crisis conditions in Yemen since 2014. It also documents a number of challenges that 

436 other analysts may encounter when attempting a similar analysis. In addition to some of the problems we 

437 describe above, the ethics of remote satellite imagery analysis, and particularly how to involve local 

438 actors in analyses without endangering their security, deserves careful consideration.

439 Based on experience to date, we believe that long-term monitoring of well-selected sites, particularly in 

440 urban settings where cemeteries are likely to be more visible and imagery cover greater, is a reasonable 

441 option for mortality estimation in settings where other methods are impracticable and the population 

442 universally uses cemeteries. Whether nationally or regionally representative estimates of burial trends 

443 are feasible using satellite imagery remains unclear. Acquisition of customised imagery is a service 

444 provided by satellite imagery companies and, while much more expensive than archive imagery, could 

445 greatly improve data quality. Furthermore, our experience suggests several avenues for methodological 

446 improvement. Estimating the proportion of graves likely to be missed based on image characteristics and 

447 quality and correcting grave counts accordingly, rather than omitting the image from analysis altogether, 

448 could greatly increase data quantity. Automated image quality metrics [37] could also be considered. The 

449 assumption of planar terrain could be relaxed by integrating elevation data (e.g. the Advanced 

450 Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model [38]) in 

451 orthorectification or, more labour-intensively, placing a far greater number of tie-points in each 

452 consecutive image. The value of automated annotation of graves should be reviewed: on the one hand, 

453 asking human annotators to identify graves from scratch may be less confusing and more accurate; on 

454 the other hand, further validation of machine learning algorithms could greatly streamline analysis and 

455 reduce costs considerably, as suggested by a pilot analysis of cemeteries in North and South Korea [39]. 

456 Another cost-saving measure could be to invite citizen volunteers to perform annotation work. As regards 

457 study design, our experience suggests that purposeful selection of a few ‘sentinel sites’, with frequent 

458 observations per site, would be preferable to this study’s attempt at representative sample. Such sentinel 

459 time series could be combined with predictors, as in this analysis, to train and validate a model that 

460 predicts burial patterns indirectly, even where no imagery data are available. Satellite imagery analysis 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 31, 2023. ; https://doi.org/10.1101/2023.08.29.23294777doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.29.23294777
http://creativecommons.org/licenses/by/4.0/


Mortality in Yemen: geospatial and statistical analysis of cemeteries Page 16 of 20

461 should not be a substitute for strengthening vital events registration and undertaking ground mortality 

462 estimation where possible, but does warrant further exploration and testing in a variety of settings.

463
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