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ABSTRACT 
 
Introduction: The externalizing disorders of ADHD, Oppositional Defiant Disorder (ODD) and Conduct 
Disorder (CD) exhibit a strong uptick in incidence in late childhood to become some of the most common 
mental health conditions in adolescence and strong predictors of adult psychopathology. While treatable, 
substantial diagnostic overlap exists among the externalizing disorders, complicating intervention planning. 
Thus, early adolescence is a period of considerable interest in understanding which factors predict the onset of 
externalizing disorders and disambiguating those that may differentially predict the development of ADD versus 
(vs) ODD and CD.    
 
Materials and Methods: Here, we analyzed 5,777 multimodal candidate predictors collected from children age 
9-10 yrs and their parents in the ABCD cohort spanning demographics; developmental and medical history; 
physiologic function; academic performance; social, physical and cultural environment; activities of everyday 
life, substance use and cortical and subcortical brain structure, volumetrics, connectivity and function to predict 
the future onset of ADHD, ODD and CD at 2-year follow-up. We used deep learning optimized with an 
innovative AI algorithm that jointly optimizes model training and performs automated feature selection to 
construct prospective, individual-level predictions of illness onset in this high-dimension data. Additional 
experiments furnished predictive models of all prevailing cases at 11-12 yrs and examined relative predictive 
performance when candidate predictors were restricted to only neural metrics derived from MRI.  
 
Results: Multimodal models achieved strong, consistent performance with ~86-97% accuracy, 0.919-0.996 
AUROC and ~82-97% precision and recall in testing in held-out, unseen data. In neural-only models, predictive 
performance dropped substantially but nonetheless accuracy and AUROC of ~80% were achieved. Parent 
aggressive and externalizing traits uniquely differentiated the onset of ODD while structural MRI metrics in the 
limbic system specifically predicted the onset of CD. Psychosocial measures of sleep disorders, parent mental 
health and behavioral traits and school performance proved valuable across all disorders but cognitive and 
non-neural physiologic metrics were never selected. In neural-only models, structural and functional MRI 
metrics in subcortical regions and cortical-subcortical connectivity were emphasized over task fMRI or diffusion 
measures. Overall, we identified a strong correlation between accuracy and final predictor importance. 
 
Conclusions: Deep learning optimized with AI can generate highly accurate individual-level predictions of the 
onset of early adolescent externalizing disorders using multimodal features.  Analysis of 5,777 multimodal 
candidate predictors highlighted psychosocial predictors related to sleep disorders, school performance and 
parent mental health and behavioral traits over other feature types. While externalizing disorders are frequently 
co-morbid in adolescents, certain predictors appeared specific to the onset of ODD or CD vs ADHD with 
structural MRI metrics in the limbic system offering particular promise in identifying children at risk for the onset 
of CD, a highly disabling disorder. The strong observed correlation between predictive accuracy and final 
predictor importance suggests that principled, data-driven searches for impactful predictors may facilitate the 
construction of robust, individual-level models in high-dimension data. To our knowledge, this is the first 
machine learning study to predict the onset of all three major adolescent externalizing disorders with the same 
design and participant cohort to enable direct comparisons, analyze >200 multimodal features and include as 
many types of neuroimaging metrics. Future work to test our observations in external validation data will help 
further test the generalizability of these findings.  
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INTRODUCTION 
 
Attention Deficit Hyperactivity Disorder (ADHD), Oppositional Defiant Disorder (ODD) and Conduct Disorder 
(CD) are common mental health conditions in adolescence, often collectively referred to as the externalizing 
disorders. Among the most common of youth mental health conditions, externalizing behaviors are the most 
frequent reason for referral to mental health services and a strong predictor of adult psychopathology. (1) In 
school age youth (K-12), 10-24% meet criteria for externalizing disorders, with ADHD and ODD being the most 
common. (2)  ADHD affects 7-10% of youth < 18 years of age (yrs) with prevalence showing a strong uptick in 
early adolescence, peak in mid-late adolescence and decline into adulthood. Some ~2% of children ≤5 yrs are 
affected versus (vs) ~10% at 6-11 yrs and ~13% at 12-17 yrs, with ~4% of adults having clinical ADHD (2, 3, 
4). In contrast, ODD and CD (collectively the disruptive externalizing disorders) affect ~5% of youth ≤17 yrs 
growing to ~10-12% of adults, where in the latter they are associated with increased risk for later co-morbid 
mental health and substance use disorders (5, 6, 7, 8). Among youth with ADHD, ~30-50% may also exhibit 
disruptive externalizing behaviors consistent with ODD and CD, with this association growing with increasing 
age and linked to later poor academic and life outcomes such as school dropout, substance abuse and 
involvement with the justice system. (9, 10, 11, 12, 13). Thus, early adolescence is a period of considerable 
interest in understanding which risk factors predict the onset of externalizing disorders and disambiguating 
those that may differentially predict the development of ADD vs ODD and CD.   
 
Adolescent externalizing disorders have attracted a range of research approaches. Historically, these have 
predominantly been cross-sectional studies quantifying group-level associations, frequently assessing 
neuroimaging metrics. More recently, machine learning (ML) classification techniques have been applied, 
increasingly to large-scale datasets. Such approaches offer the advantages of providing individual-level case 
predictions from high dimension and/or multimodal data, thereby bridging from extant work focused on 
identifying statistical associations at a group level to a pathway toward personalized medicine. (14, 15)  
Appropriately constructed, ML algorithms can simultaneously analyze hundreds or thousands of candidate 
predictors and enlarge the solution space. Such work has been further fueled by the increasing availability of 
large-scale, open science datasets incorporating multimodal variables. In peri-adolescence, the flagship 
initiative of this type is the ongoing population-level, longitudinal ABCD study (n=11,800) used in the present 
study that enrolled children at age 9-10 yrs and collects data from many knowledge domains including multiple 
neuroimaging types (16, 17, 18).  While a number of ML predictive studies have been performed in adolescent 
externalizing disorders, these have to date largely (though not exclusively) been cross-sectional and focused 
on predicting prevailing cases at a particular age in a single disorder. Few ML studies have predicted the future 
onset of disease in longitudinal data or applied a consistent analytic architecture across the three major 
adolescent externalizing disorders in the same population cohort to enable direct comparisons.  
 
In the present study, we extend prior work with an ML design that analyzes a large number of multidomain 
candidate predictors to predict new onset cases of ADHD, ODD and CD in early adolescence in the same 
design and youth cohort. We aimed to identify the best-performing predictors and compare these across these 
three related disorders to understand whether there were shared or unique predictors underpinning ADHD, 
ODD and CD. Given the large prior literature related to brain structure and function motifs in the externalizing 
disorders, we also wanted to compare the relative predictive ability of models composed purely of 
neuroimaging metrics derived from MRI with multimodal models. By leveraging an AI algorithm that jointly 
optimizes ML model training and performs automated feature selection, we were able to analyze 5,777 
candidate predictors spanning demographics; developmental and medical history; white and gray matter brain 
structure, neural function (cortical and subcortical connectivity, 3 tasks); brain volumetrics; physiologic function 
(e.g. sleep, hormone levels, pubertal stage, physical function); cognitive and academic performance; social 
and cultural environment (e.g. parents, friends, bullying); activities of everyday life (e.g. screen use, hobbies); 
living environment (e.g. crime, pollution, educational and food availability) and substance use.  We used 
features assessed at 9-10 yrs (107-132 months) to predict future, new onset cases of ADHD, ODD and CD at 
11-12 years with deep learning with artificial neural networks, which incorporates non-linear relationships 
among predictors and is resistant to multicollinearity. Since extant work is more focused on predicting 
prevailing rather than new onset cases, we performed additional experiments to predict all prevailing cases at 
11-12 yrs to provide comparisons with the existing literature. Our AI approach allowed us to render fully 
interpretable predictions, quantify relative predictor importance at both the group- and individual-level and 
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examine the relationship between model accuracy and predictor importance across all models. All results 
presented are from testing for generalization in holdout, unseen data.  
 
MATERIALS AND METHODS 

Terminology and definitions 
Terms used in quantitative analysis may be shared among different fields with variant meanings. Here, we use 
ML conventions throughout. (26, 27, 28) ‘Prediction’ means predicting the quantitative value of a target variable 
by analyzing patterns in input data. The set of observations used to train and validate models is referred to as 
the ‘training set’ and the unseen holdout set of observations is termed the ‘test set’. We refer to the set of all 
input data used in training as containing ‘features’ or ‘candidate predictors’ and those identified in final, 
optimized models after testing in held-out data (presented in Results) as ‘final predictors’. We use 
‘generalizability’ to refer to the ability of a trained model to adapt to new, previously unseen data drawn from 
the same distribution i.e. model fit in the test set. ‘Precision’ refers to the fraction of positive predictions that 
were correct; ‘Recall’ to the proportion of true positives that were correctly predicted; and ‘Accuracy’ to the 
number of correct predictions as a fraction of total predictions. Receiver Operating Characteristic curves (ROC 
Curves) are provided that quantify classification performance at different classification thresholds plotting true 
positive versus false positive rates, where the Area Under the Curve (AUROC) is defined as the two-
dimensional area under the ROC curve from (0,0) to (1,1). This paragraph defining terminology usage is 
adapted from our prior work.  
 
Data and data collection in the ABCD study 
 
We use data from the ABCD study, an epidemiologically-informed prospective cohort study that recruited 
11,880 children (52% male; 48% female) aged 9-10 years in 21 sites across the United States, intending to 
follow this youth for the next decade. Participants in the cohort include 800 twin pairs (n=800) and/or non-twin 
siblings. This data is made available to qualified researchers at no cost from the National Institute of Mental 
Health Data Archive and is released periodically. The present study uses data from Release 4.0, the 42-month 
follow-up date. Fuller descriptions of the overall design of the ABCD study as well as recruitment procedures 
and the participant sample may be found in Jernigan et al; Garavan et al; and Volkow et al. (29, 30, 31) This 
study has been reviewed and deemed not human subjects research by the University of Utah Institutional 
Review Board.  
 
ABCD collects a wide range of information from youth participants and their parents comprising phenotypic, 
demographic, psychometric, physiologic and developmental data as well as multiple modalities of MRI 
neuroimaging. Barch et al and Lisdahl et al respectively detail the phenotypic and substance abuse 
assessment protocols. (32, 33) Here, we utilize data from assessments of physical and mental health, 
substance use, neurocognition, school performance and quality, culture and environment performed for youth 
and their parents as well as biospecimens (e.g. pubertal hormone levels) and environmental toxin exposure. A 
summary description of assessments performed and environmental and school-related variables derived from 
geocoding at age 9-10 yrs that we analyzed may be inspected in Supplementary Table 1.   
 
Brain imaging incorporates optimized 3D T1; 3D T2; Diffusion Tensor Imaging; Resting state functional MRI 
(rsfMRI); and 3 task MRI (tfMRI) protocols harmonized across acquisition sites. The tfMRI protocol comprises 
the Monetary Incentive Delay (MID) and Stop Signal (SST) tasks and an emotional version of the n-back task 
which collectively measure reward processing, motivation, impulsivity, impulse control, working memory and 
emotion regulation.  In the present study we utilized ABCD-provided fully-processed metrics from each of these 
imaging types that are computed after quality control. Detailed descriptions of the requisite acquisition, pre-
processing, quality control and analytic protocols used to generate metrics may be inspected in Casey et al 
and Hagler et al. (34, 35) We utilize all available processed metrics that have passed quality control from 
diffusion fullshell; cortical and subcortical Gordon correlations (connectivity); structural; volumetric; and all 
three tfMRI tasks as well as corresponding head motion statistics for each modality. For certain modalities 
such as rsfMRI, multiple scans were attempted or completed. In such cases we use metrics computed from the 
first scan. 
 
Study inclusion criteria and sample partitioning for machine learning 
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Inclusion criteria for the present study were a) participants enrolled in the study at baseline (9-10 yrs) who were 
still enrolled in the ABCD study at 2-year follow-up at 11-12 yrs (n=8,085) who had b) complete data for all 
neural imaging types for at least one scan in each modality listed above that passed ABCD quality control 
(n=6,178) and were c) youth participants unrelated to any other youth participant in the study (n=5,355). If a 
youth had sibling(s) present in the cohort, we selected the oldest sibling for inclusion. Demographic 
characteristics of this sample at age 9-10 yrs, the age which corresponds to input data used to make 
predictions, is presented below in Table 1.  
 

Characteristic Number Percent 
Sex    
    Male 2,771 51.7% 
    Female 2,584 48.3 
Gender Identity   
    Male 2,768 51.7% 
    Female 2,577 48.1 
    Gender non-conforming 7 0.1 
    Don’t know/didn’t answer 4 0.1 
Race   
    Black/African American 873 16.3% 
    Asian 353 6.6 
    White 4,236 79.1 
    Native American/Alaska Native 187 3.5 
    Other 334 6.2 
Ethnicity   
    Hispanic/Latino/Latinx 1,070 20.0% 
    Non-Hispanic 4,224 78.9 
    Not indicated 62 1.2 
Table 1: Demographic characteristics of participant sample at age 9-10 years 
Sex refers to sex assigned at birth on the original birth certificate. Gender refers to the youth’s gender identification. Race 
and ethnicity refer to the parents’ view of youth’s race or ethnicity. More than one race or ethnicity identification may be 
selected and therefore percentages may sum to >100%.  
 
Physiologic and cognitive characteristics of the same participant sample at 9-10 yrs may be viewed in Table 2. 
 

Characteristic Range Mean Median 

Age in months  107.0-132.0 119.9 120.0 
Pubertal Development Stage 
Height (inches) 
Weight (pounds) 
Waist Circumference (cm) 

1-5 
36.6-81.0 

11.0-255.0 
17.0-61.0 

2 
55.4 
82.3 
26.4 

2 
55.4 
76.8 
25.5 

Handedness 
    Writing 
    Throwing 
    Spoon 
Vocabulary  
Attention and Inhibition 
Working Memory 
Executive Function 
Processing Speed 

 
-100.0-100.0 
-100.0-100.0 
-100.0-100.0 
51.0-208.0 
65.0-171.0 
46.0-194.0 
68.0-181.0 
20.0-185.0 

 
76.5 
67.1 
62.4 

109.0 
96.5 

102.0 
98.0 
95.2 

 
100.0 
100.0 
100.0 
109.0 
97.0 

103.0 
94.0 
95.0 

Table 2: Physiologic and cognitive characteristics of participant sample at age 9-10 years 
Characteristics of the study sample at 9-10 yrs. Pubertal development is measured with the Pubertal Development Scale 
(adapted from the Petersen scale) in a sex-specific manner. Height is measured twice with the average of these values 
presented. We note a range of 11.0-255.0 pounds for weight which is the range present in the original ABCD data. 
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Handedness is assessed with the Edinburgh Handedness Inventory. Cognitive metrics are assessed with the NIH Toolbox 
and are all age-corrected scores. Vocabulary is measured with the Picture Vocabulary test; Attention and inhibition with 
the Flanker Inhibitory Control & Attention Task; Executive Function with the Dimensional Change Card Sort Test; and 
Processing Speed with the Pattern Comparison Processing Speed Test.  
 
The final participant sample (n=5,356 participants) after inclusion criteria were applied was randomly 
partitioned into a training set comprising 70% of the sample (n=3,749) and a holdout, unseen test set 
comprising 30% of the sample (n=1,607, Figure 1). This partitioning was effected prior to pre-processing either 
input features (candidate predictors) or predictive target to minimize bias. 
 
[FIGURE 1] 
 
Preparation of predictive targets 
 
Predictive targets of ADHD, ODD and CD cases were derived from the Child Behavior Checklist for youth ages 
4-18 years (CBCL) known as the ‘ABCD Parent Child Behavior Checklist Scores Aseba (CBCL)’ in ABCD 
study nomenclature. The CBCL is a standardized instrument in widespread clinical and research use. It forms 
part of the Achenbach System of Empirically Based Assessment (ASEBA) “designed to facilitate assessment, 
intervention planning and outcome evaluation among school, mental health, medical and social service 
practitioners who deal with maladaptive behavior in children, adolescents and young adults.” (36) To score the 
CBCL, parents rate their child on a 0-1-2 scale on 118 specific problem items such as “Acts too young for age” 
over the prior 6 months. Answers are aggregated into raw, T and percentile scores for 8 syndrome subscales 
(Anxiety, Somatic Problems, Depression, Social Problems, Thought Problems, Attention Problems, Rule 
Breaking and Aggressive Behavior) derived from principal components analysis of data from 4455 children 
referred for mental health services. The CBCL is normed in a U.S. nationally representative sample of 2368 
youth ages 4-18 yrs that takes into account differences in problem scores for “males versus females”. It 
exhibits excellent test-retest reliability of 0.82-0.96 for the syndrome scales with an average r of 0.89 across all 
scales. Content and criterion validity is strong with referred versus non-referred children scoring higher on 
113/188 problem items and significantly higher on all problem scales, respectively.  
 
To form binary classification targets, we thresholded CBCL subscale T scores for ADHD (“attention problems”), 
ODD (“aggressive behavior”) and CD (“rule breaking”) using cutpoints established by ASEBA for clinical 
practice. Specifically, a T score of 65-69 (95th to 98th percentile) is considered in the ‘borderline clinical’ range, 
and scores of ≥70 are considered in the ‘clinical range.’ Accordingly, we discretized T scores for each of the 3 
subscales under consideration by deeming every individual with a T score ≥ 65 as a ‘case’ or [1] and every 
individual with a score <65 as a ‘not case’ or [0].  This process was performed separately in the training and 
test sets for participant CBCL scores at 9-10 yrs and at 11-12 yrs. 
 
Construction of participant samples for cases with externalizing disorders and controls   
 
We formed two participant samples in each of ADHD, ODD and CD in the training and test sets (Figure 1). 
The first sample type comprised all cases of ADHD, ODD and CD present in the larger sample at 11-12 yrs. 
The second sample type comprised only new onset cases at 11-12 yrs. A new onset case was defined as a 
youth who met criteria for ADHD, ODD or CD as defined by the ASEBA CBCL cut-points at 11-12 yrs who did 
not meet criteria for the requisite disorder at 9-10 yrs. Thus, six participant samples in total were constructed. 
In all samples, we formed a balanced sample of cases and controls. The latter were youth with the lowest 
possible scores on the relevant syndrome scale selected from the eligible study population (see: Baseline 
inclusion criteria and sample partitioning for machine learning) and matched with cases for age in months 
and sex/gender.  
 
Preparation of candidate predictors (input features) 
 
We assembled a feature set for input into predictive algorithms that comprised the majority of phenotypic, 
demographic, psychometric, physiologic and developmental variables available from the ABCD study 
(including data collection site) and all available neural metrics including head motion statistics with the 
exception of temporal variance measures (Supplementary Table 1). We used only metrics collected at 9-10 
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yrs. In continuous phenotypic features, we used subscale or total scores where available. For example, 
subscale scores exemplifying different types of sleep-related disorders from the Munich Chronotype 
Questionnaire. Metrics directly quantifying mental health symptoms were excluded since we aimed to predict 
cases of mental illness without using symptoms as the latter tend to inflate predictive performance and narrow 
the utility of findings. The feature set was then partitioned into training and test sets conforming at the 
participant level with case/control partitions described above (Construction of participant samples for cases 
with externalizing disorders; Figure 1). Pre-processing of features was then performed separately in the 
training and test sets to minimize bias. First, features with >35% missing values were discarded, where prior 
research shows that good results may be obtained with ML methods with imputation up to 50% missing data. 
(37)  Nominal or ordinal variables were one-hot encoded to transform them into discrete variables. Continuous 
variables were trimmed to [mean +/- 3] standard deviations to remove outliers and all features scaled in the 
interval [0,1] with MinMaxScaler. Missing values were imputed using non-negative matrix factorization (NNMF), 
a mathematically-proven imputation method that minimizes the cost function of missing data rather than 
assuming zero values. It captures both global and local structure in the data effectively and is particularly 
suitable for large-scale multimodal data having been demonstrated to perform well regardless of the underlying 
pattern of missingness. (38, 39, 40) Supplementary Table 2 shows the number and percentage of 
observations in each variable which were trimmed and filled with NNMF for the training and test sets, 
respectively. After imputation with NNMF, phenotypic variables lacking summary scores were reduced to a 
summary metric or index using feature agglomeration to produce a final set of (n=763) non-neural metrics. As 
described above, neural metrics (n=5,014) had already been processed and underwent quality control by the 
ABCD study team and were therefore not pre-processed with the exception of scaling with the MinMaxScaler, 
again performed separately in the training and test partitions. There were no missing neural features. The final 
combined, multimodal feature set including all feature types contained 5,777 features.  
 
Overview of predictive analytic pipeline 
 
We used deep learning with artificial neural networks to predict cases of ADHD, ODD and CD at 11-12 yrs. In 
total, we performed 12 experiments, predicting new onset and all prevailing cases for each of the three 
disorders using a) all available multimodal features and b) only neural features.  Deep learning models were 
implemented with k-fold cross-validation and trained by an AI algorithm that jointly performed feature selection 
and optimized across the hyperparameters in an automated manner. Typically, ~40,000 model fits were 
performed during training in each experiment. Model training was terminated based on the Bayes Information 
Criterion (BIC), an information theoretic metric. After training, final models obtain from the optimized training 
process were tested for their ability to generalize in the holdout, unseen test set and performance statistics of 
AUROC, accuracy, precision and recall, and ROC curves computed and reported for these final, optimized 
models. We also computed and report the relative importance of final predictors to making case predictions 
using the Shapley Additive Explanations (SHAP) technique. Detailed explanations of these methods are 
provided below. Code for predictive analytics may be accessed at the de Lacy Laboratory GitHub: 
https://github.com/delacylab/integrated_evolutionary_learning 
 
Coarse feature selection 
 
We performed coarse feature selection individually for each of the six experimental samples prior to beginning 
model training to reduce the number of features entering the deep learning pipeline in a principled, optimized 
manner. This identified subsets of the total 5,777 features with non-zero relationships with the predictive target.  
First, a simple filtering process was performed in which χ2 (categorical features) and ANOVA (continuous 
features) statistics and mutual information metric (all features) were computed to quantify the relationship 
between all features and the target, where the target (ADHD, ODD, CD) was represented by a categorical 
vector in [0,1]. Any feature with a non-zero relationship (either positive or negative) with the target was 
retained. Further feature selection was then performed on these filtered feature subsets using the Least 
Absolute Shrinkage and Selection Operator (LASSO) algorithm. This popular regularization technique based in 
linear regression efficiently selects a reduced set of features by forcing certain regression coefficients to zero. 
The LASSO algorithm has a hyperparameter (commonly called the α) that governs the degree of penalization 
(shrinkage) that will be imposed on the features and thereby influences results.  In order to optimize across this 
hyperparameter, we implemented the LASSO with our AI meta-learning algorithm Integrated Evolutionary 
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Learning (IEL) to tune the α hyperparameter in the same manner as described below in Integrated 
Evolutionary Learning for deep learning optimization.   
 
The number of features retained for each of the six experimental samples after each step described above for 
the coarse feature selection process may be seen in Table 3. Specific features selected in the optimized 
LASSO regularization and the resulting univariate coefficients between each of these features and the target 
vectors (ADHD, ODD, CD) for each participant sample (new onset and all prevailing cases at 11-12 yrs) may 
be viewed in Supplementary Table 3a-f. Each feature set selected by the LASSO then entered the deep 
learning pipeline.  
 
 Number of features after 

filtering 
Number of features after 

selection with LASSO 
   
ADHD, new onset 11-12 yrs 4,272 54 
ODD, new onset 11-12 yrs 4,314 76 
CD, new onset 11-12 yrs 4,303 77 
   
ADHD, all prevailing cases 11-12 yrs 4,388 63 
ODD, all prevailing cases 11-12 yrs 4,401 81 
CD, all prevailing cases 11-12 yrs 4,460 59 
   
Table 3: Feature sets after coarse feature selection for each experiment 
The total set of 5,777 multimodal input features was reduced via coarse feature selection in a two-step process of filtering 
followed by optimized regularization with the LASSO algorithm. This table displays the number of remaining features after 
filtering and regularization for each target (ADHD, ODD, CD) and participant sample type (new onset cases and all 
prevailing cases at age 11-12 years). Detailed tables showing the univariate coefficients between each feature selected 
by LASSO-based regularization and each target may be viewed in Supplementary Table 3a-f.  
 
Deep learning with artificial neural networks 
 
We used deep learning to predict cases of ADHD, ODD and CD in each type of participant sample (new onset 
and all prevailing cases at 11-12 yrs). To predict only future cases of externalizing disorders, candidate 
predictors collected at 9-10 yrs were solely used to predict cases at 11-12 yrs (Figure 2). We further 
recapitulated each experiment after restricting the set of candidate predictors to 5,014 neural features to 
construct neural-only models to compare their performance to that obtained with multimodal features.  
 
[FIGURE 2] 
 
In each case, we trained artificial neural networks using the AdamW algorithm with 3 layers, 300 neurons per 
layer, early stopping (patience = 3, metric = validation loss) and the Relu activation function. The last output 
layer contained a conventional softmax function. Learning hyperparameters (Table 3) were tuned with IEL as 
detailed below. Deep learning models were encoded with TensorFlow embedded in custom Python code.  
 
Integrated Evolutionary Learning for optimization across hyperparameters and fine feature 
selection 
 
ML algorithms typically have hyperparameters that control learning, where their settings can strongly affect 
performance.  In many approaches, these hyperparameters are used at their default settings or manually tuned 
using ‘rules of thumb’ and a restricted number of model fits are explored, introducing the possibility of bias and 
potentially limiting the solution space. (41, 42, 43) To address this issue, we previously developed an AI 
technique called Integrated Evolutionary Learning (IEL) which can improve the performance of ML predictive 
algorithms in tabular data by up to 20-25% versus the use of default model hyperparameters. (44) IEL is a form 
of computational intelligence or metaheuristic based on an evolutionary algorithm that instantiates the concepts 
of biological evolutionary selection in computer code. It optimizes across the hyperparameters of the deep 
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learning algorithm by adaptively breeding models over hundreds of learning generations by selecting for 
improvements in a fitness function (here, the Bayes Information Criterion, BIC).  
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Hyperparameters Range Mutation 
Shift 

     
        Learning rate 
        Beta 1 
        Beta 2 
 

 
0.00001-0.01 

0.9-0.999 
0.9-0.999 

 
0.0001 
0.001 
0.001 

Table 4: Hyperparameter settings optimized with Integrated Evolutionary Learning 
Optimization across the hyperparameters of learning rate, Beta 1 and Beta 2 was conducted for deep learning with 
artificial neural networks within the ranges shown.  
 
For each experiment, the deep learning algorithm was nested inside IEL, which initialized the first generation of 
100 models with randomized hyperparameter values or ‘chromosomes’. Hyperparameter settings (Table 4) 
were subsequently recombined, mutated or eliminated over successive generations. In recombination, ‘parent’ 
hyperparameters were arithmetically averaged to form ‘children’. In mutation, settings were shifted with the 
range of possible values shown in Table 4. After the first training generation, the BIC was computed for each 
of the 100 solutions. The 60 best models (highest BIC) were identified and 40 of these recombined by 
averaging the hyperparameter setting after a pivot point at the midpoint to produce 20 ‘child’ models. The 
remaining 20 were mutated to produce the same number of child models by shifting the requisite 
hyperparameter by the mutation shift value (Table 4). The remaining 40 models were discarded. The next 
generation of models was then formed by adding 60 new models with randomized settings and adding these to 
the 40 child models retained from the initial generation. Thereafter, IEL continued to recombine, mutate and 
discard 100 models per generation in a similar fashion to minimize the BIC until the latter fitness function 
plateaued. With 100 models fitted per generation, IEL typically fits ~40,000 models per experiment over ~400 
learning generations.  
 
IEL jointly performs this optimization process across hyperparameter settings with automated feature selection 
and mitigate the risk of overfitting and identify predictors that perform best. For each experiment, IEL selects 
from among available candidate predictors after coarse feature selection (Coarse feature selection, 
Supplementary Table 3). A random number of features in the range [2-50] was randomly seeded for each 
model in the initial learning generation. After computing the fitness function, feature sets from the best-
performing 60 models were allocated to child models and other feature sets discarded. As with hyperparameter 
tuning, this process was repeated for succeeding generations until the BIC plateaued.  
 
IEL implements recursive learning to facilitate computational efficiency. After training until the BIC plateaued, 
we determine the elbow of the fitness function plotted versus number of features and re-start learning with a 
warm start.  The feature set available after this warm start is constrained to that subset of features, thresholded 
by their importance, corresponding to the fitness function elbow. Learning then proceeds by thresholding 
features available for learning at the original warm start feature importance + 2 standard deviations.  In 
addition, the number of models per generation is reduced to 50 and 20 models are recombined and 10 models 
are mutated. Otherwise, training after the warm start uses the same principles as detailed above.   
 
Cross validation 
 
Deep learning models were fit within IEL using stratified k-fold cross validation i.e. every one of the 100 models 
in each learning generation within IEL was individually trained and validated using cross-validation.  As 
described above, IEL allows the number of features used to fit each model to differ within each model in every 
generation in the range [2-50]. Accordingly, k (the number of splits) was set as the nearest integer above 
[sample size/number of features]. Cross validation was implemented with the scikit-learn StratifiedKFold 
function. 
 
Testing for generalization in holdout, unseen test data and performance measurement 
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Final, optimized models generated in the IEL-supervised training process were tested on the held-out, unseen 
test set for each sample and disorder by applying the requisite hyperparameter settings and selected features 
to the test set. The area under the receiver operating curve (AUROC), accuracy, precision, and recall were 
computed for test set models using standard Sci-Kit learn libraries. The most accurate models are presented in 
Results. The threshold for prediction probability was 0.5 and receiver operating characteristic (ROC) curves 
are also provided for each experiment (Supplementary Figures 1 and 2).    
 
Feature importance determination 
 
Shapley Additive Explanations (SHAP) values were computed using the SHAP toolbox 
(https://shap.readthedocs.io/en/latest/) to determine the relative importance of each feature to predicting cases 
in each experiment for ADHD, ODD and CD. SHAP is a game theoretic approach commonly used in ML to 
explain the output of any ML model including ‘black box’ estimators such as artificial neural networks and is 
resistant to multicollinearity. (45)  It unifies prior methods such as LIME, Shapley sampling values and Tree 
Interpreter.  
 
RESULTS 
 
Overview 
 
All study results detailed below are from testing the final model obtained after IEL optimization for 
generalization in a holdout, unseen test dataset for each experiment. We present parallel sets of results for 
each disorder (ADHD, ODD, CD) in predicting new onset cases at 11-12 yrs and all prevailing cases at 11-12 
yrs. Only features collected at 9-10 yrs are input to deep learning to make predictions. Therefore, all results 
represent predictions of future case status. For each disorder, results are presented for standard ML 
performance metrics and quantification of feature importance for a) multimodal models constructed using all 
types of input features; and b) neural-only models as follows: 

• Performance statistics: accuracy, precision, recall and the AUROC. ROC curves may be viewed in 
Supplementary Figures 1 and 2.  

• Final predictors ranked in order of importance by their group-level SHAP score (average absolute value 
across the participant sample) and the mean predictor importance (group-level SHAP score) for the 
requisite experiment. 

• Summary SHAP plots that graph individual-level final predictor importance (SHAP scores) for each 
member of the participant sample. SHAP summary plots are also used to determine the directionality of 
the relationship between the predictor and case status.  

 
ADHD 
 
Using multimodal data obtained at 9-10 yrs, deep learning optimized with IEL predicted future, new onset 
cases of ADHD at 11-12 yrs with ~86% accuracy, 0.92 AUROC and precision and recall >80%. When 
predicting all prevailing cases at 11-12 yrs, performance improved to ~94% accuracy, ~0.99 AUROC and 
precision and recall >90%. When only neural features were used, performance fell by ~6-9% in predicting new 
onset cases and up to 40% in prevailing cases. Neural-only models predicted new onset cases moderately well 
with 79% accuracy, 0.841 AUROC and precision and recall ~74%. Performance in predicting prevailing cases 
with neural-only features was poor, with ~64% accuracy, 0.654 AUROC and <60% precision and recall.  
 
The presence of a disorder of excessive somnolence was the most important predictor of new onset case 
status in ADHD with parent-child conflict present to a lesser degree. The model that predicted all prevailing 
cases at 11-12 yrs was more complex. The most important predictors were whether the child had received 
mental health or substance abuse services prior to assessment at 9-10 yrs and the total level of parental 
behavioral problems. This was followed by conflict between parent and child, presence of a disorder of sleep-
wake transition or excessive somnolence, and the level of parental externalizing behaviors. For both new onset 
and all prevailing cases, how well the child functioned at school and specifically having excellent grades in 
school had an inverse predictive relationship with ADHD case status. 
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a. 

Age of case determination Accuracy (%) Precision (%) Recall (%) AUROC 

New onset at age 11-12 years   86.1 81.7 83.7 0.919 

All cases at age 11-12 years 93.7 91.8 91.6 0.985 
 
b. 

Age of case determination Accuracy (%) Precision (%) Recall (%) AUROC 

New onset at age 11-12 years   79.1 73.9 74.4 0.841 

All cases at age 11-12 years 63.7 59.5 49.5 0.654 
Table 5: Performance of deep learning optimized with Integrated Evolutionary Learning in predicting 
cases of ADHD using multimodal and neural-only feature types 
Performance statistics of accuracy, precision, recall and the AUROC are shown for the most accurate model obtained with 
deep learning optimized with Integrated Evolutionary Learning using a) multimodal features and b) only neural features. 
We used features obtained at 9-10 years of age to predict new onset cases of ADHD at 11-12 years of age as well as all 
prevailing cases at 11-12 years of age. Corresponding ROC curves may be viewed in Supplementary Figures 1 and 2.  
 
In prevailing cases, this was joined by the child’s level of prosocial behaviors. In multimodal models where all 
feature types were available, the optimization process run by IEL preferentially selected psychosocial features 
with no cognitive, neural or biological metrics present in final, optimized models. Group-level importances for 
multimodal model predictors (averaged across the participant sample) were in the range [0.009, 0.20] and the 
mean importance for each experiment in the range [0.06, 0.12].  
 
a 

Age of case determination Ranked Final Predictors Importance 

New onset at age 11-12 years   

 
Disorder of excessive somnolence 
Does very well at school 
Parent reports some conflict with child 
Youth gets excellent grades at school 
 
Mean 
 

 
0.2038 
0.1423 
0.0796 
0.0567 

 
0.1206 

 

All cases at age 11-12 years 

 
Child has received MH/SU services in last 6 months 
Parent total behavioral problems 
Parent reports some conflict with child 
Disorder of sleep-wake transition 
Youth performs very well in school 
Disorder of excessive somnolence 
Youth receives excellent grades in school 
Prosocial behaviors mean score 
Parent externalizing problems 
 
Mean 
 

 
0.1638 
0.1061 
0.0725 
0.0665 
0.0617 
0.0375 
0.0234 
0.0147 
0.0091 

 
0.0617 
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b 

Neural data type Ranked Final Predictors Importance 

New onset at age 11-12 
years   

 
T1 intensity in brain stem ROI 
Correlation between ventral attention network and right ventral 
diencephalon ROI 
SST any stop vs correct go contrast in left pars opercularis ROI 
SST incorrect stop vs correct go contrast in left lingual ROI 
T1 intensity WM for left lateral occipital ROI 
Cortical thickness in mm of right transverse temporal ROI 
MID loss anticipation vs neutral contrast in right supramarginal ROI 
Average FA in GM right caudal ACC ROI 
 
Mean 

 
0.0890 
0.0532 

 
0.0411 
0.0364 
0.0309 
0.0304 
0.0271 
0.0147 

 
0.0400 

 

All cases at age 11-12 
years 

  
GM FA in right caudal middle frontal ROI 
Cortical area in mm2 of left inferior parietal ROI 
MID small loss vs neutral contrast in right inferior temporal ROI 
SST incorrect go vs incorrect stop contrast in left lingual ROI 
Cortical thickness in mm of left pars triangularis ROI 
SST incorrect stop vs correct go in left lingual ROI 
 
Mean 
 

 
0.0446 
0.0259 
0.0192 
0.0134 
0.0129 
0.0046 

 
0.0200 

Table 6: Final predictors of cases of ADHD at age 11-12 years  
Final predictors of cases of all prevailing cases of ADHD at 11-12 years as well as new onset cases only at 11-12 years of 
age are shown for the most accurate models obtained using deep learning optimized with IEL obtained with a) multimodal 
features and b) only neural features. Final predictors are ranked in order of importance where the relative importance of 
each predictor is computed with the Shapley Additive Explanations technique and presented here averaged across all 
participants in the sample. Features in red indicate an inverse relationship with ADHD verified with the Shapley method. 
MH = mental health; SU=substance use; SST = Standard Stop Signal task; MID = Monetary Incentive Delay task; ROI = 
region of interest; FA = fractional anisotropy; WM = white matter; GM = gray matter.  
 
In interpreting the neural-only experiments, we observed little overlap between the final, optimized models for 
new onset and all prevailing cases of ADHD. The only common feature was a negative relationship between 
case status and SST contrast in the left lingual ROI, though the contrast effect differed between incorrect stop 
vs correct go (new onset) and incorrect go vs incorrect stop (prevailing cases). In new onset cases, the most 
prominent positive predictor was the correlation between the ventral attention network and right ventral 
diencephalon ROI, followed by SST contrast in the left pars opercularis and cortical thickness in the right 
transverse temporal ROI. Structural differences in the brain stem, left lateral occipital white matter and right 
caudal ACC along with MID contrast in the right supramarginal ROI were negative predictors of new onset 
case status. The neural-only model of all prevailing ADHD cases was less reliable, with an AUROC of 0.654, 
but we found structural features in the right caudal middle frontal and left pars triangularis ROIs predicted case 
status with inverse relationships with cortical area of the left parietal ROI and MID loss contrast in the right 
inferior temporal ROI. Group-level importances for neural-only model predictors were in the range [0.02,0.04] 
and the mean importance for each experiment in the range [0.0046, 0.089], both representing lower 
importance ranges than multimodal models.   
 
We further computed and plotted individual-level SHAP values to quantify the dispersion of importances across 
individuals and assess the directionality of the relationship between final predictors and clinical case status 
(Figure 3). In these summary plots, each data point represents an individual participant and the colorization 
reflects the original value of the predictor as an input feature. Thus, discrete-valued features appear as red or 
blue, whereas a continuous feature appears as a color gradient from low to high.  
 
[FIGURE 3] 
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Individual-level importances in multimodal predictive models of both new onset and prevailing cases of ADHD 
were typically more widely dispersed than in neural-only models. Further, wider dispersions across the 
participant samples were observed for the more important predictors.  
 
Oppositional Defiant Disorder 
 
In ODD, predictive models performed strongly using multimodal features. In new onset cases, we achieved 
accuracy of ~97%, AUROC of 0.996 and precision and recall ≥94% with 96% accuracy, AUROC of 0.988 and 
precision and recall ≥95% when predicting all prevailing cases at 11-12 yrs. In neural-only models we observed 
similar phenomena as in ADHD: performance fell substantially with relatively better performance in predicting 
new onset vs prevailing cases. When only neural features were used, performance fell by ~20% in predicting 
new onset cases and up to ~40% in prevailing cases. Neural-only models predicted new onset cases 
moderately well with 74% accuracy, 0.792 AUROC and precision and recall ≥65%. Performance in predicting 
prevailing cases with neural features was poor, with ~56% accuracy, 0.567 AUROC and <55% precision and 
recall.  
 
a. 

Age of case determination Accuracy (%) Precision (%) Recall (%) AUROC 

New onset at age 11-12 years   96.8 96.8 93.5 0.996 

All cases at age 11-12 years 96.2 94.8 95.5 0.988 
b. 

Age of case determination Accuracy (%) Precision (%) Recall (%) AUROC 

New onset at age 11-12 years   74.2 69.4 64.5 0.792 

All cases at age 11-12 years 56.1 53.9 27.2 0.567 
Table 7: Performance of deep learning optimized with Integrated Evolutionary Learning in predicting 
cases of ODD using multimodal and neural-only feature types 
Performance statistics of accuracy, precision, recall and the AUROC are shown for the most accurate model obtained with 
deep learning optimized with Integrated Evolutionary Learning using a) multimodal features and b) only neural features. 
We used features obtained at 9-10 years of age to predict new onset cases of ODD at 11-12 years of age as well as all 
prevailing cases at 11-12 years of age. Corresponding ROC curves may be viewed in Supplementary Figures 1 and 2.  
 
Whether the youth had ever received mental health or substance abuse services prior to assessment at age 9-
10 yrs was the most important predictor of new onset case status in ODD followed by the presence of a 
disorder of excessive somnolence or sleep-wake transition. Additional important predictors were parental 
factors: the presence of nerves or a nervous breakdown problem and levels of externalizing or aggressive 
behaviors.  Youth prosocial behaviors exhibited an inverse relationship with case status. Features that 
predicted all prevailing cases at 11-12 yrs included a number of final predictors that were the same or 
thematically similar: whether the child had received mental health or substance abuse services in the last 6 
months (the most important predictor), total sleep disturbances, disorder of sleep-wake transition, parent 
externalizing behaviors and an inverse relationship with prosocial behaviors. Final predictors that differed in 
this model were the youth’s mother having a depression problem and whether either parent had sought 
treatment for a mental or emotional problem. Of note, the latter predictor had an inverse relationship with case 
status, suggesting it was related to (an) untreated mental problem(s). In multimodal models where all feature 
types were available, the optimization process run by IEL preferentially selected psychosocial features with no 
cognitive, neural or biological metrics present in final, optimized models. Group-level importances for 
multimodal model predictors (averaged across the participant sample) were in the range [0.003, 0.18] and the 
mean importance for each experiment at ~0.07.  
 
In neural-only models, the future onset of ODD at 11-12 yrs was predicted by a model (with moderately strong 
performance at AUROC = 0.79) containing only rsfMRI-derived correlations. Strikingly, every final predictor 
represented a correlation metric between a cortical network and subcortical ROI, emphasizing networks 
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involved in salience, executive function, spatial memory and task performance. Of note, all neural features with 
positive relationships with the onset of ODD were in the left hemisphere and those with inverse relationships 
with case status in the right hemisphere. As noted above, the neural-only model predicting all prevailing cases 
of ODD at 11-12 yrs exhibited poor performance (AUROC = ~0.567) and as such it cannot be considered 
reliable. It consisted of two structural gray matter features: fractional anisotropy of the right lateral orbitofrontal 
ROI and cortical area of the left inferior parietal ROI. Group-level importances for neural-only model predictors 
(averaged across the participant sample) were in the range [0.0007, 0.075] and the mean importance for each 
experiment in the range [0.0026, 0.0410]. 
 
a 

Age of case determination Ranked Final Predictors Importance 

New onset at age 11-12 years   

 
Youth has ever received MH/SU services 
Disorder of excessive somnolence 
Disorder of sleep-wake transition 
Either parent has nerves or nervous breakdown 
problem 
Prosocial behavior scale score 
Parent externalizing problems 
Parent aggressive behavior problems 
 
Mean 
 

 
0.1581 
0.1290 
0.0968 
0.0871 

 
0.0516 
0.0290 
0.0032 

 
0.0694 

 

All cases at age 11-12 years 

 
Child has received MH/SU services in last 6 months 
Parent reports getting along very well with child 
Total sleep disturbance score 
Mother has depression problem 
Either parent has been to doctor or counselor due to 
emotional/mental problem 
Parent externalizing problems 
Prosocial behavior mean score 
Disorder of sleep-wake transition 
 
Mean 
 

 
0.1856 
0.0951 
0.0827 
0.0819 
0.0420 

              
             0.0367 
             0.0358 

0.0347 
 

0.0743 

b 

Neural data type Ranked Final Predictors Importance 

New onset at age 11-12 
years   

 
Correlation between salience network and left caudate ROI 
Correlation between retrosplenial temporal network and right caudate 
ROI 
Correlation between default network and left hippocampal ROI 
Correlation between cinguloopercular network and left amygdala ROI 
Correlation between cinguloopercular network and right putamen ROI 
Correlation between fronto-parietal network and left caudate ROI 
Correlation between sensorimotor hand network and left amygdala ROI 
 
Mean 

 
0.0750 
0.0743 

 
0.0509 
0.0262 
0.0256 
0.0207 
0.0158 

 
0.0410 

 

All cases at age 11-12 
years 

  
Average FA in GM in right lateral orbitofrontal ROI 
Cortical area in mm2 of left inferior parietal ROI 
 
Mean 
 

 
0.0044 
0.0007 

 
0.0026 

Table 8: Final predictors of cases of ODD at age 11-12 years  
Final predictors of cases of all prevailing cases of ODD at 11-12 years as well as new onset cases only at 11-12 years of 
age are shown for the most accurate models obtained using deep learning optimized with IEL obtained with a) multimodal 
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features and b) only neural features. Final predictors are ranked in order of importance where the relative importance of 
each predictor is computed with the Shapley Additive Explanations technique and presented here averaged across all 
participants in the sample. Features in red indicate an inverse relationship with ODD verified with the Shapley method. 
MH = mental health; SU=substance use; ROI = region of interest; GM = gray matter.  
 
[FIGURE 4] 
 
As observed in ADHD, individual-level importances in multimodal predictive models of both new onset and 
prevailing cases of ODD were typically more widely dispersed than in neural-only models. Further, wider 
dispersions across the participant samples were observed for the more important predictors.  
 
Conduct Disorder 
 
Deep learning optimized with IEL predicted future, new onset cases of CD at 11-12 yrs with ~90% accuracy, 
0.92 AUROC and precision and recall >85% using multimodal features assessed at 9-10 yrs. In predicting all 
prevailing cases at 11-12 yrs, performance improved further to ~96% accuracy, ~0.99 AUROC and precision 
and recall ≥95%. This strong predictive performance represented the best overall performance among the 
three externalizing conditions. When only neural features were used, performance fell by ~10% in predicting 
new onset cases and up to 20% in prevailing cases. However, this is in the context of neural-only models 
achieving moderately strong performance in predicting new onset cases with 80% accuracy, 0.808 AUROC 
and precision and recall >70%. Performance in predicting prevailing cases with neural-only features was also 
moderately strong with ~78% accuracy, 0.816 AUROC and >70% precision and recall.  
 
a. 

Age of case determination Accuracy (%) Precision (%) Recall (%) AUROC 

New onset at age 11-12 years   90.0 85.4 92.0 0.922 

All cases at age 11-12 years 96.3 95.1 95.0 0.990 
 
b. 

Age of case determination Accuracy (%) Precision (%) Recall (%) AUROC 

New onset at age 11-12 years   80.0 75.7 72.0 0.808 

All cases at age 11-12 years 77.5 71.7 75.0 0.816 
Table 9: Performance of deep learning optimized with Integrated Evolutionary Learning in predicting 
cases of conduct disorder using multimodal and neural-only feature types 
Performance statistics of accuracy, precision, recall and the AUROC are shown for the most accurate model obtained with 
deep learning optimized with Integrated Evolutionary Learning using a) multimodal features and b) only neural features. 
We used features obtained at 9-10 years of age to predict new onset cases of CD at 11-12 years of age as well as all 
prevailing cases at 11-12 years of age. Corresponding ROC curves may be viewed in Supplementary Figures 1 and 2.  
 
The interpretation of predictive models for CD was particularly intriguing. Unlike ADHD and ODD, final 
predictors of both new onset cases and all prevailing cases at 11-12 yrs using multimodal data did include 
neural features. New onset cases of CD were predicted by psychosocial features also found in ADHD and 
ODD (tenor of parent-child relationship, sleep disturbances, mental health treatment prior to age 9-10 yrs) but 
here these psychosocial factors interacted in an inverse relationship with structural disturbance in the left 
hippocampal ROI. Similarly, final predictors of all prevailing cases of CD at 11-12 yrs comprised psychosocial 
features common to ADHD and ODD (prior mental health treatment, tenor of parent-child relationship, sleep 
disturbances, school performance) but these interacted with structural features in the left transverse temporal 
white matter and left caudal anterior cingulate cortex gray matter (inverse relationship). A further interesting 
facet of this latter model was that parent somatization traits were a driver of CD where parent aggressive traits 
had an inverse relationship with case status. Somatization refers to the expression of mental phenomena as 
physical (somatic) symptoms, seek medical care for them and placement of an undue focus on the distress 
caused by physical complaints.  
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In neural-only models, which performed relatively well in CD, prominent predictors of new onset cases were 
structural features in the right rostral middle frontal ROI, left hippocampus (as also found in the multimodal 
model) and right caudate. Less important features included the correlation between the cinguloopercular 
network and left amygdala (also observed in ODD) and the left transverse temporal ROI (also observed in the 
multimodal model). Final neural-only predictors of prevailing cases of CD were dominated by cortical-
subcortical connectivity features comprising the cinguloopercular network with the left amygdala (also 
important to new onset prediction), auditory network with right hippocampus and default mode network with 
right ventral diencephalon. This model was rounded out with structural gray matter differences in the left caudal 
ACC, also observed in the multimodal model. In both new onset and prevailing cases, there was an emphasis 
on subcortical structural features and connectivity between cortical networks and subcortical ROIs.  
 
a 

Age of case determination Ranked Final Predictors Importance 

New onset at age 11-12 years   

 
Parent reports gets along very well with child 
Disorder of sleep wake transition 
Total sleep disturbances 
Child has ever received MH/SU services 
Average FA left hippocampus ROI 
 
Mean 
 

 
0.1126 
0.0996 
0.0949 
0.0927 
0.0642 

 
0.0928 

All cases at age 11-12 years 

 
Child has received MH/SU services in last 6 months 
Parent reports getting along very well with child 
Child is doing very well in school 
Disorder of sleep-wake transition 
Parent somatization behaviors score 
Youth receives excellent grades in school 
Parent aggressive behavior score 
T1 intensity WM left transverse temporal ROI 
Average FA GM left caudal ACC ROI 
 
Mean 
 

 
0.1593 
0.1442 
0.0958 
0.0806 
0.0455 
0.0408 
0.0235 
0.0130 
0.0123 

 
0.0683 

 
 
b 

Neural data type Ranked Final Predictors Importance 

New onset at age 11-12 
years   

 
Average FA GM right rostral middle frontal ROI 
Average FA left hippocampus ROI 
Average FA right caudate ROI 
Correlation between cinguloopercular network and left amygdala ROI 
T1 intensity WM left transverse temporal ROI 
Correlation between sensorimotor mouth network and left caudal ROI 
 
Mean 

 
0.1628 
0.1348 
0.1043 
0.0531 
0.0490 
0.0333 

 
0.0890 

 

All cases at age 11-12 
years 

  
Correlation between cinguloopercular network and left amygdala ROI 
Correlation between auditory network and right hippocampal ROI 
Correlation between default network and right ventral diencephalon 
ROI 
Average FA GM in left caudal ACC ROI 
 
Mean 
 

 
0.0960 
0.0456 
0.0444 

 
0.0192 

 
0.0513 
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Table 10: Final predictors of cases of conduct disorder at age 11-12 years  
Final predictors of cases of all prevailing cases of CD at 11-12 years as well as new onset cases only at 11-12 years of 
age are shown for the most accurate models obtained using deep learning optimized with IEL obtained with a) multimodal 
features and b) only neural features. Final predictors are ranked in order of importance where the relative importance of 
each predictor is computed with the Shapley Additive Explanations technique and presented here averaged across all 
participants in the sample. Features in red indicate an inverse relationship with CD verified with the Shapley method. MH 
= mental health; SU=substance use; ROI = region of interest; FA = fractional anisotropy; WM = white matter; GM = gray 
matter.  
 
[FIGURE 5] 
 
As observed in both ADHD and ODD, individual-level importances in multimodal predictive models of both new 
onset and prevailing cases of CD were typically more widely dispersed than in neural-only models. Further, 
wider dispersions across the participant samples were observed for the more important predictors.  
 
The relationship between accuracy and final predictor importance 
 
We computed the mean predictor importance for each experiment to explore the relationship between model 
accuracy in testing in held-out, unseen data and final predictor importance after optimized, automated feature 
selection. For example, the average importance of final predictors of new onset ADHD at 11-12 years (Table 
6). This data may be inspected in Supplementary Table 4. Further, we computed the correlation and R2 of the 
relationship between accuracy and mean predictor importance for each experiment described in the present 
study. Across all experiments, the correlation between accuracy and predictor importance in final, optimized 
models tested in held-out, unseen data was 72.7% and the R2 was 52.8%. This is summarized in Figure 6 
where mean final predictor importance is shown plotted against log(accuracy) to improve scale interpretation, 
though we note that the reported correlation and R2 was computed with accuracy.  
 
[FIGURE 6] 
 
DISCUSSION 
 
General observations across externalizing disorders 
 
Using an AI-guided feature selection process, we were able to distil ~6,000 candidate predictors contributed by 
children 9-10 yrs and their parents into robust, individual-level models predicting the later (11-12 yrs) onset of 
ADHD, ODD and CD. This extended prior work in ML prediction of externalizing disorders in adolescence by 
assessing ~30x more candidate predictors spanning a wider variety of knowledge domains (cognitive, 
psychosocial, biological, multiple neural types). By imposing a common pre-processing and analytic design 
across all three major externalizing disorders in the same participant cohort we were able to directly compare 
results, quantify the relative predictive performance of multimodal vs neural features and examine the 
relationship between predictor importance and model accuracy across multiple experiments.  To our 
knowledge, this is the first study using ML to predict the onset of all three major adolescent externalizing 
disorders and include many types of neural predictors (rsfMRI connectivity; task fMRI effects; diffusion and 
structural metrics), analyze >200 multimodal features and quantify the relationship between predictor 
importance and accuracy. 
 
Comparing across experiments, we found that relative predictive performance varied according to disorder and 
predictor type (psychosocial vs neural). Overall, deep learning optimized with IEL applied to multimodal 
features achieved strong performance with ~86-97% accuracy, 0.919-0.996 AUROC and ~82-97% precision 
and recall in testing in held-out, unseen data. With multimodal features, performance was slightly stronger in 
predicting prevailing over new onset cases in ADHD and CD but equivalent in ODD with the strongest 
performance overall in ODD, followed by CD and then ADHD. Further targeted experiments specifically 
assessed the standalone predictive ability of multiple neural feature types derived from MRI. After restricting 
the candidate predictors to 4,777 neural features, we observed that predictive performance dropped 
substantially across all three disorders, most prominently when predicting all prevailing cases. The small 
number of prior ML studies in adolescent externalizing disorders that have directly compared the utility of 
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psychosocial vs neural predictors have obtained similar results and performance differentials. (14) However, 
we would highlight that neural-only features were for the most part able to predict new onset cases with 
accuracy and AUROC of ~80%. While not as strong as with multimodal features, this performance compares 
favorably with the existing literature using ML and biobehavioral features to predict externalizing disorders in 
adolescents.  
 
To our knowledge, this is the first study to provide directly comparable predictive models of all three major 
externalizing disorders. In adolescence, ADHD, ODD and CD frequently co-occur in the population, and in 
adulthood are increasingly co-morbid with mental health conditions such as the internalizing and personality 
disorders and substance use. It is therefore challenging to assemble a longitudinal cohort where participants 
have only ADHD, ODD or CD without any co-morbidities, and we are not aware that such a sample exists in 
adolescence with sufficient participants to enable rigorous ML analyses. Moreover, allowing naturalistic sample 
overlap among the externalizing conditions may improve translational relevance in that it reflects the clinical 
population. Here, we adopted a design where all three disorders are predicted in the same cohort using the 
same methods to allow head-to-head comparison of final predictors and enable the identification of common vs 
specific predictors across ADHD, ODD and CD in the same population. We found that each set of final 
predictors was a unique combination of features and differentiated both a) ADHD, ODD and CD from each 
other and b) future new onset from all prevailing cases. However, there were cross-cutting themes. In 
predicting case onset, sleep disorders (excessive somnolence, sleep-wake transition and total disturbances) 
were common, prominent predictors across ADHD, ODD and CD. Sleep disturbances may affect up to ~40% 
of elementary school age children and youth with both internalizing and externalizing disorders are at elevated 
risk. (49, 50) Sleep disturbances have been shown to “precede, predict and significantly contribute” to 
behavioral issues in ADHD and worsen disruptive behaviors, ODD and CD in adolescence, though links with 
sleep latency and duration have been variable (19, 20, 21, 22) Here, our findings add to a growing body of 
work suggesting sleep disturbances may be important intervention targets in elementary school age youth to 
reduce the later onset of clinical ADHD, ODD and CD. Moreover, we found that daytime somnolence and 
sleep-wake transition were emphasized in predicting the externalizing disorders in adolescence and not sleep 
latency or duration. Other themes were shared by two of the three disorders: conflict between parent and child 
was shared in ADHD and ODD and in the more behaviorally severe disorders (ODD, CD), youth appeared to 
have come to clinical attention prior to age 9-10 yrs. In our models for all prevailing cases, shared themes were 
recent mental health treatment for the youth, sleep disturbances and parental burden of various types of 
behavioral problems and parent-child conflict. Unsurprisingly, therefore, there are thematically common 
predictors across all three externalizing disorders that also reflect the extant literature. However, disorder-
specific predictors did exist that may aid in disambiguating the onset of these conditions. Most strikingly, CD 
was marked by the importance of structural brain features that interacted with psychosocial predictors and 
which appeared in neither ADHD nor ODD in multimodal models. As well, neural-only models achieved their 
best performance in CD over ADHD or ODD. This highlights a potential role for structural neuroimaging in 
identifying youth at risk for CD, the most severe and disabling of the three disorders, vs ADHD or ODD. In 
terms of the latter two conditions, school performance was a prominent predictor of the onset of ADHD vs an 
emphasis on lower levels of prosocial behaviors and parent mental health issues in ODD. 
 
Recent studies suggest that inflated effect sizes in neuroimaging studies of psychopathology and cognitive 
traits may be responsible for generalization failure, particularly in group-level association studies and smaller 
participant samples. (55) While there is no exact equivalent to group-level effect size in the individual-level 
models provided by deep learning with artificial neural networks, predictor importance in the context of 
accuracy is conceptually similar. We therefore investigated predictor importance at both the group and 
individual level and its relationship with model performance in generalization testing, finding a moderately 
strong relationship (R2 ~53%) between predictor importance and accuracy. Psychosocial predictors in 
multimodal models had larger importances and wider inter-individual dispersions than those in neural-only 
experiments, even after extensive optimization and principled feature selection. Collectively, these results 
suggest that the smaller importances of neural features and their more restricted inter-individual variability 
were at least related to their weaker performance in predicting cases. Future work will be required to determine 
whether these phenomena are seen in other disorders and participant samples or if other types of neural 
features might perform differently in predicting cases of externalizing disorders. 
 
Predicting the onset of ADHD in early adolescence 
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ADHD affects up to 10% of school age children and is characterized by inattention, impulsivity and 
hyperactivity. It is a developmental disorder which shows markedly increasing prevalence from late elementary 
school through adolescence and is treatable. Thus, the early detection of children at risk for new onset is of 
substantial interest. There have been a number of ML multimodal predictive studies in adolescent ADHD, 
predominantly cross-sectional. National-level cohorts have offered large sample sizes to enable ML but 
typically a smaller range of psychosocial/demographic candidate predictors. For example, Garcia-Argibay et al 
analyzed 22 candidate predictors in Swedish registry data (n=238,696), achieving moderate performance with 
deep learning (accuracy: 69%, AUROC: 0.75) and identifying top predictors of having a parent with criminal 
convictions or relative with ADHD, male sex, number of academic subjects failed and speech/learning 
disabilities. (23) In a Japanese sample (n = 45,779), Maniruzzaman et al identified family structure, insurance 
age, sex, medical conditions, mental health symptomatology as significant among 19 psychosocial candidate 
predictors (accuracy: 86%, AUROC: 0.94). (24) Using a British school-based cohort, Ter-Minassian et al were 
able to access a wider range of 68 candidate predictors and found school attendance, social-emotional 
development level, writing performance, male sex and problem solving/reasoning to be most important in 
predicting ADHD (AUROC: 0.72). (25) Analyzing ~6,000 candidate multimodal predictors, we found that the 
onset of ADHD in early adolescence was robustly (accuracy: ~86%, AUROC: 0.919) predicted by a simple 
model comprising the presence of a disorder of excessive somnolence, two metrics of poor school 
performance and parent-child conflict. 
 
Sleep disturbances are widely reported in ADHD including longer sleep latency, frequent awakenings, non-
restorative sleep, decreased sleep and daytime somnolence (20, 26) Though many children with ADHD are 
treated with stimulants, the evidence that this disrupts sleep is inconclusive, though sleep disturbances are 
thought to worsen neurocognitive outcomes. (27) In the present study we included many types of sleep 
disorders and metrics as candidate predictors (Supplementary Table 1) and identified excessive somnolence 
as the most important predictor of the future onset of ADHD at 11-12 yrs when measured in children ages 9-10 
yrs who have not been diagnosed with ADHD or taken stimulants. Thus, our findings extend prior work by 
suggesting that excessive daytime somnolence rather than other sleep metrics may be a helpful predictor of 
future ADHD case status. Excessive somnolence could be caused by a variety of developmental or 
environmental factors in school age children and future work may provide a mechanistic explanation of how it 
predicts ADHD onset. As noted above, poor school performance and family dysfunction have previously been 
identified as a predictor of ADHD and is well-associated with the disorder. Here, we add to this literature by 
identifying poor school performance and parent-child conflict as prospective predictors of ADHD onset in early 
adolescence. Of note, final predictors of new onset ADHD were essentially a subset of those that predicted all 
prevailing cases, where in the latter parent behavioral traits of total and externalizing problem behaviors were 
also present.  
 
We found that prospective prediction of ADHD onset in early adolescence was not improved by neural 
features. However, our neural-only model of ADHD onset did achieve moderately strong performance 
(accuracy: ~79%, AUROC: 0.841) and is of interest. The neural substrate of ADHD has been extensively 
studied in group-level associative work. More recently, the construction of ML classifiers with neural features 
was stimulated by the formation of the aggregated ADHD-200 dataset and associated Global Competition, 
though many resultant studies have been criticized for reporting “inflated” performance statistics based on 
cross-validated training rather than testing for generalization in held-out, unseen data. (28) Among the latter, 
performance has varied widely with accuracy rarely surpassing 80% and the majority of studies analyzing 
ADHD-200 cross-sectional, data with a wide age span. We are not aware of other studies using ML for 
prospective prediction of the onset of adolescent ADHD using a comparably large number of neural features 
across multiple MRI types in a standardized cohort. In new onset cases, we found the most prominent 
predictor was the correlation between the ventral attention network and right ventral diencephalon ROI, 
followed by SST contrast in the left pars opercularis (Brodmann Area 44) and cortical thickness in the right 
transverse temporal ROI (linked with the processing of incoming auditory information). The ventral attention 
network is one of the primary attention networks in the brain and directs attention to unexpected stimuli. It has 
been very well-associated with ADHD symptomatology in both children and adults, as have differences in 
subcortical structures. (29, 30, 31, 32, 33) Among subcortical structures, the diencephalon was historically less 
studied in ADHD. However, the thalamus, a primary component of the diencephalon which modulates and 
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filters interfering stimuli has recently attracted much attention with structural thalamic differences identified in 
youth with ADHD. (34, 35, 36)  
 
Predicting the onset of Oppositional Defiant Disorder in adolescence  
 
Oppositional defiant disorder is characterized by a pattern of uncooperative, defiant and angry behavior 
towards authority figures that causes significant problems at home or school. Like ADHD, a proportion of youth 
with ODD ‘grow out’ of the condition and ~50% of youth with ODD have ADHD. Of those in whom ODD 
persists, CD may evolve and in adulthood ~40% go on to develop antisocial personality disorder and/or other 
mental health or substance abuse problems. Since the prevalence of ODD climbs markedly in elementary 
school and empirically-based treatment is available, identifying specific prospective predictors of the disorder in 
late childhood and early adolescence – particularly those that differentiate it from ADHD - is of considerable 
import. ODD and CD are often grouped as the ‘disruptive disorders’ and unfortunately few large-scale ML 
studies have approached ODD in isolation. To our knowledge, this study represents the first to analyze a large 
number of multimodal predictors including multiple types of neuroimaging to prospectively predict ODD as 
distinct from CD in early adolescence. We found that deep learning optimized with IEL prospectively predicted 
the onset of ODD with strong performance using multimodal features (accuracy: ~97%, AUROC: 0.996) in 
held-out, unseen data. While sleep disorders were final predictors that ODD shared with ADHD, ODD had a 
more complex predictive model that additionally included several measures of parental mental health problems 
(either parent has depression i.e. nerves or nervous breakdown problem; parent externalizing and aggressive 
problems) but did not include the metrics of school performance that predicted ADHD onset. Indeed, the most 
important predictor was whether the child had already come to clinical psychiatric attention prior to age 9-10 
yrs. Here, our work is concordant with extant group-based studies in ODD, which associate case status with 
stress and conflict, parental depression and other parental factors such as hostility, support, scaffolding and 
further suggest that symptoms are present in preschool and ‘cascade’ toward eventual diagnosis with parental 
mental health problems significantly moderating treatment outcome. (37, 38, 39, 40, 41)  
 
As with ADHD, we found that biological and physiologic metrics were not selected in multimodal prospective 
prediction of the onset of ODD, and that neural-only models sacrificed substantial performance. However, our 
neural-only model still obtained moderately strong performance (accuracy: 74%, AUROC: 0.792) and a striking 
result worthy of examination. While 5,777 neural features across multiple neuroimaging types were analyzed, 
ODD onset at 11-12 yrs was predicted by a markedly homogenous combination of features that were all rsfMRI 
metrics representing connectivity between cortical networks and subcortical ROIs, in particular limbic regions 
of the amygdala and caudate and putamen (dorsal striatum). Limbic regions in the left hemisphere predicted 
case status while those in the right hemisphere had an inverse relationship with ODD. Moreover, cortical 
networks selected as final predictors had intuitive relationships with ODD symptomatology, being associated 
with navigating and integrating learned social rules, hierarchies, and contingencies (salience); empathy and 
introspection (default); efficient task switching (cinguloopercular); and executive control (fronto-parietal). (42, 
43, 44, 45, 46, 47, 48) Many have known limbic nodes where the latter structures are associated with fear and 
threat detection and the autonomic “fight or flight” response (amygdala) reinforcement learning and action 
selection (dorsal striatum). (49, 50, 51) As noted above, few large-scale ML predictive studies have focused 
exclusively on ODD or made head-to-head comparisons among the externalizing disorders, including 
neuroimaging studies. Menon & Krishnamurthy predicted disruptive behaviors (collapsing ODD and CD into 
one category) in children age 9-10 in the ABCD cohort using a convolutional neural network applied to three 
types of neural features (diffusion, structural and seed-based rsfMRI connectivity) obtained at 9-10 yrs to 
examine the relative predictive power of each type of imaging. They obtained moderate performance 
(accuracy: 0.72, AUROC: 0.74) without testing in held-out data and found that a combination of modalities 
performed better than any single imaging type. The right superior longitudinal fasciculus, middle frontal, 
postcentral, middle occipital and middle temporal gyri and inferior parietal lobule were class discriminative in 
disruptive behaviors. Thus, the current study suggests an intriguing jumping-off point for neural prediction of 
ODD development in suggesting a focus on cortical-subcortical relationships centered around connectivity 
between cortical control networks and limbic loci performing emotional response and action selection. In this, 
ODD contrasts with the attention and language processing networks and areas that were emphasized in ADHD 
onset.  
 
Predicting the onset of Conduct Disorder in early adolescence 
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While conduct disorder may be grouped with ODD as the ‘disruptive’ disorders, it is differentiated by the 
presence of aggression and destructive behaviors directed toward people, animals or property, serious 
violation of rules and lack of empathy. CD is often considered the most severe and disabling of the adolescent 
externalizing disorders. While ~60-70% of youth will lose the diagnosis in adulthood, those that do not have a 
relatively poor prognosis associated with the development of other mental health and substance abuse 
disorders, antisocial personality disorder and life impairment including involvement in the justice system.  In 
prior group-based longitudinal studies, the development of CD has been associated with impulsivity, parental 
behaviors such as poor supervision and punitive discipline and cold or antisocial parental traits and parental 
conflict, family risk factors like large size or low income and contextual factors such as antisocial peers, and 
adverse school or neighborhood environments. (52) In the only multimodal ML classification study previously 
performed in CD specifically, Chan et al also used data collected from children age 9-10 yrs in the ABCD 
cohort to predict all prevailing cases of CD at 11-12 yrs. (14)  This study employed artificial neural networks 
and 52 candidate predictors comprising 20 graph metrics computed from rsfMRI, 16 psychosocial features 
selected empirically based on prior literature, 4 basic demographic descriptors and 9 cognitive metrics derived 
from psychometrics testing. In contrast to the present study, CD, ADHD and ODD symptomatology at 9-10 yrs 
were also allowed as candidate predictors. This design achieved 91% accuracy and 0.96 AUROC compared to 
our 96% accuracy and 0.99 AUROC in prospective prediction of all prevailing cases of CD at 11-12 yrs. They 
found that greater ADHD and ODD symptomatology, frontoparietal efficiency and reports of family members 
throwing objects predicted future CD while lower crystallized cognitive and card sorting ability, subcortical 
efficiency, frontoparietal degree, family income and parental monitoring were inversely related to case status. 
This study is comparable to our multimodal model predicting all prevailing cases at 11-12 yrs, though we 
analyzed a larger number of candidate predictors and more types of neural metrics. We similarly found parent-
child conflict to be an important final predictor, but otherwise final predictors emphasized sleep disturbance 
(sleep-wake transition), poor school performance, parent somatization and aggressive traits and structural 
brain differences in the left transverse temporal and anterior cingulate cortex (ACC) ROIs.  
 
When focusing on predicting new onset cases of CD with multimodal features we identified a more 
parsimonious model with strong predictive performance (accuracy: 90%, AUROC: 0.922) where family conflict, 
sleep disturbances (sleep-wake transition disorder and total disturbances) and whether the child had come to 
clinical attention prior to 9-10 yrs were important predictors. It is notable that among the three adolescent 
externalizing disorders, CD is the only condition in which neural predictors were selected as final predictors 
among ~6,000 multimodal candidate predictors after extensive AI-guided feature selection. In prospectively 
predicting the onset of CD, structural differences in the left hippocampus ROI interacted with psychosocial 
factors to drive prediction of case status. Prior group-based studies (including in the ABCD cohort) have 
identified associations between CD symptomatology and structural and functional differences in the limbic 
system (which includes the hippocampus), ACC, orbito-frontal, prefrontal and temporal cortices, though not all 
studies segregate CD from ODD. (53, 54, 55, 56) Extant work has also specifically identified aberrant volumes 
in paralimbic structures including hippocampal ROIs in incarcerated adults and youth with psychopathic traits. 
(57, 58, 59)  Though the hippocampus is known for its role in memory formation, it is deeply interconnected 
with other limbic structures and plays a prominent role in fear conditioning and affective processes. (60)  
 
While neural features proved more important in multimodal prediction of CD vs ADHD and ODD, when we 
restricted candidate predictors to only neural features, performance dropped substantially. Similarly, Chan et al 
found that accuracy dropped to 77% and AUROC to 80% when only neural features were used to make 
prospective predictions of all prevailing CD cases at 11-12 yrs, a very comparable performance differential. 
However, moderately strong performance was still obtained (accuracy: 80%, AUROC: 0.808) giving credence 
to these findings. In the neural-only model, features in good concordance with prior literature were identified, 
with differences in frontal, temporal and limbic (caudate, amygdala, hippocampus) structures and connectivity 
between the cinguloopercular network and amygdala appearing as important predictors of CD onset in early 
adolescence. While some regional ROIs, particularly limbic structures, were common to ODD and CD, we 
found that neural predictors of CD onset emphasized structural over connectivity features and the 
hippocampus appeared as limbic structural predictor that was specific to CD.  
 
CONCLUSION 
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Taken together, our results suggest that highly accurate (>85%) prediction of the onset of each of the early 
adolescent externalizing disorders is possible using ML optimized with AI and that individual-level prospective 
prediction of ADHD, ODD and CD benefits from the inclusion of multimodal features drawn from multiple 
knowledge domains, particularly psychosocial predictors related to sleep disorders, parent mental health and 
behavioral traits and school performance. In CD specifically - but not ADHD or ODD - metrics derived from 
structural MRI interacted with psychosocial features in predicting later case onset and these neural features 
and may hold particular promise in identifying children at risk for this highly disabling disorder. Cognitive 
features derived from psychometric testing and other forms of physiologic data (e.g. hormonal levels, biometric 
testing) were deemphasized throughout our experiments. Among neural features, metrics related to subcortical 
ROIs and connectivity between cortical and subcortical ROIs were prominent, congruent with the existing 
literature in externalizing disorders. In terms of MRI modalities, structural gray and white matter features and 
rsfMRI-derived connectivity were valuable prospective predictors across all three disorders, with tfMRI only 
appearing in ADHD and no diffusion MRI metrics featured. We achieved high performance across all 
multimodal experiments and identified a strong correlation between accuracy and final predictor importance, 
suggesting that automated  feature selection with AI techniques such as IEL can facilitate the discovery of 
impactful predictors among high dimension data in a principled manner and generate robust predictive models.  
 
LIMITATIONS 
 
This study uses secondary data from the ABCD study. We were therefore unable to control for any bias during 
data collection and there is a mild bias toward higher-income participant families of white race in the early 
adolescent cohort, though the ABCD study strived for population representation.  Similarly, the externalizing 
disorders have shown differences in population case ascertainment associated with characteristics such as 
sex/gender, race/ethnicity and sociodemographic factors which have varied over time and are still the subject 
of ongoing research. We do not take a position on these phenomena in this study and constructed balanced 
samples based on case ascertainment using the CBCL. Cases were matched with controls based on natal sex 
and age. However, sex, gender, race, ethnicity and many sociodemographic and cultural factors were included 
as candidate predictors as is standard practice in large scale ML studies and which does allow for the influence 
of such factors to be revealed. Further work using a similar design in participant samples stratified by 
sex/gender or race/ethnicity could also elucidate differential effects.  Data is not available prior to baseline (age 
9-10 years) assessment and we cannot therefore conclusively rule out that youth participants may have met 
criteria based on the CBCL for ADHD, ODD or CD prior to ≤8 yrs. Thus, it is possible that certain cases coded 
as ‘new onset’ at 11-12 years of age could have met clinical criteria at ≤8 yrs but not at 9-10 yrs. In the present 
study, we defined cases as an individual meeting ASEBA clinical thresholds in CBCL subscale scores pertinent 
to ADHD, ODD and CD and did not exclude participants who thereby met criteria for other conditions. Thus, 
co-morbidity may be present in the experimental samples as is common in clinical populations and occurs in 
most research studies in early adolescence. Our study is not exhaustive. It is possible that different results 
could have been obtained if more or different candidate predictors were included. We tested for generalization 
in a holdout, unseen test set obtained by partitioning the data, a gold standard method in ML. However, 
methods and results should also be tested for replication in an external dataset other than ABCD.   
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FIGURE CAPTIONS 
 
Figure 1: Formation of the study participant sample  
Steps used to form the study sample are shown. After inclusion criteria are applied, the sample was randomly partitioned 
into training and test sets followed by separate pre-processing of targets and features. Subsequently, samples for each 
experiment were formed as described in Preparation of predictive targets and Construction of participant samples 
for cases with externalizing disorders and controls   
 
Figure 2: Analytic schema 
Features assessed at 9-10 yrs were used to predict new onset and all prevailing cases of ADHD, ODD and CD present at 
11-12 yrs.  
 
Figure 3: Individual-level importances of final predictors of ADHD in early adolescence 
Summary plots are presented of the importance of each final predictor (computed with the Shapley Additive Explanations 
technique) on an individual subject level to predicting ADHD with new onset at 11-12 yrs with a) multimodal features and 
b) only neural features and in all prevailing cases of ADHD at 11-12 yrs with c) multimodal features and d) only neural 
features.  The color gradient represents the original value of each feature (metric) where red = high and blue = low. 
Discrete (binary) features appear as red or blue, while continuous features appear as a color gradient.  
 
Figure 4: Individual-level importances of final predictors of Oppositional Defiant Disorder in early 
adolescence 
Summary plots are presented of the importance of each final predictor (computed with the Shapley Additive Explanations 
technique) on an individual subject level to predicting ODD with new onset at 11-12 yrs with a) multimodal features and b) 
only neural features and in all prevailing cases of ODD at 11-12 yrs with c) multimodal features and d) only neural 
features.  The color gradient represents the original value of each feature (metric) where red = high and blue = low. 
Discrete (binary) features appear as red or blue, while continuous features appear as a color gradient.  
 
Figure 5: Individual-level importances of final predictors of Conduct Disorder in early adolescence 
Summary plots are presented of the importance of each final predictor (computed with the Shapley Additive Explanations 
technique) on an individual subject level to predicting CD with new onset at 11-12 yrs with a) multimodal features and b) 
only neural features and in all prevailing cases of CD at 11-12 yrs with c) multimodal features and d) only neural features.  
The color gradient represents the original value of each feature (metric) where red = high and blue = low. Discrete (binary) 
features appear as red or blue, while continuous features appear as a color gradient.  
 
Figure 6: The relationship between accuracy and final predictor importance 
Average variable importance computed with the Shapley Additive Explanations technique is shown plotted against the log 
of prediction accuracy in testing in held-out data for each experiment in the study. The line of best fit obtained with a linear 
regression is also displayed. Underlying data for this chart may be inspected in Supplementary Table 4.  
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