Immune and behavioral correlates of protection against symptomatic postvaccination SARS-CoV-2 infection

Emilie Goguet^{1,2}, Cara H. Olsen³, William A. Meyer III⁴, Sara Ansari⁴, John H. Powers III⁵, Tonia L. Conner¹, Si'Ana A. Coggins^{1,2}, Wei Wang⁶, Richard Wang⁶, Luca Illinik^{2,7}, Margaret Sanchez Edwards^{2,7}, Belinda M. Jackson-Thompson^{1,2}, Monique Hollis-Perry⁸, Gregory Wang^{8,9}, Yolanda Alcorta^{8,9}, Mimi A. Wong^{8,9}, David Saunders¹⁰, Roshila Mohammed^{2,7}, Bolatito Balogun^{2,7}, Priscilla Kobi^{2,7}, Lakeesha Kosh^{2,7}, Kimberly Bishop-Lilly¹¹, Regina Z. Cer¹¹, Catherine E. Arnold^{11,12}, Logan J. Voegtly^{11,13}, Maren Fitzpatrick^{11,13}, Andrea E. Luquette^{11,13}, Francisco Malagon^{11,13}, Orlando Ortega^{2,7}, Edward Parmelee^{2,7}, Julian Davies^{2,7}, Alyssa R. Lindrose^{1,2}, Hannah Haines-Hull^{1,2}, Matthew S. Moser^{1,2}, Emily C. Samuels^{1,2}, Marana S. Tso^{1, 2}, Elizabeth Graydon^{1,2}, Allison M.W. Malloy¹⁴, David R. Tribble⁷, Timothy H. Burgess⁷, Wesley Campbell¹⁵, Sara Robinson¹⁵, Christopher C. Broder¹, Robert J. O'Connell⁷, Carol D. Weiss⁶, Simon Pollett^{2,7}, Eric D. Laing¹, Edward Mitre¹

¹Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA

² The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA ³ Department of Preventive Medicine & Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA

⁴ Quest Diagnostics, Secaucus, NJ, USA

⁵ Clinical Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA

⁶ Division of Viral Products, Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA

⁷ Infectious Diseases Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA

⁸ Clinical Trials Center, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, MD, USA
⁹ General Dynamics Information Technology, Falls Church, VA, USA

¹⁰ Translational Medicine Unit, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA

¹¹ Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, MD, USA

¹² Defense Threat Reduction Agency, Fort Belvoir, VA, USA

¹³ Leidos, Reston, VA, USA

¹⁴ Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA

¹⁵ Division of Infectious Diseases, Walter Reed National Military Medical Center, Bethesda, MD, USA.

Corresponding authors:

Emilie Goguet, Uniformed Services University of the Health Sciences, Bethesda, MD 20814; emilie.goguet.ctr@usuhs.edu

Edward Mitre, Uniformed Services University of the Health Sciences, Bethesda, MD 20814; edward.mitre@usuhs.edu

Supplementary figures and tables

Supplementary Figure 1. Strobe chart of the study cohort

N represents the number of participants. BMI, Body Mass Index; PASS, Prospective Assessment of SARS-CoV-2 Seroconversion.

Supplementary Figure 2. ROC curves – Probability of post-vaccine SARS-CoV-2 infection as a function of immune markers

a) Serum anti-S (WT) IgG measured by research assay. b) Serum anti-S (BA.1) IgG measured by research assay. c) Serum anti-RBD (WT) total Ig measured by Roche Elecsys[®] Anti-SARS-CoV-2 S assay. d) Serum anti-S (WT) IgA measured by research assay. e) Pseudovirus neutralization antibody titers against D614G. f) Pseudovirus neutralization antibody titers against BA.1. h) Pseudovirus neutralization antibody titers against BA.1.1.

Supplementary Figure 3. Correlation plots of anti-S (WT) IgG serum levels and domain symptom scores in the PVI group

a) Correlation between anti-S (WT) IgG serum levels (BAU/mI) and nasal domain symptom scores (Spearman ρ = -0.4654; p = 0.0083). b) Correlation between anti-S (WT) IgG serum levels (BAU/mI) and eyes domain symptom scores (Spearman ρ = -0.4145; p = 0.0204). c) Correlation between anti-S (WT) IgG serum levels (BAU/mI) and body/systemic domain symptom scores (Spearman ρ = -0.4902; p = 0.0051). d) No correlation between anti-S (WT) IgG serum levels (BAU/mI) and throat domain symptom scores (Spearman ρ = -0.1471; p = 0.4299). e) No correlation between anti-S (WT) IgG serum levels (BAU/mI) and chest domain symptom scores (Spearman ρ = 0.01075; p = 0.9542). f) No correlation between anti-S (WT) IgG serum levels (BAU/mI) and gastrointestinal (GI) domain symptom scores (Spearman ρ = -0.3224; p = 0.0769). g) No correlation between anti-S (WT) IgG serum levels (BAU/mI) and smell/taste domain symptom scores (Spearman ρ = -0.04742; p = 0.8). Dots indicate results from individual participants, n=32. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.

Supplementary Figure 4. Saliva anti-S (WT) secretory IgA levels

Saliva samples were obtained during the fall 2021 research clinic visit, at a mean of 85 (6 - 318) days after last immunization for the PVI group (n=32) and 79 (6 - 324) days after last immunization for the

uninfected group (n=143). A) Comparison of anti-S (WT) secretory IgA (sIgA) saliva levels between the uninfected group (n=143) and the PVI group (n=32). P values determined using the Mann-Whitney U test (p = 0.5947). Dots indicate results from individual participants and bars indicate geometric mean with 95% confidence intervals (CI). * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.

Supplementary Figure 5. Correlation plots of serum binding antibody levels against WT and BA.1 Spike and pseudovirus neutralization antibody titers against WT and BA.1

a) Correlation between anti-S (WT) IgG serum levels (BAU/mI) and pseudovirus neutralization antibody titer (ID₅₀) against D614G (Spearman ρ = 0.7801; p < 0.0001). b) Correlation between anti-S (WT) IgG serum levels (BAU/mI) and pseudovirus neutralization antibody titer (ID₅₀) against Omicron subvariant BA.1 (Spearman ρ = 0.7889; p < 0.0001). c) Correlation between anti-S (BA.1) IgG serum levels (AU/mI) and pseudovirus neutralization antibody titer (ID₅₀) against Omicron subvariant D614G (Spearman ρ = 0.7889; p < 0.0001). c) Correlation between anti-S (BA.1) IgG serum levels (AU/mI) and pseudovirus neutralization antibody titer (ID₅₀) against D614G (Spearman ρ = 0.7963; p < 0.0001). d) Correlation between anti-S (BA.1) IgG serum levels (AU/mI) and pseudovirus neutralization antibody titer (ID₅₀) against Omicron subvariant BA.1 (Spearman ρ = 0.8145; p < 0.0001). Dots indicate results from individual participants.

Supplementary Figure 6. Comparison of binding antibody serum levels, binding antibody saliva levels, and pseudovirus neutralization antibody titers between unboosted and boosted participants

a) From left to right: comparison between unboosted and boosted participants of anti-S (WT) IgG serum levels (BAU/mI) measured with the research assay (p < 0.0001), anti-S (WT) total Ig serum levels (BAU/mI) measured with the Roche Elecsys[®] Anti-SARS-CoV-2 S assay (p < 0.0001), anti-S (WT) IgA serum levels (AU/mI) measured with the research assay (p < 0.0001), and anti-S (BA.1) IgG serum levels (AU/mI) measured with the research assay (p < 0.0001). b) From left to right: comparison between unboosted and boosted participants of anti-S (WT) IgG saliva levels (AU/mI; p < 0.0001), anti-S (WT) IgA saliva levels (AU/mI; p = 0.0079), and anti-S (WT) slgA saliva levels (AU/mI; p = 0.7937). c) From left to right, top to bottom: comparison between unboosted and boosted participants of pseudovirus neutralization antibody titers (ID₅₀) against D614G (p < 0.0001), Delta variant B.1.617.2 (p < 0.0001), Omicron subvariant BA.1 (p < 0.0001), and Omicron subvariant BA.1.1 (p < 0.0001). P values determined using the Mann-Whitney U test. Dots indicate results from individual participants and bars indicate geometric mean with 95% CI. slgA, secretory IgA. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.

Supplementary Figure 7. Impact of boosting status on SARS-CoV-2 infection's likelihood, overall symptoms severity and duration, as well as domain symptom severity

a) Percentage of infections in the unboosted versus boosted participants (p = 0.1776). b) Total FLU-PRO plus symptom scores in the unboosted versus boosted participants (p = 0.1628). c) Overall symptoms duration in the unboosted versus boosted participants (p = 0.1496). d) Symptom severity scores for each symptom domain in the unboosted versus boosted participants (eyes, p = 0.016; body/systemic, p = 0.0237; nasal, p = 0.1072; throat, p = 0.8517; chest, p = 0.5088; gastrointestinal, p = 0.6377; sense, p > 0.9999). P values determined using the Mann-Whitney U test. Dots indicate results from individual participants and bars indicate mean with standard deviation. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.

Supplementary Figure 8. Impact of boosting status on pseudovirus neutralization antibody titers in the uninfected versus post-vaccine infection group

Pseudovirus neutralization ID50 titers against D614G, Delta variant B.1.617.2, and Omicron subvariants BA.1 and BA.1.1 for uninfected & unboosted participants (N=25), uninfected & boosted participants (N=115), PVI & unboosted participants (N=8), and PVI & boosted participants (N=23). P values determined using the Mann-Whitney U test, with a Bonferroni correction for 6 comparisons, alpha = 0.0083. Dots indicate results from individual participants and bars indicate geometric mean titers (GMT) with 95% CI, and GMTs are indicated. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.

W	ork	Home			
1. Risk Exposure	2. Precautionary Measures	3. Risk Exposure	4. Precautionary Measures		
1. Days working in the hospital (0-4)	1. Consistent PPE use during patient interactions (0-4)	1. Member of household tested COVID+ (0-4)	1. Mask wearing outside of the home (grocery stores) (0-4)		
2. Direct contact with COVID+ patients (0-4)	2. PPE use when not directly interacting with patients (0-4)	2. Member of household had symptoms consistent with COVID and hasn't been tested (0-2)	2. Mask wearing while outside doing solitary activities (0-4)		
3. Conducted high-risk activities on COVID+ patients (0-4)	3. Consistency of applying hand sanitizer/washing hands before and after interacting with patients (0-4)	3. Number of times in an out of house activity (grocery, restaurant, gym, bus) (0-4 averaged for all 6 responses to this question)	3. Consistently practicing social distancing outside home (0-4)		
		4. Size and number of social gatherings (0-4 averaged for all 5 responses to this question)	4. Disinfecting mail/packages delivered to home (0-4)		
			5. Type of mask typically used (1-4 averaged for all 4 responses to this question)		
Work Risk Score= (Total score/12)x100	Work Precautionary Score= (Total score/12)x100	Home Risk Score= (Total score/14)x100	Home Precautionary Score= (Total score/20)x100		

Supplementary Table 1. Calculation method for the Work Risk Score, Work Precautionary Score, Home Risk Score, and Home Precautionary Score

These four scores are generated each month when a PASS participant fills out the "Risk Exposure, PPE Use, and Social Distancing" questionnaire. PPE, Personal Protective Equipment.

Sample	Location	Collection date	# Raw Reads	# Joined Reads Mapped	Consensus genome length (nt)	Average Coverage (x)	Pangolin Lineage	Nextstrain Clade
176	Bethesda, MD	01/2022	629,614	281,007	29,747	3,765	BA.1.20 (Omicron)	21K (Omicron)/high
177	Bethesda, MD	02/2022	737,940	331,425	29,747	4,432	BA.1.1 (Omicron)	21K (Omicron)/high
181	Bethesda, MD	12/2021	1,055,928	449,639	29,747	6,036	BA.1.1 (Omicron)	21K (Omicron)/high
182	Bethesda, MD	01/2022	619,074	260,449	29,747	3,468	BA.1.1 (Omicron)	21K (Omicron)/high
183	Bethesda, MD	01/2022	1,111,572	472,861	29,747	6,327	BA.1.20 (Omicron)	21K (Omicron)/high
184	Bethesda, MD	12/2021	634,940	269,282	29,747	3,600	BA.1.1 (Omicron)	21K (Omicron)/high
185	Bethesda, MD	12/2021	589,156	250,817	29,764	3,370	AY.25 (Delta)	21J (Delta)/high
186	Bethesda, MD	12/2021	1,001,634	412,655	29,708	5,563	BA.1.18 (Omicron)	21K (Omicron)/high
187	Bethesda, MD	12/2021	643,086	271,882	29,747	3,622	BA.1.15 (Omicron)	21K (Omicron)/high
188	Bethesda, MD	12/2021	714,018	299,757	29,747	3,960	BA.1.1 (Omicron)	21K (Omicron)/high
189	Bethesda, MD	12/2021	717,104	307,496	29,708	4,105	BA.1.18 (Omicron)	21K (Omicron)/high
190	Bethesda, MD	12/2021	465,830	197,371	29,747	2,587	BA.1.1 (Omicron)	21K (Omicron)/high
191	Bethesda, MD	01/2022	769,504	326,309	29,747	4,357	BA.1.19 (Omicron)	21K (Omicron)/high

Supplementary Table 2. Sequencing statistics for 13 SARS-CoV-2 post-vaccine infections

All samples produced coding complete genomes. Viral Amplicon Illumina Workflow 2.3 was used to collate and analyze SARS-CoV-2 genomes from the resulting sequencing reads. Consensus genomes were generated when possible. Lineage determination of consensus genomes was conducted using Pangolin (Phylogenetic Assignment of Named Global Outbreak LINeages; v4.1.2). Nextstrain clades were determined by Nextclade CLI 2.4.0, Nextalign CLI 1.10.1. Nextstrain overall sequence QC scores of 'bad', 'mediocre', and 'good' were translated into 'low', 'medium', and 'high' for confidence of clade assignment.

	Unadjusted		
	OR (95% CI)	P-value	
Age	0.973 (0.826-1.147)	0.746	
Female	0.406 (0.185-0.893)	0.025	
Serum anti-S (WT) IgG (BAU/ml)	0.703 (0.527-0.937)	0.016	
Serum anti-S (BA.1) IgG (AU/ml)	0.811 (0.616-1.067)	0.134	
Serum anti-S (WT) IgA (AU/mI)	0.489 (0.180-1.329)	0.161	
Roche Serum anti-RBD (WT) total Ig (BAU/ml)	0.479 (0.177-1.299)	0.148	
Neutralizing titer D614G (ID50)	0.480 (0.197-1.166)	0.105	
Neutralizing titer B.1.617.2 (ID50)	0.498 (0.236-1.050)	0.067	
Neutralizing titer BA.1 (ID50)	0.694 (0.477-1.010)	0.056	
Neutralizing titer BA.1.1 (ID50)	0.573 (0.341-0.961)	0.035	
Saliva anti-S (WT) IgG (AU/ml)	1.051 (0.884-1.249)	0.576	
Saliva anti-S (WT) IgA (AU/ml)	0.867 (0.521-1.443)	0.583	
Work risk score (%)	1.074 (0.921-1.253)	0.362	
Work precautionary score (%)	0.998 (0.844-1.180)	0.979	
Home risk score (%)	2.144 (1.645-2.794)	0.000	
Home risk score 1-2 (%)	1.760 (1.472-2.103)	0.000	
Home risk score 3-4 (%)	1.044 (0.869-1.253)	0.647	
Home precautionary score (%)	1.009 (0.842-1.209)	0.923	
	Adjusted for age, sex and home risk score		
	OR (95% CI)	P-value	
Serum anti-S (WT) IgG (BAU/ml)	0.673 (0.477-0.950)	0.025	
Serum anti-S (BA.1) IgG (AU/ml)	0.785 (0.572-1.079)	0.136	
Serum anti-S (WT) IgA (AU/mI)	0.428 (0.109-1.680)	0.224	
Roche Serum anti-RBD (WT) total Ig (BAU/ml)	0.426 (0.109-1.662)	0.219	
Neutralizing titer D614G (ID50)	0.350 (0.109-1.124)	0.078	
Neutralizing titer B.1.617.2 (ID50)	0.409 (0.151-1.111)	0.080	
Neutralizing titer BA.1 (ID50)	0.705 (0.445-1.117)	0.137	
Neutralizing titer BA.1.1 (ID50)	0.511 (0.256-1.018)	0.056	
Saliva anti-S (WT) IgG (AU/ml)	1.014 (0.800-1.285)	0.908	
Saliva anti-S (WT) IgA (AU/ml)	0.851 (0.414-1.749)	0.661	

Supplementary Table 3. Numeric values of point estimates and 95% CI for the odds ratios unadjusted and adjusted for non-immunological factors