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Abstract

The current standard for monitoring blood glucose levels in diabetes patients are
continuous glucose monitoring (CGM) devices, which are costly and carry the risk of
complications, such as allergic reactions or skin irritations from the adhesive used to
attach the CGM sensor to the skin. CGM devices are also highly visible and can thus
act as a discomforting disease-marker for diabetes patients. To mitigate these issues, we
develop and test a novel deep learning method that is able to predict blood glucose
levels with only non-invasive predictor variables and a very small number of target
variable measurements by using individualization and self-supervised learning. Using
only two blood glucose measurements per week, our method (4925.47 glucose-specific
MSE) outperforms traditional deep learning performed with hourly measurements
(5137.80 glucose-specific MSE). Across six experiments where blood glucose
measurements are more than four hours apart, our approach outperforms traditional
deep learning without exception. Our findings suggest that self-supervised,
individualized deep learning could provide an avenue towards alternatives to CGM
devices that would be less costly, non-invasive, and thus more accessible.

Introduction 1

Diabetes Mellitus is a metabolic disease characterized by chronic hyperglycemia due to 2

the body’s inability to either adequately produce or efficiently utilize insulin [1]. 3

Symptoms of the condition can include mortality, blindness, kidney failure and an 4

overall decreased quality of life [2]. Today, there are over 400 million diabetes patients 5

worldwide, with a further 350 million at risk of diabetes [3]. One in five adults over the 6

age of 65 suffer from diabetes globally [4]. In the US, the condition disproportionately 7

affects ethnic minorities and low-income populations [5]. Outside the US, low- and 8

middle-income countries health systems are exposed to increased financial strain due to 9

rising diabetes treatment costs [6]. Changes in lifestyles, urbanization, and an aging 10

population will continue to exacerbate this crisis, with patient numbers expected to rise 11

beyond 600 million by 2045 [7], making diabetes one of the most pressing global health 12

challenges in need of innovative, low-cost solutions. 13

There is no cure for diabetes, with patients instead reliant on blood glucose 14

monitoring, insulin injections and other measures for treatment [8]. Continuous glucose 15

management (CGM) is a technique that measures a patient’s glucose levels in short 16

intervals, in order to inform insulin dosages and other treatments. It offers more detailed 17
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glucose information than traditional self-monitoring of blood glucose (SMBG) [9]. While 18

CGM has established itself as one of the most effective glucose monitoring 19

techniques [10], one disadvantage is that it requires long-term implanted sensors, which 20

risk infection or other adverse reactions [11], whilst also carrying significant up-front 21

costs. As a consequence, CGM devices have not been widely adopted in many parts of 22

the world [12] and are unsuitable in some settings, such as intensive care units [13]. 23

To bypass the downsides of CGM devices, we propose a new, non-invasive method to 24

predict blood glucose levels based on individualized, self-supervised deep learning that 25

requires only a low number of blood glucose measurements, such as a single 26

measurement per day or week, and no expensive hardware to perform well. We show 27

that when blood glucose data is only available in large intervals, such as on a weekly 28

basis, our approach, which combines the advantages of self-supervised learning and 29

individualization, strongly outperforms traditional supervised deep-learning. This 30

ability to perform well when glucose labels are scarce, is highly relevant, as it opens up 31

the possibility of replacing CGM devices entirely with models trained using our 32

approach. Widespread use of our approach could lead to cost savings, infection 33

prevention, and more widespread access to diabetic care, potentially improving care for 34

millions of patients. 35

Materials and methods 36

Data Source 37

The datasets used in this project are sourced from Jaeb et al. [32]. The authors of the 38

dataset aimed to investigate whether an automated insulin management system could 39

be used to safely manage diabetic patient’s blood glucose levels from home. The dataset 40

is publicly available and contains blood glucose related data collected during two clinical 41

phases of the study. The dataset comes in the form of 30 text files with different 42

structures generated by different systems (the insuline pump, the glucose measurement 43

device, a centralized computer, and the facilitators of the study). The study involved 30 44

participants, of which 14 completed the entirety of the two trials performed by the 45

authors. The features we use for our analysis are blood glucose levels, which are our 46

target variable, as well insulin amounts injected, exercise times, meal sizes, and liquid 47

glucose consumed orally. All of these data points include timestamps. Blood glucose 48

measurements of the patients were taken in roughly five-minute intervals. 49

The primary challenge associated with the data is the inconsistent and irregular 50

intervals at which the different variables are reported. Time intervals between data 51

points are inconsistent and there are temporal gaps in the data. We solve this by setting 52

the regular glucose measurements as the level of observation and aggregating all other 53

predictors into five-minute intervals for the 24-hour window prior to each glucose 54

measurement. This results in 288 five-minute intervals for each of our four predictors. 55

Thus, for every glucose measurement in the original study, we have 288 preceding 56

five-minute windows of meal size, liquid glucose consumption, insulin injected, and 57

exercise as predictors. Our final dataset after this preprocessing contains 845,696 rows, 58

each with a timestamp, a glucose measurement, the 4 * 288 predictor columns described 59

above, as well as a patient identifier. 60

We note that, by design, there is a large amount of redundancy in the dataset, 61

because each row represents a 24-hour window that is shifted by five minutes in 62

comparison with the preceding row, With the exception of instances where blood 63

glucose labels are more than 5 minutes apart due to gaps in the data. Furthermore, we 64

note that only 14 of 30 patients in the original study participated in both clinical 65

phases. Since the phases differed in length, in behavior of the patients, in the data 66
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generation techniques, as well as in the settings of the glucose pumps, we find that the 67

data quality and consistency in phase two is far superior to that in phase one. Because 68

of these complications, our final data preprocessing step was to exclude the 16 patients 69

who participated only in phase one. 70

Model Architecture 71

To evaluate how both individualization and self-supervised learning affect performance 72

for blood glucose level predictions, we test different training approaches which are 73

outlined in the next subsection, using the same architecture across experiments to 74

ensure comparability. Our model architecture is visualized in Figure 1. The model first 75

takes in the four 288-interval predictors and feeds them into separate 1D convolutional 76

layers, each including batch normalization and dropout. The output of these layers is 77

then flattened and concatenated before being fed through a series of fully connected 78

layers until a single scalar value is output representing the blood glucose prediction the 79

model makes. 80

Fig 1. Model Architecture for All Experiments: We first feed the four time
series predictors through a series of two 1D convolutional layers with batch
normalization and dropout. We then concatenate the output from this and use linear
layers to arrive at a single output.

This architecture builds on the framework proposed by Zhao et al. (2017) [21] for 81

time series prediction using convolutional neural networks. We consider this a 82

state-of-the art approach for time series prediction and do not include other architecture 83

types in our analysis, as our discussion centres around training approaches rather than 84

comparing varying model architectures or optimizing a particular architecture. Full 85

details of our model structure including layer dimensions are provided in the appendix 86

in Figure 87

Training Approach 88

Our novel training approach is centered around combining two main ideas. First, we 89

hypothesize that building one model per patient, rather than training a model on all 90

patients and hoping that it generalizes to other patients’ idiosyncrasies, improves 91

performance. Individualization has yielded positive results in many other precision 92

medicine tasks, and could thus also be beneficial in glucose monitoring [33]. Secondly, 93

we hypothesize that employing self-supervised learning for our use case has the potential 94

to further enhance performance. Self-supervised learning means first training the model 95

to learn a task related to but distinct from the downstream task, based only on the 96

predictor data, and then using the model parameters resulting from this training stage 97

as the starting point for the supervised portion of training. The intuition behind this is 98

that the self-supervised learning stage allows the model to learn about features of the 99

system in question, which in this case is the individual patient. This later helps the 100

model to perform better on the downstream task, which in our case is blood glucose 101

prediction. Rather than measuring blood glucose every five minutes through an 102

implanted sensor, we envision a future in which blood glucose only needs to be 103

measured on a daily or even weekly basis. In such a setting with very few labels, we 104

hypothesize that model performance on blood glucose prediction can be significantly 105

enhanced by starting model training with a self-supervised training phase on the more 106

abundant, non-invasive predictor data. 107

The degree to which self-supervised learning enhances performance is heavily 108

dependent on the features the model learns during self-supervised training [34]. Due to 109
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the sparsity of the predictors in our dataset, the self-supervised task we use is to predict 110

the sum of each of the four predictor variables over the next two hours given a row of our 111

dataset. We initially considered a more traditional approach whereby each row of the 112

predictors is used to predict the next row, but early results showed that this approach 113

worsened performance. Across exercise, insulin, and liquid glucose consumption, the 114

average value in our dataset is 0.062, and over 90% of all entries for mealsize are 0.0, 115

since patients only recorded meal intakes in a handful of five minute intervals over any 116

given 24 hour period. Because of this, we found that learning to predict the next row of 117

our sparse dataset reduced a high number of weights of the model close to 0, which 118

worsened performance on the downstream task, where labels range between 50 and 400. 119

Pivoting to a sum of our four predictors over the next 24 entries (corresponding to the 120

next two hours) solved this problem. When training for this task, the output dimension 121

of the last layer of the model is adjusted to output four values instead of the single 122

output in the downstream task of glucose prediction. Self-supervised learning techniques 123

similar to this have been successfully applied in many other domains [35]. 124

In order to successfully combine the advantages of self-supervised learning and 125

individualization in our setting, there is a trade-off to consider. Self-supervised learning 126

works best when predictor data is abundant. Combining it directly with 127

individualization may be problematic, since using predictor data from only one out of 14 128

patients in our dataset greatly reduces the amount of predictor data available. This 129

harms self-supervised learning, as it is directly dependent on the abundancy of the 130

predictor data. For our proposed approach, we thus perform self-supervised learning on 131

all patients’ data in the first phase of training. On completion, we then use the 132

parameters from this training phase as a starting point for a traditional phase of 133

supervised deep learning on all patient’s blood glucose labels. Finally, we leverage the 134

advantages of individualization in the third training phase, by running supervised 135

training using only the individual patients’ data, which fine-tunes the model to the 136

individual patient’s idiosyncrasies. The details of our training approach are summarized 137

in figure 2 together with the details of baselines approaches we compare to. 138

Fig 2. The Training Phases of our Novel Approach: First we perform a phase of
self-supervised learning on the abundant predictor data of all patients. This is followed
by a phase of traditional supervised learning on all patient’s blood glucose labels.
Finally, we leverage individualization with a final training phase that fine-tunes on the
individual patient’s blood glucose labels. Other approaches tested are also highlighted.

An important aspect that separates the supervised training phases from the 139

unsupervised phase in our approach is the loss function we employ. During 140

self-supervised learning, we use mean-squared error (MSE), which is the default choice 141

for many regression tasks. During supervised training, however, we use a custom loss 142

function. Although blood glucose prediction, like our self-supervised task, is a regression 143

problem, MSE is an inappropriate error metric here for medical reasons. Extreme blood 144

glucose levels correspond to hypo- and hyperglycemia, conditions diabetics must avoid 145

at all costs [36]. As such, an error of 20 in the 50 mg/dL range is far more costly than 146

an error of the same magnitude in a healthier blood glucose range of around 150 mg/dL. 147

MSE, however, would assign both cases the same loss, which is undesirable. To avoid 148

this issue, we leverage a custom loss function called glucose-specific MSE (gMSE) 149

developed by Del Favero, Facchinetti, and Cobelli (2012) [37], which disproportionately 150

penalizes prediction errors in medically dangerous areas. The formula for gMSE is 151

L = 1
m

∑m
i=1(ŷi − yi)

2 ∗ Pen(y, ŷ), where Pen is a complex penalty term that depends 152

on the medical danger associated with the model prediction and true label. The penalty 153

function is defined as follows: 154
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Pen(g, ĝ) = 1 + αL ∗ σ̄g≤TL,βL
(g) ∗ σĝ≥g,γL

(ĝ) + αH ∗ σg≥TH ,βH
(g)σ̄g≤TH ,γH

(ĝ) (1)

The intuition behind this function is that discrete penalties (alphaL and alphaH) 155

apply to certain areas which are defined as particularly unhealthy to the patient. This 156

allows a differentiation between false positive and false negative hypo-, eu-, and 157

hyperglycemia-predictions. The bounds are defined by TL and TH . The additional 158

parameters define the sigmoid-approximations, which are introduced to ensure 159

differentiability, which would not be the case for simple two-dimensional step-function. 160

The sigmoid approximations are defined as follows: 161

σx≥a,ϵ(x) =


0, for x ≤ a

− 1
2ξ

4 − ξ3 + ξ + 1
2 , for a ≤ x ≤ a+ ϵ

2
1
2ξ

4 − ξ3 + ξ + 1
2 , for a+ ϵ

2 ≤ x ≤ a+ ϵ

1, for a+ ϵ ≤ a

(2)

σ̄x≤α,ϵ(x) =


1, for x ≤ a− ϵ
1
2 ξ̄

4 − ξ̄3 + ξ̄ + 1
2 , for a− ϵ ≤ x ≤ a− ϵ

2

− 1
2 ξ̄

4 − ξ̄3 + ξ̄ + 1
2 , for a− ϵ

2 ≤ x ≤ a

0, for a ≤ ϵ

(3)

where ξ and ξ̄ are defined as 162

ξ =
2

ϵ
(x− a− ϵ

2
) (4)

and 163

ξ̄ = −2

ϵ
(x− a− ϵ

2
) (5)

Baselines 164

In order to evaluate and compare the performance of our novel training approach, we 165

train and run identical experiments using four other training approaches. The 166

approaches differ with respect to the presence of individualization and self-supervised 167

learning, allowing for a clear comparisons to ascertain the effectiveness of each facet of 168

the training. By altering between adding a self-supervised learning stage and 169

individualizing our model, we experiment on four distinct baseline training approaches. 170

For all baseline approaches, as well as our final approach, we hold the model 171

architecture constant. 172

The first baseline we compare to is traditional supervised deep learning. This is the 173

simplest form of deep learning. We simply use the predictor data for all patients to 174

train the model using gMSE in a single training pahse and use the results to predict the 175

respective blood glucose levels in the data. This approach involves neither 176

self-supervised learning, nor individualization. 177

The second baseline we compare to is self-supervised deep learning. This is identical 178

to traditional, supervised deep learning (baseline 1), except that we introduce a phase of 179

self-supervised learning before the phase of traditional supervised learning. This baseline 180

approach is very similar to our approach, with the exception that it makes no use of 181

individualization. It uses all patients’ data, as well as the same model for predictions on 182

all patients. While our approach also uses all patients’ data, the third training phase 183

means that it yields a distinct model per patient, which is not the case here. 184

The third baseline we compare to is individualized, supervised deep learning. This is 185

similar to traditional, supervised deep learning, with the sole difference being that only 186
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the data points of one patient are considered for predictions on that patient. Thus, this 187

approach trains a different model for every patient based on completely separate 188

datasets, whilst traditional deep learning uses the same model for all patients. This 189

baseline uses no self-supervised learning. 190

The fourth baseline we compare to is fully individualized, self-supervised deep 191

learning. This is similar to individualized, supervised deep learning, with the addition of 192

an individualized self-supervised training phase before the individualized supervised 193

training phase. This baseline results in a distinct model for every patients, where no 194

model uses data points from other patients than the one whose labels it is designed to 195

predict. This model makes no consideration of the trade-off between individualization 196

and self-supervised learning discussed earlier. 197

Experiments 198

To evaluate the performance of our proposed approach, we run the same experiments for 199

all approaches outlined in the previous sections. In each experiment, we first train the 200

model on the first 80% of the dataset (chronologically) and use the outcomes to test on 201

the remaining 20%. For individualized models, the predictions are based on the data of 202

the respective individual patients, meaning we create 14 different models as part of the 203

each experiment and aggregate their predictions for evaluation. 204

In order to assess the performances of our five model types, we run the above 205

training and testing regime under varying levels of data availability, as this is a key 206

aspect of our use-case. Rather than measuring blood glucose every 5 minutes as was 207

done in the study we source our data from, we envision a scenario where that necessity 208

is reduced to hourly, daily or weekly measurements in even intervals. In order to 209

simulate such an environment, we test the performance of our approaches by gradually 210

reducing the availability of labels in the training dataset. We do this by keeping only 211

every nth row of our training data in the respective run of our experiment. We begin 212

our experiments by keeping only every tenth row, which, since glucose measurements 213

are around 5 minutes apart, roughly reflects a single glucose measurement at every hour, 214

and continue to drop rows throughout experiment runs until we keep only every 2000th 215

row, which roughly translates to one glucose measurement per week. Across all training 216

approaches, this results in 50 experiments. For each we record the gMSE, as well as the 217

rMSE, and all individual predictions. 218

Throughout all experiments, we use hyperparameters chosen by training on the first 219

80% of the training dataset and evaluating performance on the last 20%. We use the 220

sigopt library [?]for tuning. For each of the baseline approaches, as well as our final 221

approach, we tune different learning rates, and epoch numbers for every training stage, 222

which reflects their varying natures. We also train a different dropout probability for 223

every approach. 224

Results 225

The results of our experiments are summarized in Table 1. Out of the evaluated 226

training approaches, the best performing were consistently self-supervised deep learning, 227

which includes self-supervised deep learning, but no individualization, and our final 228

model, which is similar, but includes an additional phase of individualized, supervised 229

fine-tuning. Especially when only very few data labels are available, our training 230

approach outperforms, exhibiting the best performance when labels are only available in 231

intervals greater than 24 hours. A graphical representation of these results can be found 232

in Figure 3. We also show the rMSE values in Figure 5 for interpretability. Here, 233

self-supervised deep learning is more similar in performance to our final approach, 234
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which shows that our final training approach was better able to adapt to the custom 235

loss function. Figure ?? provides a detailed scatterplot example of the predictions when 236

only every 2000th row for supervised learning is available, which corresponds to roughly 237

one blood glucose measurement per week. 238

Fig 3. Model Performance under different training approaches in gMSE:
Test gMSE of baseline approaches and our approach for different levels of data label
availability. (see Table 1).

Fig 4. Model Performance under different training approaches in rMSE:
Test rMSE of baseline approaches and our approach for different levels of data label
availability. Added for interpretability.

Fig 5. Predicted Glucose vs Actual Glucose when only every 2000th label is
available: Color shading shows gMSE value. Keeping only every 2000th label equates
to roughly keeping only one blood glucose measurement per week.

Table 1. Performance of tested training approaches (gMSE)

Data Missingness 10 20 50 100 200 400 800 1000 2000

Approx. Label Frequency 50 min 1h 40min 4h 10min 8h20min 16h 40min 1.375 days 2.75 days 3.5 days 7 days

Sup. DL 5137.80 4492.31 5280.31 4650.90 5284.91 7030.03 8898.45 10094.32 8191.23

Self-sup. DL 4690.77 3653.26 4395.91 5006.05 4565.21 4557.90 5181.72 5580.29 8206.98

Indiv., sup. DL 5255.42 6040.75 10591.28 10219.11 9014.78 11562.08 12317.82 11200.69 10739.87

Fully indiv. self-sup. DL 6316.64 5659.41 6179.99 7313.49 14373.58 22225.32 29444.13 28928.23 23313.15

Our approach 5755.50 5201.93 5498.78 4652.45 4413.78 4701.28 4664.83 4935.47 6387.47

For each approach we test performance under increasingly sparse data, keeping only the nth row of data (data missingness). Best
performance highlighted in bold. Self-supervised deep learning or our approach performed best in all experiments, with our approach
particularly strong when data is very scarce.

Discussion 239

We find that the gMSE performance on the test set generally decreases for all training 240

approaches as we reduce the amount of training data. This effect and the differences 241

between models become especially pronounced for models trained on very sparse data 242

with at most 1% of the original observations. This is also the regime that is the main 243

focus of this study in order to minimize the need for invasive measurements. The results 244

also demonstrate the overall effectiveness of combining self-supervised learning with 245

individualization in blood glucose prediction. 246

Self-Supervised learning. The comparison between Traditional Deep Learning 247

(Baseline 1) and Self-Supervised Deep Learning (Baseline 2) clearly indicates the benefit 248

that self-supervised learning across patients has in conjunction with supervised learning 249

on a sparse dataset. With blood glucose labels available at a rate of 1-2 measurements 250

per week, the gMSE is reduced from around 9000 to 5500, which is a substantial 251

improvement, especially considering the limited scope of the predictor data we have at 252

our disposal to perform self-supervised learning. The fact that fully individualized 253

self-supervised deep learning performed so poorly, despite the presence of self-supervised 254

learning on the far less abundant personal data is likely a consequence of the fact that 255

self-supervised learning requires a larger data volume to work well. A different 256
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interpretation of the poor performance here would be that in this use-case 257

self-supervised learning may be uncovering universal features, rather than 258

patient-specific idiosyncrasies, although this hypothesis would have to be tested against 259

the case with similar data amounts at an individual level. In a study with richer 260

predictor data, which could come from wearable devices for example, the potential for 261

self-supervised learning to contribute to performance improvements is likely even greater 262

than what we demonstrate here. 263

Individualization. Training the model on observations from only one patient 264

throughout all stages does not yield a performance comparable to training a model on a 265

large body of non-individualized data, as the sub-par performances of our individualized 266

baselines show. Despite this, the performance of our final model still demonstrates, that, 267

similarly to how many modern large language models are finetuned to specific tasks, 268

small adjustments based on individualized labels, can help to enhance downstream 269

performance. In using individualization only for fine-tuning, and using all data for 270

self-supervised learning, our training approach combines the most useful aspects of 271

individualization and self-supervised learning. This results in the best performance of 272

the entire study, confirming that both major ideas of this study can jointly lead to 273

better prediction performance and therefore improved patient health in settings with a 274

limited availability of invasive data. 275

Limitations.This study is only intended to demonstrate the potential of the 276

self-supervised learning and individualization for moving towards clinically usable 277

accuracy of blood glucose levels. Given the simple nature of the four predictors we use 278

as well as the low number of patients, a major limitation of this study is therefore that 279

its results are not clinically usable. A further limitation of this study is that even 280

though we use only non-invasive predictors, we still rely on a low number of blood 281

glucose samples to make our approach work. So long as blood glucose sampling remains 282

an invasive exercise, this approach will not be entirely non-invasive by extension. 283

Furthermore, the results shown in this study assume perfect accuracy of the CGM 284

devices that were used to collect the blood glucose data. Flawed measurements or a 285

variance in the measurements will translate to worsened predictions of the trained 286

model. Another limitation of this study is that due to computational constraints, we 287

were not able to repeat our calculations with different random seeds to calculate 288

confidence intervals of our findings. We therefore need to rely on our results as point 289

estimates for the ground truth improvement of self-supervised individualized learning 290

over traditional deep-learning approaches. 291

Future Work. Further investigations into the potential for the replacement of 292

CGM devices through advanced machine learning can build on this study in various 293

ways. First, far more exhaustive data about nutrition and vital signs, such as heart rate 294

or blood oxygen levels could be used as predictors. Datasets from smart devices, such as 295

personal fitness watches, may offer a promising avenue for this in the future, and recent 296

preliminary works support this potential [39–41]. Secondly, new datasets may offer 297

potential for more well-suited tasks in self-supervised-learning. The task we use is an 298

artifact of the dataset at hand, and based on the intuition that the sum of predictors 299

over the next two hours may encode things such as biorhythm or daily routines. In 300

other datasets with more predictors, there may be tasks that contain far more relevant 301

information for downstream learning and whose basis lies in robust biological arguments 302

rather than high-level intuition. Finally, there are many other architectures we could 303

have chosen for this study. It may be the case that other model architectures respond 304

more favourably to self-supervised learning than ours. RNNs, LSTMs, or transformers 305

could all prove to be superior alternatives. 306
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