Hypertension Trends and Disparities over Twelve Years in a Large Health System:
 Leveraging the Electronic Health Records

Running Title: Hypertension Trends in a Health System
John E. Brush, Jr., MD*1,2, Yuan Lu, ScD*3,4 , Yuntian Liu, MPH ${ }^{3}$, Jordan R. Asher, MD, MS^{1}, Shu-Xia Li, PhD^{3}, Mitsuaki Sawano, MD^{3}, Patrick Young, PhD^{4}, Wade L. Schulz, MD^{4}, Mark Anderson, AS^{1}, John S. Burrows, MBA ${ }^{1}$, Harlan M. Krumholz, MD, SM ${ }^{3,6,7}$

Word Count (text only): 3120
Affiliation of Authors: ${ }^{1}$ Sentara Health, ${ }^{2}$ Eastern Virginia Medical School, Norfolk, VA;
${ }^{3}$ Center for Outcomes Research and Evaluation, Yale-New Haven Hospital; ${ }^{4}$ Department of Laboratory Medicine, Yale School of Medicine; ${ }^{5}$ Department of Biostatistics, Yale School of Public Health; ${ }^{6}$ Section of Cardiovascular Medicine, Department of Internal Medicine (HMK) and ${ }^{7}$ Department of Health Policy and Management, New Haven, CT.
*Contributed equally as Co-First Authors.

Correspondence:

John E. Brush, Jr., MD
Sentara Health and Eastern Virginia Medical School
835 Glenrock Road, Suite 220
Norfolk, VA 23502
Telephone: (757) 261-0700
Fax: (757) 261-0701
Email: jebrush@sentara.com

Question: Can a large regional health system leverage the electronic health record to analyze hypertension trends and disparities to drive improvement?

Findings: We analyzed 1,376,325 patients over 12 years and found that age-adjusted hypertension prevalence increased by approximately 5\%. Age-adjusted hypertension control rates were in the 70% range and remained stable. Non-Hispanic Black patients represented 25\% of our specific regional population and had 12-14\% higher hypertension prevalence rates, higher mean age-adjusted systolic and diastolic blood pressure, and lower hypertension control rates compared with other racial groups.

Meaning: Real world data can provide actionable insights about hypertension and disparities in a specific region that could inform regional system strategies and initiatives for improvement.

Abstract

Background: The digital transformation of medical data enables health systems to leverage real-world data (RWD) from electronic health records (EHR) to gain actionable insights for improving hypertension care.

Methods: We performed a serial cross-sectional analysis of outpatients of a large regional health system from 2010 to 2021. Hypertension was defined by systolic blood pressure $(\mathrm{SBP}) \geq 140 \mathrm{mmHg}$ or diastolic blood pressure $(\mathrm{DBP}) \geq 90 \mathrm{mmHg})$ or recorded treatment with anti-hypertension medications. We evaluated four methods of using blood pressure measurements in the EHR to define hypertension.

The primary outcomes were age-adjusted prevalence rates and age-adjusted control rates. Secondary outcomes were age-adjusted mean SBP and DBP and age-adjusted proportion of patients with a searchable diagnosis code of hypertension in the EHR.

Results: Hypertension prevalence varied depending on the definition used, ranging from 36.5% to 50.9% initially and increasing over time by approximately 5%, regardless of the definition used. Control rates ranged from 61.2\% to 71.3\% initially, rose during 2018-2019 and fell during 2020-2021. The proportion of patients with a hypertension diagnosis ranged from 45.5% to 60.2% initially and improved during the study period. Non-Hispanic Black patients represented 25% of our regional population and consistently had higher prevalence rates, higher mean SBP and DBP and lower control rates compared with other racial and ethnic groups.

Conclusion: In a large regional health system, we leveraged the EHR to provide realworld insights. The findings largely reflected national trends but showed distinctive regional demographics and findings. The findings have provided opportunities for improvement, with
medRxiv preprint doi: https://doi.org/10.1101/2023.08.24.23294518; this version posted August 25, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.

59 approach could be emulated by regional health systems seeking to improve hypertension care.

Introduction

Hypertension is a persistent and challenging health problem in the United States, estimated to affect almost half of adult Americans. ${ }^{1}$ Of patients with hypertension, approximately half have uncontrolled blood pressure (BP), ${ }^{2}$ which disproportionately affects African Americans. ${ }^{2-4}$ Improving the detection and treatment hypertension is a national priority and offers an important opportunity to modify the risk for cardiovascular disease and stroke and to address a major racial disparity. ${ }^{5}$

A 2014 advisory from the American College of Cardiology, American Heart Association and the US Centers for Disease Control and Prevention called for health system approaches for addressing hypertension. ${ }^{6}$ System-wide strategies, along with improvements at the clinician and patient level, could help optimize BP control and effectively modify the risk associated with hypertension. ${ }^{6.7}$ To help design health system strategies, more information is needed to characterize hypertension trends and identify opportunities for improvement at the regional health system level, ideally utilizing readily available real-world evidence from the electronic health record (EHR) systems.

There are opportunities to broaden the ways a regional health system might use EHR data to investigate hypertension. Converting EHR data into a common data model can provide a more agile analytical platform, which could enable a health system to take advantage of their longterm data, explore various analytical methods, and evaluate trends and demographics that may be unique to a health system's region. Analysis of data at the regional level could enable customized regional initiatives to improve hypertension care.

Accordingly, we leveraged the EHR from a large health system caring for a diverse population to evaluate performance in the care of patients with hypertension. ${ }^{8}$ EHR data over 12
years were transformed into a harmonized and validated data set that has enabled a serial crosssectional analysis of hypertension in a large regional population. ${ }^{9}$ We specifically sought to identify trends using various operational hypertension definitions to investigate disparities and opportunities for improvement.

Methods

Data Source

This retrospective observational study was performed at a large non-profit integrated healthcare system in Virginia and Northeastern North Carolina. The system began using a centralized EHR system designed by the Epic Corporation in 2007. In 2021, the health system began extracting key clinical data from its EHR and transforming the data into a harmonized data platform using the Observational Medical Outcomes Partnership (OMOP) common data model version 5.3. ${ }^{9}$

Study Population

The overall study population consisted of all adult patients (≥ 18 years old) who had at least 1 outpatient blood pressure reading recorded between January 1st, 2010, and December 31st, 2021. Emulating the NHANES study, ${ }^{2}$ we conducted a serial cross-sectional study by independently analyzing the data in 2-year cycles from 2010-2011 to 2020-2021. In contrast to the defined clinical protocols of NHANES, our real-world data approach required defining computational protocols to analyze recorded BP readings in the EHR to create operational definitions of hypertension.

BP readings were first analyzed at the visit level. If more than one BP reading was taken during a visit, the first reading was disregarded and the mean of the remaining BP readings from the visit defined the visit BP measurement. If multiple outpatient visits occurred for a patient on
a specific date, we calculated the mean of the visit BP measurements and used the mean as the visit BP measurement for that date.

Definition of Hypertension

In each 2-year cycle, a patient was classified as having hypertension according to the definitions listed below using either an elevated visit BP measurement, or use of at least one first line anti-hypertension medication recorded during the 2-year cycle, like NHANES. ${ }^{2}$ BP elevation was defined as a systolic blood pressure (SBP) $\geq 140 \mathrm{~mm} \mathrm{Hg}$, or diastolic blood pressure (DBP) $\geq 90 \mathrm{~mm}$ Hg. First-line anti-hypertension medications were defined according to the 2017 AHA/ACC hypertension guideline ${ }^{10}$ and are listed with their associated OMOP concept identification numbers in eTable 1.

We evaluated four operational hypertension definitions using four different methods for incorporating recorded BP measurement into the definition: 1) using at least one elevated visit BP measurement during a 2-year cycle, 2) using the first visit BP measurement during a 2-year cycle, 3) using a single randomly chosen visit BP measurement during a 2-year cycle, or 4) using at least two elevated visit BP measurements during a 2-year cycle. Our rationale for using these different operational hypertension definitions was to provide definitions that are comparable with other studies and guideline recommendations. For example, our third definition would be comparable to the NHANES study, ${ }^{2}$ and our fourth definition would be comparable to the generally accepted guideline definition. ${ }^{10}$

Definitions of Outcomes

Primary outcomes were age-adjusted hypertension prevalence and age-adjusted rates of BP control during each 2-year cycle. BP control was defined at the patient level as a mean $\mathrm{SBP}<$

140 mmHg and mean $\mathrm{DBP}<90 \mathrm{mmHg}$ during a 2 -year cycle. To adjust for differences in age distribution among the 2-year study cycles, direct standardization was employed using two different standards. For age-adjustment of hypertension prevalence and average BP, the standard was the average age distribution of all adults across all study cycles, while for age-adjustment of other outcome measures, the standard was average age distribution of adults with hypertension across all study cycles. The age categories used for standardization were: 18-44 years, 45-64 years, 65-74 years, and 75 years or older. The proportions used for age-adjustment of all patients and of hypertension patients for each operational hypertension definition are listed in eTable 2. Secondary outcome measures were the age-adjusted mean SBP and DBP for all patients and for hypertensive patients, and the age-adjusted proportions of patients who were labelled with a searchable diagnosis code of hypertension in the EHR during a 2-year cycle. The coded diagnoses of hypertension and the corresponding OMOP concept identification numbers listed in eTable 3).

Statistical Analysis

Descriptive statistics were used to characterize the overall study population and the populations from each 2-year cycle, and graphical representations were used to demonstrate temporal trends. The generalized estimation equation (GEE) method was applied to assess the predictors of different outcomes while accounting for the fact that multiple observations might have been available for the same individuals at different cycles. Specifically, an exchangeable within-person working correlation structure was specified in each GEE model and 95\% confidence intervals were calculated using a robust variance estimator. Models used to evaluate dichotomous outcomes included a specification for the binomial distribution of the dependent
variable, and models used to evaluate continuous outcomes included a specification for the Gaussian distribution of the dependent variable. The independent variables included cycle, sex, race and ethnicity, and age group, and each variable was treated as categorical in the GEE model. To simplify the analysis and avoid multiple comparisons, in the GEE modeling section, we only used the operational hypertension definition that used BP measurement from a single randomly chosen visit during a 2-year cycle. All statistical tests were 2-sided, with a level of significance of 0.05. Data collection using the OMOP model was conducted with the Microsoft SQL Server and data analysis was performed using R (version 4.2.3). The study was approved by the Institutional Review Board at Eastern Virginia Medical School. The study was reported following the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) reporting guidelines. ${ }^{11}$

Results

Population Characteristics

A total of $1,376,325$ unique adults met the overall study inclusion criteria. The demographics of the overall study population in each 2-year cycle are shown in Table 1. Each 2year cycle was analyzed independently, and individual patients could appear in one or more 2year cycles, depending on the care they received. Thus, the number of patients in the six 2-year cycles varied and ranged from 395,859 patients to 631,892 patients per 2 -year cycle. The numbers of outpatient visits and outpatient BP measurements per patient during a 2-year cycle were relatively constant during the study period. The median number of outpatient visits per patient was 2 during 2010-2011 and 3 during the remaining 2-year cycles. The median number of outpatient BP measurements per patient was 5 during 2012-2013 and 2018-2019 and was 4 during the remaining 2-year cycles.

Among all patients, the mean age-adjusted SBP ranged from 125.1 to 127.0 mm Hg and the mean age-adjusted DBP ranged from 74.4 to 76.0 mm Hg (Table 1). Mean SBP and DBP among all patients showed an upward trend during the time of study.

Hypertension Prevalence and Disparities

The demographics of the hypertensive patients varied slightly depending on the operational hypertension definition. The demographics of hypertensive patients (using the random BP measurement definition, which is comparable to the NHANES study) are shown in eTable 4.

The age-adjusted hypertension prevalence rates over the 12-year study period for each operational hypertension definition are shown in Figure 1. Depending on the operational hypertension definition, the hypertension prevalence rates ranged from 36.5% to 50.9% and prevalence increased by about 5% over the study period regardless of the operational hypertension definition.

Non-Hispanic Black patients consistently showed 12-14\% higher age-adjusted hypertension prevalence rates compared with the non-Hispanic White patients (OR 2.03, [2.02, 2.04], $\mathrm{P}<0.001$, Figure 2). Hypertension prevalence rates were progressively higher by age group, peaking at 80% in patients >75 years old during 2020-2021 (eFigure 1). Men consistently showed approximately 7% higher hypertension prevalence rates (OR 1.41, [1.40, 1.42], P <0.001, eFigure 2).

The proportions of hypertensive patients defined by elevated BP only, by use of a firstline antihypertensive medication only, or by both are shown in eFigure3. For all operational
hypertension definitions, the proportions of hypertensive patients defined by medication usage or combination of medication usage and elevated BP increased during the study period.

Blood Pressure Control Rates Among Patients with Hypertension and Disparities

Among patients with hypertension, the age-adjusted BP control rates during the study period ranged from 61.2% to 73.3%, depending on the operational hypertension definition (Figure 3). The trend in BP control rates exhibited an initial increase from 2010-2011 to 20142015, followed by a decline in 2016-2017. Thereafter, the control rates rose again from 20182019, only to decline once more in 2020-2021. The age-adjusted BP control rates were consistently about 3% lower in men (OR $0.89,[0.88,0.90], \mathrm{P}<0.001$, eFigure 4) and consistently about 5-7\% lower in non-Hispanic Black patients as compared with non-Hispanic White patients (OR 0.77, [0.76, 0.78], $\mathrm{P}<0.001$, eFigure 5).

Among hypertension patients, the mean age-adjusted SBP ranged from 132.3 to 135.4 mmHg and mean age-adjusted DBP ranged from 76.8 to 78.8 mmHg (eFigure 6). Mean BP was relatively unchanged during the study timeframe regardless of the operational hypertension definition. Age-adjusted mean BP was consistently higher in non-Hispanic Black patients as compared with other non-Hispanic White patients (SBP: +2.61 [2.55, 2.67]; DBP: +1.31 [1.28, 1.35]; $\mathrm{P}<0.001$ for both, eFigure 7).

Coded Diagnosis Rates Among Patients with Hypertension and Disparities

Among patients with hypertension, the age-adjusted proportion of patients labelled in the EHR with a coded diagnosis of hypertension ranged from 45.5\% to 68.6%, again depending on the operational hypertension definition (Figure 4). The proportion of patients diagnosed with
hypertension, as indicated by coded diagnoses, exhibited an initial increase from 2010-2011 to 2014-2015, followed by a decline in 2016-2017. Thereafter, the proportions rose again in 20202021. The proportion of patients with a coded diagnosis of hypertension was highest in hypertension groups defined by 2 or more BP measurements than in groups defined by the other definitions. The proportion of patients with hypertension with a coded diagnosis of hypertension was similar in women and men. Rates of receiving a coded diagnosis were consistently about 5% higher in non-Hispanic Black patients (OR 1.26 [1.25, 1.27], $\mathrm{P}<0.001$) and Asian patients (OR 1.31 [1.28, 1.35], $\mathrm{P}<0.001$), compared with White and Hispanic patients (eFigure 8).

Discussion

In this serial cross-sectional study, we leveraged EHRs of a large health system to analyze regional trends in hypertension using various operational hypertension definitions. We showed a marked increase in age-adjusted hypertension prevalence rates, modest age-adjusted BP control rates, and relatively low but upwardly trending age-adjusted rates of coding hypertension in the EHR during the 12 years of study. In addition, we noted important disparities in age-adjusted hypertension prevalence rates, age-adjusted BP control rates, and age-adjusted mean BP levels that stayed consistent over time. The age-adjusted hypertension prevalence rates were 12-14\% higher in non-Hispanic Black patients, 7% higher in men, and progressively higher by age group throughout the study period.

This study demonstrates the ability to observe hypertension trends and disparities at a regional health system level using real-world data, which could greatly facilitate locally designed system-level interventions to address hypertension and racial disparities. We were able to create an agile analytical data platform that enabled a comparison of a variety of operational hypertension definitions and an evaluation of how age, sex, and race/ethnicity affect hypertension trends. Our analytical data platform enabled examination of multiple operational hypertension definitions and we demonstrated substantial differences in outcomes, depending on the sensitivity of the hypertension definition.

Our study demonstrated a steady rise of about 5% in the age-adjusted hypertension prevalence rates throughout the study period, regardless of the operational hypertension definition. Increases in hypertension prevalence rates were seen in all age groups, both sexes, and in all race/ethnicity groups.

The average age of patients and the age adjusted mean SBP and DBP increased during the study period, which may have contributed to the increase in hypertension prevalence rates. The increase in hypertension prevalence rates did not appear to be artifactually affected by the frequency of outpatient visits or BP measurements.

Our definition of hypertension included whether patients were prescribed first-line antihypertension medications, which may have also contributed to the increase in hypertension prevalence rates. The proportion of patients who were defined as hypertensive by the medication-use criterion increased during the 2012-2013, 2018-2019 and 2020-20201 2-year cycles, possibly due to changing guidelines for hypertension. The 2017 ACC/AHA published guidelines recommended a lower BP goal which could have caused more patients to receive firstline antihypertensive medications and could have affected the hypertension prevalence rates during 2018-2019 and 2020-2021. ${ }^{10}$

The age-adjusted proportion of patients with controlled BP rose from 61-71\% in 20102011 to $64-73 \%$ in 2014-2015, fell in 2016-2017, rose again to $66-73 \%$ in 2018-2019, and fell in $62-68 \%$ in 2020-2021. The pattern was consistent among patients defined by all 4 operational hypertension definitions. Non-Hispanic Blacks had BP control rates that were consistently about 5% lower than Whites. The rise in control rates in all groups during 2018-2019 could be explained by the 2017 ACC/AHA guideline recommendations for tighter BP control. ${ }^{10}$ The fall in control during 2020-2021 may have been caused by changes in healthcare associated with the COVID-19 pandemic.

The proportion of patients with a coded diagnosis of hypertension among patients with hypertension increased during the study period except during 2016-2017 and the trends were similar in all 4 operational hypertension definition groups. There were no differences by sex.

Non-Hispanic Blacks and Asians were 6-10\% more likely to have a coded diagnosis of hypertension as compared with other race/ethnicity groups. Interestingly, non-Hispanic Black patients were significantly more likely to have hypertension by all the operational hypertension definitions and less likely to have BP controlled, even though they were more likely to have been labelled in the EHR with a coded diagnosis of hypertension.

Our results from a regional health system provide supplemental information to the national estimates reported by the National Health and Nutrition Examination Survey (NHANES). Using a comparable operational hypertension definition (a single random visit BP measurement), our age-adjusted hypertension prevalence rates are higher (41.1% to 46.1%) and increased steadily as compared with NHANES which reported prevalence rates that were lower and remained constant (30% to 32%). ${ }^{2}$ Our BP control rates (61.2% to 65.9%) were also higher than those reported by NHANES (31.8% to 53.8%). These differences may be because our study population was derived from patients exposed to a healthcare system rather than subjects randomly selected from the general population. Importantly, the proportion of non-Hispanic Blacks in our study was roughly twice that from the NHANES study, reflecting the demographics of our region, which may have increased the hypertension prevalence rates.

Studies have suggested that hypertension prevalence based on methods using electronic health records could be underestimated. ${ }^{12}$ In our study, we used the EHR, but we defined hypertension based on measurement of BP, rather than based on the coded diagnosis of hypertension, which appears to have overcome the potential of under-reporting hypertension using the EHR.

Our hypertension control rates were similar to those reported by the PCORnet Blood Pressure Control Laboratory, which reported an average BP control rate of $62 \%{ }^{13}$ Their findings
from 25 health systems showed different demographics than our regional analysis, with Black patients only comprising 15% of their population, as compared to approximately 30% of the hypertensive patients in our study. While nationwide studies are informative, limiting the analysis to a single regional health system may provide actionable insights regarding disparities that are more relevant locally, based on the demographics of that regional health system.

Banerjee et al measured the hypertension coding rate in 251,590 patients defined hypertension by 2 or more BP readings $\geq 140 / 90 \mathrm{~mm} \mathrm{Hg}$ and/or antihypertensive medications prescribed during the study period. Among those patients, the coded diagnosis rate was 62.9%, very similar to our finding among patients with a comparable operational hypertension definition. ${ }^{12}$

Our study has recognized strengths and limitations. Our approach of analyzing real-world data from a single health system is practical and feasible, and the results are similar to the multicenter approach of the PCORnet Blood Pressure Control Laboratory. ${ }^{14}$ Our data platform allows rapid evaluation of populations at scale and could be a source of continuing evaluation with planned periodic additions to the data base, ${ }^{15,16}$ providing a powerful tool for generating actionable insights from real-world data. ${ }^{17,18}$ This data resource is an model of what could be a useful generator of insights for a learning health system. ${ }^{19,20}$

A possible limitation of our study, as compared with the NHANES approach, ${ }^{2}$ however, is that BP was obtained in the usual care setting, rather than through a rigorous protocolized approach. Although clinicians expect and often demand accurate BP measurements in usual care settings, the BP measurements in real-world settings may be less accurate than in the protocolized setting of a prospective research study. ${ }^{21}$ Also, the coded diagnosis of hypertension in the EHR could have been affected by recall bias and other sources of possible coding error. ${ }^{15}$

In conclusion, we were able to use real-world EHR data to establish hypertension prevalence rates, control rates, and diagnostic coding rates in a large population using the EHR from a large regional health system, showing important trends and opportunities to address racial disparities. Our study may provide a model for other health systems seeking to improve hypertension care at a regional health system level and may lead to further research on how to use real-world data and computational approaches for addressing hypertension.

Conflicts of Interest and Financial Disclosures

In the past three years, Dr. Krumholz received expenses and/or personal fees from UnitedHealth, Element Science, Aetna, Reality Labs, Tesseract/4Catalyst, F-Prime, the Siegfried and Jensen Law Firm, Arnold and Porter Law Firm, and Martin/Baughman Law Firm. He is a co-founder of Refactor Health and HugoHealth, and is associated with contracts, through Yale New Haven Hospital, from the Centers for Medicare \& Medicaid Services and through Yale University from Johnson \& Johnson. Dr. Brush receives royalties from Dementi Milestone Publishing for the book "The Science of the Art of Medicine: A Guide to Medical Reasoning." Dr. Schulz received expenses and/or personal fees from HugoHealth, Abbott, Instrumentation Laboratories, and Detect, Inc., and is a cofounder of Refactor Health. The other authors report no disclosures.

References

1. Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, Boehme AK, Buxton AE, Carson AP, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Ferguson JF, Generoso G, Ho JE, Kalani R, Khan SS, Kissela BM, Knutson KL, Levine DA, Lewis TT, Liu J, Loop MS, Ma J, Mussolino ME, Navaneethan SD, Perak AM, Poudel R, Rezk-Hanna M, Roth GA, Schroeder EB, Shah SH, Thacker EL, VanWagner LB, Virani SS, Voecks JH, Wang NY, Yaffe K and Martin SS. Heart Disease and Stroke Statistics-2022 Update: A Report From the American Heart Association. Circulation. 2022;145:e153-e639.
2. Muntner P, Hardy ST, Fine LJ, Jaeger BC, Wozniak G, Levitan EB and Colantonio LD. Trends in Blood Pressure Control Among US Adults With Hypertension, 19992000 to 2017-2018. JAMA. 2020;324:1190-1200.
3. Clark D, 3rd, Colantonio LD, Min YI, Hall ME, Zhao H, Mentz RJ, Shimbo D, Ogedegbe G, Howard G, Levitan EB, Jones DW, Correa A and Muntner P. Population-Attributable Risk for Cardiovascular Disease Associated With Hypertension in Black Adults. JAMA Cardiol. 2019;4:1194-1202.
4. Lu Y, Wang Y, Spatz ES, Onuma O, Nasir K, Rodriguez F, Watson KE and Krumholz HM. National Trends and Disparities in Hospitalization for Acute Hypertension Among Medicare Beneficiaries (1999-2019). Circulation. 2021;144:1683-1693.
5. Bundy JD, Li C, Stuchlik P, Bu X, Kelly TN, Mills KT, He H, Chen J, Whelton PK and He J. Systolic Blood Pressure Reduction and Risk of Cardiovascular Disease and

Mortality: A Systematic Review and Network Meta-analysis. JAMA Cardiol. 2017;2:775-781.
6. Go AS, Bauman MA, Coleman King SM, Fonarow GC, Lawrence W, Williams KA and Sanchez E. An effective approach to high blood pressure control: a science advisory from the American Heart Association, the American College of Cardiology, and the Centers for Disease Control and Prevention. J Am Coll Cardiol. 2014;63:1230-1238.
7. Jaffe MG, Lee GA, Young JD, Sidney S and Go AS. Improved blood pressure control associated with a large-scale hypertension program. JAMA. 2013;310:699-705.
8. Lu Y, Huang C, Mahajan S, Schulz WL, Nasir K, Spatz ES and Krumholz HM. Leveraging the Electronic Health Records for Population Health: A Case Study of Patients With Markedly Elevated Blood Pressure. J Am Heart Assoc. 2020;9:e015033.
9. Hripcsak G, Duke JD, Shah NH, Reich CG, Huser V, Schuemie MJ, Suchard MA, Park RW, Wong IC, Rijnbeek PR, van der Lei J, Pratt N, Noren GN, Li YC, Stang PE, Madigan D and Ryan PB. Observational Health Data Sciences and Informatics (OHDSI): Opportunities for Observational Researchers. Stud Health Technol Inform. 2015;216:574-8.
10. Whelton PK, Carey RM, Aronow WS, Casey DE, Jr., Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, MacLaughlin EJ, Muntner P, Ovbiagele B, Smith SC, Jr., Spencer CC, Stafford RS, Taler SJ, Thomas RJ, Williams KA, Sr., Williamson JD and Wright JT, Jr. 2017
the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2018;71:e127-e248. 11. Von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP and Initiative S. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. International journal of surgery. 2014;12:1495-1499.
12. Banerjee D, Chung S, Wong EC, Wang EJ, Stafford RS and Palaniappan LP. Underdiagnosis of hypertension using electronic health records. Am J Hypertens. 2012;25:97-102.
13. Cooper-DeHoff RM, Fontil V, Carton T, Chamberlain AM, Todd J, O'Brien EC, Shaw KM, Smith M, Choi S, Nilles EK, Ford D, Tecson KM, Dennar PE, Ahmad F, Wu S, McClay JC, Azar K, Singh R, Faulkner Modrow M, Shay CM, Rakotz M, Wozniak G and Pletcher MJ. Tracking Blood Pressure Control Performance and Process Metrics in 25 US Health Systems: The PCORnet Blood Pressure Control Laboratory. J Am Heart Assoc. 2021;10:e022224.
14. Pletcher MJ, Fontil V, Carton T, Shaw KM, Smith M, Choi S, Todd J, Chamberlain AM, O'Brien EC, Faulkner M, Maeztu C, Wozniak G, Rakotz M, Shay CM and Cooper-DeHoff RM. The PCORnet Blood Pressure Control Laboratory: A Platform for Surveillance and Efficient Trials. Circ Cardiovasc Qual Outcomes. 2020;13:e006115.
15. Casey JA, Schwartz BS, Stewart WF and Adler NE. Using Electronic Health Records for Population Health Research: A Review of Methods and Applications. Annu Rev Public Health. 2016;37:61-81.
16. Schulz WL, Kvedar JC and Krumholz HM. Agile analytics to support rapid knowledge pipelines. NPJ Digit Med. 2020;3:108.
17. Krumholz HM. Big data and new knowledge in medicine: the thinking, training, and tools needed for a learning health system. Health Aff (Millwood). 2014;33:1163-70.
18. Krumholz HM. Inflection Point: Ideas for Accelerating Breakthroughs and Improving Cardiovascular Health. Circ Cardiovasc Qual Outcomes. 2020;13:e007615.
19. Greene SM, Reid RJ and Larson EB. Implementing the learning health system: from concept to action. Ann Intern Med. 2012;157:207-10.
20. Foraker RE, Benziger CP, DeBarmore BM, Cene CW, Loustalot F, Khan Y, Anderson CAM, Roger VL, American Heart Association Council on E, Prevention, Council on Arteriosclerosis T, Vascular B, Council on L and Cardiometabolic H. Achieving Optimal Population Cardiovascular Health Requires an Interdisciplinary Team and a Learning Healthcare System: A Scientific Statement From the American Heart Association. Circulation. 2021;143:e9-e18.
21. Muntner P, Shimbo D, Carey RM, Charleston JB, Gaillard T, Misra S, Myers MG, Ogedegbe G, Schwartz JE, Townsend RR, Urbina EM, Viera AJ, White WB and Wright JT, Jr. Measurement of Blood Pressure in Humans: A Scientific Statement From the American Heart Association. Hypertension. 2019;73:e35-e66.

Table 1. Demographic characteristics and mean systolic blood pressure (SBP) and mean
diastolic blood pressure (DBP) of all patients in each 2-year cycle.

2-year Cycle	2010-2011	2012-2013	2014-2015	2016-2017	2018-2019	2020-2021
Patients	395,859	429,754	466,692	631,892	608,497	619,023
Sex						
Female	$\begin{gathered} 231,203 \\ (58 \%) \\ \hline \end{gathered}$	$\begin{gathered} 254,610 \\ (59 \%) \\ \hline \end{gathered}$	$\begin{gathered} 275,386 \\ (59 \%) \\ \hline \end{gathered}$	$\begin{gathered} 370,352 \\ (59 \%) \\ \hline \end{gathered}$	$\begin{gathered} 355,759 \\ (58 \%) \\ \hline \end{gathered}$	$\begin{gathered} 362,140 \\ (59 \%) \\ \hline \end{gathered}$
Male	$\begin{gathered} 164,625 \\ (42 \%) \end{gathered}$	$\begin{gathered} 175,130 \\ (41 \%) \\ \hline \end{gathered}$	$\begin{gathered} 191,306 \\ (41 \%) \end{gathered}$	$\begin{gathered} 261,540 \\ (41 \%) \end{gathered}$	$\begin{gathered} 252,736 \\ (42 \%) \end{gathered}$	$\begin{gathered} 256,874 \\ (41 \%) \end{gathered}$
Race/Ethnicity						
Non-Hispanic Black	$\begin{gathered} 99,779 \\ (25 \%) \end{gathered}$	$\begin{gathered} 109,183 \\ (25 \%) \end{gathered}$	$\begin{gathered} 122,477 \\ (26 \%) \end{gathered}$	$\begin{gathered} \hline 142,447 \\ (23 \%) \end{gathered}$	$\begin{gathered} \hline 135,880 \\ (22 \%) \end{gathered}$	$\begin{gathered} 146,162 \\ (24 \%) \end{gathered}$
Non-Hispanic White	$\begin{gathered} 259,665 \\ (66 \%) \\ \hline \end{gathered}$	$\begin{gathered} 282,167 \\ (66 \%) \\ \hline \end{gathered}$	$\begin{gathered} 305,112 \\ (65 \%) \\ \hline \end{gathered}$	$\begin{gathered} 438,170 \\ (69 \%) \\ \hline \end{gathered}$	$\begin{gathered} 423,892 \\ (70 \%) \\ \hline \end{gathered}$	$\begin{gathered} 423,186 \\ (68 \%) \\ \hline \end{gathered}$
Hispanic/Latino	$\begin{array}{r} 7,342 \\ (1.9 \%) \\ \hline \end{array}$	$\begin{aligned} & 11,549 \\ & (2.7 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 13,060 \\ & (2.8 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 19,449 \\ & (3.1 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 19,691 \\ & (3.2 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 21,297 \\ & (3.4 \%) \\ & \hline \end{aligned}$
Asian	$\begin{array}{r} 7,616 \\ (1.9 \%) \\ \hline \end{array}$	$\begin{gathered} 9,294 \\ (2.2 \%) \\ \hline \end{gathered}$	$\begin{aligned} & 10,406 \\ & (2.2 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 12,698 \\ & (2.0 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 12,834 \\ & (2.1 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 13,363 \\ & (2.2 \%) \\ & \hline \end{aligned}$
Unknown	$\begin{aligned} & 21,457 \\ & (5.4 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 17,561 \\ & (4.1 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 15,637 \\ & (3.4 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 19,128 \\ & (3.0 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 16,200 \\ & (2.7 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 15,015 \\ & (2.4 \%) \\ & \hline \end{aligned}$
Mean Age (SD)	51.0 (18.1)	51.5 (18.2)	52.3 (18.2)	52.9 (18.4)	54.6 (18.2)	55.3 (18.2)
Age Group						
18-44	$\begin{gathered} 142,539 \\ (36 \%) \\ \hline \end{gathered}$	$\begin{gathered} 151,749 \\ (35 \%) \\ \hline \end{gathered}$	$\begin{gathered} 158,628 \\ (34 \%) \\ \hline \end{gathered}$	$\begin{gathered} 210,073 \\ (33 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 182,608 \\ (30 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 181,485 \\ (29 \%) \\ \hline \end{gathered}$
45-64	$\begin{gathered} 156,016 \\ (39 \%) \\ \hline \end{gathered}$	$\begin{gathered} 165,571 \\ (39 \%) \end{gathered}$	$\begin{gathered} 178,135 \\ (38 \%) \end{gathered}$	$\begin{gathered} 234,314 \\ (37 \%) \end{gathered}$	$\begin{gathered} 224,434 \\ (37 \%) \\ \hline \end{gathered}$	$\begin{gathered} 221,173 \\ (36 \%) \end{gathered}$
65-74	$\begin{aligned} & 54,364 \\ & (14 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 64,801 \\ & (15 \%) \end{aligned}$	$\begin{array}{r} 76,065 \\ (16 \%) \\ \hline \end{array}$	$\begin{gathered} 109,058 \\ (17 \%) \end{gathered}$	$\begin{gathered} 114,851 \\ (19 \%) \end{gathered}$	$\begin{gathered} 124,125 \\ (20 \%) \end{gathered}$
>75	$\begin{aligned} & 42,940 \\ & (11 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 47,633 \\ & (11 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 53,864 \\ & (12 \%) \end{aligned}$	$\begin{aligned} & 78,447 \\ & (12 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 86,604 \\ & (14 \%) \end{aligned}$	$\begin{gathered} 92,240 \\ (15 \%) \\ \hline \end{gathered}$
$\begin{aligned} & \text { Mean SBP } \\ & \text { (SD) } \end{aligned}$	125.2 (14.9)	124.8 (14.8)	125.1 (14.8)	126.1 (14.8)	126.1 (14.2)	127.5 (14.6)
$\begin{aligned} & \text { Mean DBP } \\ & \text { (SD) } \end{aligned}$	74.7 (9.4)	74.4 (9.2)	74.7 (9.1)	75.5 (9.0)	75.3 (8.7)	75.8 (8.8)

$\mathrm{SD}=$ standard deviation

Figures

Figure 1. Age-adjusted hypertension prevalence rates in each 2-year cycle by operational hypertension definition.

$1 \mathrm{BP}+=1$ elevated blood pressure (BP) measurement, $2 \mathrm{BP}+=$ at least 2 elevated measurements.

Figure 2. Age-adjusted hypertension prevalence rates by race/ethnicity in each 2-year cycle by operational hypertension definition.

Race \& Ethnicity

- Hispanic/Latino
- Non-Hispanic Asian

Non-Hispanic Black
$1 \mathrm{BP}+=1$ elevated blood pressure (BP) measurement, $2 \mathrm{BP}+=$ at least 2 elevated measurements.

Figure 3. Age-adjusted blood pressure control rates in each 2-year cycle by operational hypertension definition.

$1 \mathrm{BP}+=1$ elevated blood pressure (BP) measurement, $2 \mathrm{BP}+=$ at least 2 elevated measurements.

Figure 4. Age-adjusted hypertension coding rates in each 2-year cycle by operational hypertension definition.

$1 \mathrm{BP}+=1$ elevated blood pressure (BP) measurement, $2 \mathrm{BP}+=$ at least 2 elevated measurements.

