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1 Data39

1.1 Wastewater Sampling40

Composite samples were collected by an autosampler, which collects a small volume of waste41

water at regular intervals over the course of a 24-hour period. When composite samples were not42

available, ‘grab’ samples were collected and ranged from a sample being taken at a single point43

in time to three samples taken over 30 minutes. Grab samples represent only the composition44

of the source at the time of collection and may not be as representative as a 24-hour composite45

sample collected by an autosampler. Following collection, samples were couriered overnight to46

the Institute of Environmental Science and Research (ESR) for processing.47

Virus concentration was performed by SARS-CoV-2 detection and quantitation by RT-qPCR of48

the N-gene as described in [1]. Wastewater (250 mL) was concentrated to 1.25 mL, of which 0.249

mL was used for nucleic extraction. Six RT-qPCR replicates were performed for each sample.50

SARS-CoV-2 RNA was considered detected if any of the RT-qPCR replicates were positive. A51

result of ‘not detected’ meant that SARS-CoV-2 RNA was either absent from the sample or at52

a level too low to be reliably reported.53

RT-qPCR data (quantification cycle values) were converted to genome copies per reaction using54

a standard curve and then to genome copies per litre of wastewater. Each sample is multiplied55

by the estimated volume of wastewater entering the wastewater treatment plant to estimate56

the total genome copies per day. These are summed over all sites sampled on that day and57

divided by the total volume of wastewater entering all sampled wastewater treatment plants to58

give daily estimates of genome copies per litre of wastewater. We also calculate the daily total59

population across sampled catchment sites.60

The data and comprehensive details about collection and processing are available at https:61

//github.com/ESR-NZ/covid_in_wastewater [2].62

1.2 Reported Cases63

National daily reported cases of COVID-19 were obtained from the New Zealand Ministry of64

Health and are avaliable at https://github.com/minhealthnz/nz-covid-data [3]. Reported65

case data exhibit a clear day-of-the-week effect, which we remove in pre-processing using a66

simple linear regression model. The log-transformed daily case count was regressed against the67

day of the week and the data were then divided by the exponential of the regression coefficient68

for each day of the week. Adjusted daily case counts were then scaled so the total case count69
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remains consistent. We perform this day-of-the-week adjustment in the following consecutive70

time windows: before 1 January 2022, 1 January to 28 February 2022, 1 March to 30 June71

2022, 1 July to 30 September 2022, 1 October to 31 December 2022, and 1 January 2023 to 3172

March 2023. These are mostly three months in duration, except that the boundary between73

the second and third windows was selected to coincide with the change from PCR-only testing74

to widespread availability and use of RATs [4], as this impacted the weekly reporting pattern.75

Algorithmically, this seasonal adjustment is performed when the data are loaded. As it results76

in non-integer daily case counts, we round the outputs to the nearest integer. The functions77

to do this are included in the “loadNZData.jl” function at https://github.com/nicsteyn2/78

NZWastewaterModelling/tree/main/src.79

2 Model Derivation and Algorithms80

2.1 Fixed-Lag Bootstrap Filter81

We have hidden states CARt, Rt, It, observed dataWt, Ct, and fixed parameter vector θ. We are82

interested in learning the joint posterior distribution P (CAR1:T , R1:T , I1:T , θ|W1:T , C1:T ). The83

goal of algorithm 1 (below) is to construct a set of particles
{(

CAR
(i)
k , R

(i)
k , I

(i)
k

)
: i = 1, ..., N

}
84

that approximate this distribution.85

For simplicity, let our hidden states be collectively denotedXt = (CARt, Rt, It) and our observed86

data yt = (Wt, Ct). We start with the filtering distribution at time t which we denote qt (defined87

below). We decompose this filtering distribution into the following recursion:88

qt = Pθ(X1:t|y1:t)

∝ Pθ(yt|X1:t, y1:t−1)Pθ(X1:t|y1:t−1)

= Pθ(yt|X1:t)Pθ(Xt|X1:t−1, y1:t−1)Pθ(X1:t−1|y1:t−1)

= Pθ(yt|X1:t)Pθ(Xt|X1:t−1)qt−1

where Pθ(yt|X1:t) = Pθ(Wt|I1:t−1)Pθ(Ct|CARt, I1:t−1) is our joint observation distribution and89

Pθ(Xt|X1:t−1) = Pθ(CARt|CARt−1)Pθ(Rt|Rt−1)Pθ(It|I1:t−1) is our joint state-space transition90

distribution.91

The decomposition makes two assumptions: (1) yt is conditionally independent of y1:t−1 given92

Xt, and (2) Xt is conditionally independent of y1:t−1 given X1:t−1. The definition of the obser-93

vation and state-space transition distributions require further assumptions that are clear from94

their definition.95
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We define our importance sampling distribution π in a similar recursive fashion:96

π(X1:t|y1:t) = π(Xt|X1:t−1, y1:t)π(X1:t−1|y1:t−1)

requiring the non-restrictive assumption that our importance distribution on X1:t−1 does not97

depend on yt. This further allows us to define the importance sampling weights recursively:98

w
(i)
k ∝

Pθ(yt|X
(i)
1:t)Pθ(X

(i)
t |X

(i)
1:t−1)q

(i)
t−1

π(X
(i)
t |X

(i)
1:t−1, y1:t)π(X

(i)
1:t−1|y1:t−1)

=
Pθ(yt|X

(i)
1:t)Pθ(X

(i)
t |X

(i)
1:t−1)

π(X
(i)
t |X

(i)
1:t−1, y1:t)

w
(i)
k−1

Finally, we choose our importance sampling distribution π(X
(i)
t |X

(i)
1:t−1, y1:t) to be the state-99

space transition distribution Pθ(X
(i)
t |X

(i)
1:t−1), allowing these terms to be cancelled, and giving100

the recursion for the particle weights:101

w
(i)
k = Pθ(yt|X

(i)
1:t)w

(i)
k−1

At each time step, we re-sample with replacement from our current particles according to w
(i)
k−1,102

thus the selected particles at time step t can be viewed as direct draws from Pθ(Xt|y1:t).103

Additionally re-sampling the h most recent time steps re-weights past particles according to104

Pθ(yt|X
(i)
1:t), thus they can be viewed as samples from Pθ(Xt|y1:t+L). We note that in doing105

this resampling, we break the particle ancestry, so only have samples from the marginal distri-106

butions Pθ(Xt|y1:t+L) ≈ Pθ(Xt|y1:T ) and not the full joint distribution over state-trajectories107

Pθ(X1:t|y1:t+L) (except for the final L states).108

Conditional on a fixed value of θ, algorithm 1 presents our fixed-lag bootstrap filter. This109

assumes a default wind-in period equal to h (30-days), although this can be changed as necessary.110

2.2 Practical Considerations for the Bootstrap Filter111

2.2.1 Choosing the Fixed-Lag h112

In an ideal world we would resample the entire state-history at every step, producing direct113

samples from our desired posterior distribution P (Xt|y1:T ). In fact, this also admits samples114

from the joint posterior distribution across all time steps P (X1:T |y1:T ), which would allow us115

to sample individual trajectories. However, as T increases, the number of individual unique116

particles that remain in the earlier time steps (most obviously at t = 1) gets increasingly small.117

Eventually only a handful, or even a single, unique particle will remain for X1, which provides118

a very poor approximation of P (X1|y1:T ). This can be somewhat overcome by increasing the119
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number of particles Nx, but given present computing power this quickly becomes impractical.120

Instead we re-sample only the most recent h time steps, which means our particles at time step121

t are samples from P (Xt|y1:t+h) whenever t+ h < T . The value of h needs to be large enough122

that P (Xt|y1:t+h) ≈ P (Xt|y1:T ) while being small enough that we avoid particle degeneracy for123

reasonable values of Nx.124

2.2.2 Calculating Cumulative Infections125

In figure 4 of the main text we present estimates of cumulative infections CIt. If we were126

resampling entire particle histories at each time step (rather than fixed-lag resampling) we would127

be able to set CI =
∑t

u=1 I
(i)
u for our ith sample of cumulative infections at time t. However, our128

fixed-lag resampling breaks the state-histories, so this approach is invalid. Instead, we augment129

cumulative infections as an additional hidden state, at each time step setting:130

CI
(i)
t = CI

(i)
t−1 + I

(i)
t

and resampling as usual. As the particle filter produces samples from P (CIt|y1:t+h), this method131

produces valid estimates of the pointwise cumulative infections CIt.132

Algorithm 1 Fixed-lag bootstrap filter

Input: Parameter vector θ, data W1:T and C1:T

Sample CAR
(i)
−h:0, R

(i)
−h:0, and I

(i)
−h:0 from some initial state distribution

for t = 1, ..., T do

Sample CAR
(i)
t ∼ Pθ(CARt|CAR

(i)
t−1)

Sample R
(i)
t ∼ Pθ(Rt|R(i)

t−1)

Sample I
(i)
t ∼ Pθ(It|R

(i)
t , I

(i)
t−L:t)

Set w
(i)
t = Pθ(Wt|I(i)t−L:t, CAR

(i)
t )Pθ(Ct|CAR

(i)
t , I

(i)
t−L:t)

Sample with replacement indices {xj}Nj=1 from i = 1, 2, ..., N with probability w
(i)
t

Update (CAR
(j)
t−L:t, R

(j)
t−L:t, I

(j)
t−L:t)← (CAR

(xj)
t−L:t, R

(xj)
t−L:t, I

(xj)
t−L:t)

end for

Return (CAR
(i)
1:T , R

(i)
1:T , I

(i)
1:T )

2.2.3 Wind-In Period133

In practice we wind-in using two steps: (1) hidden states are randomly allocated values for134

t = −h to t = 0, and (2) the filter is run for t = 1 to t = k for some k. We present results135

and calculate likelihoods for t ≥ k + 1. The first step is necessary for there to be sufficient136
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state-history to calculate the expected values of It, Ct, and Wt, which all involve convolutions137

of past infections. However, only a few of these randomly allocated trajectories will be plausible,138

leading to considerable uncertainty in the initial estimates of our hidden states. Thus we use139

data to filter particles as described above in the period 0 ≤ t ≤ k and start the estimation140

window at t = k, so that all particle chains have plausible past trajectories at this time. In141

general k should be chosen to be greater than h.142

This second wind-in period means that the estimation window only begins k days after the143

start of the period for which data are available. It is possible to run the algorithm without the144

second wind-in period, which may be necessary when data are limited. However, this leads to145

greater uncertainty about estimated states in the early part of the time period and introduces146

substantial additional variation in the estimates of the model log-likelihood (section 2.3). In147

practice, we used k = 50, except for model runs starting on 1 January 2022 where we use k = 31148

as the earliest available data were 1 December 2021.149

2.3 Likelihood Estimation150

Thus far we have focused on estimating the value of the hidden states given some known151

parameter vector θ. Our particle filtering algorithm also admits a tidy, albeit noisy, method for152

estimating the likelihood function L(θ|y1:T ) ∝ P (y1:T |θ) [5]. First note that:153

P (y1:T |θ) =
T∏
t=1

Pθ(yt|y1:t−1)

We can write each term in the product as:154

Pθ(yt|y1:t−1) =

∫
Pθ(yt|Xt−L:t)Pθ(Xt−L:t|y1:t−1) dXt−L:t

Note Pθ(yt|X
(i
t−L:t) = w

(i)
t . Furthermore, our projected (but non-filtered) particles {X̃(i)

t−L:t}Ni=1155

at time t provide an approximation to Pθ(Xt−L:t|y1:t−1). Together this conveniently allows us156

to approximate this integral using:157

Pθ(yt|y1:t−1) ≈
1

N

N∑
i=1

w
(i)
t

Taking logarithms gives us our estimator of the log-likelihood:158

ℓ̂(θ|y1:T ) =
T∑
t=1

log

(
1

N

N∑
i=1

w
(i)
t

)
As each term inside the outer sum is an approximation, the noise of this estimator grows with159

the length of data. In general this noise increases linearly with time, as does the time it takes160

to run a single filter, thus the computational requirements approximately scale with O(T 2) [6].161
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2.4 Particle Marginal Metropolis-Hastings162

Particle marginal Metropolis-Hastings (PMMH; algorithm 2) is an established algorithm de-163

signed to estimate the joint posterior distribution P (X1:T , θ|y1:T ) of the hidden states and fixed164

parameter vector given our data, although in practice we use this method to estimate the165

marginal posterior distribution P (θ|y1:T ). The algorithm uses the following proposal density:166

q((X ′
1:T , θ

′)|(X1:T , θ)) = q(θ′|θ)Pθ′(X
′
1:T |y1:T )

where X ′
1:T are generated by running a particle filter at θ′. This gives an acceptance probability167

of:168

a = min

(
1,

P̂ (y1:T |θ′)P (θ′)q(θ|θ′)
P̂ (y1:T |θ)P (θ)q(θ′|θ)

)
where q(θ′|θ) is our proposal density on our parameters and P̂ (y1:T |θ) is an estimate of the169

model evidence at parameter vector θ′ - this is the exponential of ℓ̂(θ|y1:T ) described in section170

2.3. The validity of using an estimate of the likelihood rather than an exact calculation is171

confirmed in [5], which is a key difference between PMMH and standard Metropolis-Hastings.

Algorithm 2 Particle Marginal Metropolis-Hastings

Require: Prior distribution P (θ) on θ, proposal density q(θ′|θ), and number of MCMC steps

N

Initialise θ0 ∼ P (θ) and run algorithm 1 to estimate P̂θ0 = P (θ0|y1:T )
for i = 1, ..., N do

Sample θ′ ∼ q(·|θi−1)

Run algorithm 1 to estimate P̂θ′ = P (θ′|y1:T )
Calculate acceptance probability ai = min

(
1, P̂ (y1:T |θ′)P (θ′)q(θi−1|θ′)

P̂ (y1:T |θi−1)P (θi−1)q(θ′|θi−1)

)
Let θi = θ′ with probability ai, else let θi = θi−1

end for

Return (CAR
(i)
1:T , R

(i)
1:T , I

(i)
1:T )

172

2.5 Prior Distributions and Proposal Variances173

The parameters σR, σCAR, kc, and kw may change as the epidemiological landscape changes so174

we fitted them in five distinct time periods: (1) 1 January 2022 – 31 March 2022, (2) 1 April175

2022 – 30 June 2022, (3) 1 July 2022 – 30 September 2022, (4) 1 October 2022 – 31 December176

2022, and (5) 1 January 2023 – 31 March 2023. Choosing the duration of these windows requires177
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balancing changing epidemiological dynamics (we expect these parameters to somewhat change178

over time) with using more data to obtain more precise estimates.179

We use wide independent uniform distributions for our prior distributions on σR, kc, and kw. A180

wide uniform prior distribution can also be placed on σCAR, however, this results in a relatively181

high-valued posterior estimate for this parameter as the model can choose values of CARt that182

closely fit the fluctuations in reported case data. We want our estimates of CARt to reflect an183

underlying reporting rate, rather than the daily noise in reporting, so use a prior distribution184

on σCAR to ensure this. For time periods encompassing 1 April 2022 – 31 March 2023 we use185

a normal distribution with mean 0.006 and standard deviation 0.00204, truncated on (0,∞),186

which has a 95th quantile of 0.01. For the first time period, encompassing 1 January 2022 to 31187

March 2022, we use a higher-mean normal distribution with mean 0.024 and standard deviation188

0.00816, truncated on (0,∞), which has a 95th quantile of 0.04. The use of a higher-mean prior189

distribution for σCAR in this first period allows the model to fit to the rapid change in CARt190

that is thought to have occurred when RATs were rolled out in February 2022 [4]. Table S1191

reports our choices for prior distributions.192

We use independent normal proposal densities for each parameter. The chosen standard devi-193

ations of the proposal densities are given in table S2. We outline how we chose these in section194

2.6.195

Table S1: Prior distributions on parameters. All normal distributions (represented by N) are

truncated on (0,∞). The continuous uniform distribution is represented by U . The period

starting 1 March 2022 continues until the end of considered period on 31 March 2023.

Period starting σR σCAR kc kw

1 Jan 2022 N(0.024, 0.00816) U(0, 0.1) U(0, 400) U(0, 0.02)

1 Mar 2022 N(0.006, 0.00204) U(0, 0.1) U(0, 400) U(0, 0.02)

Table S2: The chosen standard deviation for each independent normal proposal distribution.

Period starting σR σCAR kc kw(×10−7)

1 Jan 2022 0.024 0.004 4.3 1.4

1 Apr 2022 0.018 0.0014 21 5.5

1 Jul 2022 0.010 0.0015 30 6.6

1 Oct 2022 0.0073 0.001 22 7.4

1 Jan 2023 0.0089 0.0015 22 8.9
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2.6 Practical Considerations for Particle Marginal Metropolis-Hastings196

In situations where the proposed particle is rejected, it is not necessary to re-estimate P̂θi−1
.197

One can typically let P̂θi = P̂θi−1
. In some situations, particularly when the variance of the198

likelihood estimator is large, the Markov chain can get stuck on values of θ′ where the estimate199

of Pθ′ was unusually high, resulting in slower convergence. To avoid this we re-estimate Pθi−1
if200

n consecutive proposals have been rejected. Choosing n requires balancing the computational201

cost of running additional particle filters with the cost of slower mixing chains. We use n = 5202

in this work.203

Theoretically, this algorithm works irrespective of the number of particles Nx used in each filter,204

however, this does have a significant impact on the performance of the algorithm. A general205

heuristic is that Nx should be chosen such that the standard deviation of ℓ̂(θ|y1:T ) is around206

1.2-1.3 [6]. This standard deviation is a function of θ itself (generally speaking estimates of ℓ at207

more likely values of θ have lower standard deviations) so choosing the ideal Nx is not a simple208

task. We use Nx = 105 particles per filter when fitting to three-month time periods.209

PMMH is a computationally expensive algorithm. Our results rely on 8 PMMH chains for each210

of the five time periods considered. Whilst running this on high-performance computing services211

can allow us to utilise the 40 cores required to run each chain simultaneously, it can still take212

multiple days to generate sufficient samples. We find that, with Nx = 105, it takes us approxi-213

mately 20 hours to generate 2000 samples (although this can be faster if more modern central214

processing units are used). As seen in section 4, this can be enough to meet certain conver-215

gence criteria even if this is fewer samples than most MCMC algorithms target. Practically we216

expect this to make little difference to our posterior estimates of θ, and even less of a difference217

to our posterior estimates of X1:T . This final point can be seen by noting that the marginal218

posterior estimates of X1:T are very similar to the posterior estimates of X1:T conditional on219

any plausible value of θ - the majority of the uncertainty comes from the relationship between220

the hidden states and the observed data, rather than the hyper-parameters that characterise221

this relationship.222

Despite generally using wide uniform prior distributions, we want to ensure our chains start223

at plausible values of θ, otherwise considerable computation time must be spent on a wind-224

in period. Therefore, we first computed approximate bivariate heatmaps of the estimated225

log-likelihood on a coarse parameter mesh (see Supplementary Material sec. 3.2). We then226

initialised chains in the part of parameter space with relatively high likelihood values. As well227

as reducing convergence times, this technique also provides some reassurance that the PMMH228

algorithm is not missing any hidden modes, and that the posterior distribution found is similar229

to empirical results.230
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We ran the PMMH algorithm twice for each three-month block. First we did a training run, with231

seemingly plausible values for the parameter proposal variances, to provide a crude estimate of232

the posterior variance. Then a second, final, run was performed using the heuristic proposal233

variance of 2.38σposterior/ndim, where σposterior is the estimated posterior standard deviation of234

the chosen parameter from the first run, and ndim = 4 is the dimensionality of the parameter235

space. This heuristic could be replaced with adaptive MCMC methods - these are well known236

but slightly more complicated to implement from scratch.237

2.7 Posterior Distribution on Hidden States238

One way of estimating the marginal posterior distribution P (X1:T |y1:T ) is to store one (or more)239

trajectories from each PMMH step. The resulting set of particle trajectories are samples from240

the pointwise marginal posterior distribution P (Xt|Y1:T ). However, as we fit the parameters241

in three-month windows, the PMMH method only outputs trajectories in three-month blocks,242

which cannot be easily joined together.243

Instead we first run algorithm 2 to generate a set of fixed parameter values {θi}Nc
i=1 ∼ P (θ|y1:T ).244

We then sample from P (X1:T |y1:T ) by iteratively uniformly sampling θ∗ from {θi}Nc
i=1, running245

algorithm 1 with Nx particles at θ = θ∗, and keeping Ns trajectories (where Ns ≤ Nx) from the246

output. Repeating this Nc times (once for each parameter sample) gives a set of NsNc particle247

trajectories that approximate the pointwise posterior distribution P (Xt|y1:t+h) ≈ P (Xt|y1:T ).248

Note that each sample from {θi}Nc
i=1 consists of five independent sets of values for the inferred249

parameters (σCAR, σR, kc and kw), one for each of the five three-month periods. When we run250

algorithm (2) for the whole 15-month period, we assume that the values of these four parameters251

change instantaneously from one three-month block to the next.252

Typically we want to run this with sufficient unique draws from P (θ|y1:T ) (say Nc ≥ 100)253

to appropriately account for uncertainty in θ. The number of samples retained from each254

iteration should be chosen so our overall number of trajectories is sufficiently large - we choose255

NcNs = 2 × 106. Finally, as we are less concerned by minor degeneracy in individual particle256

filters, the number of particles used in each filter Nx can be smaller than if we were just running257

the filter once. For our results, Nx = 105 worked well, but this needs to be tailored to individual258

purposes.259

When presenting results we calculate the mean of the samples as the central estimate and use260

the 2.5th and 97.5th quantiles to represent our 95% credible intervals (CrI).261
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Figure S1: Delay distributions. Distributions reported in the first row were used as inputs to

create the infection-to-shedding and infection-to-reporting distributions reported in the second

row.

2.8 Pre-Determined Parameters262

In addition to the estimated parameters, there are others that we fix. These are the generation263

time distribution gu, infection-to-reporting distribution Lu, the infection-to-shedding distribu-264

tion ωu, and the average total genome copies per infection α. We also pre-specify the fixed-lag265

resampling window h = 30.266

The generation time is assumed to be a discretised Gamma random variable with mean 3.3267

days and standard deviation 1.3 days [7, 8, 9, 4]. The infection-to-reporting and infection-to-268

shedding distributions are calculated as convolutions of an incubation period (infection-to-onset)269

distribution (Weibull with mean 2.9 days and standard deviation 2.0 days [10]) and an onset-to-270

reporting distribution (estimated from New Zealand data, mean 1.8 days and standard deviation271

1.8 days) or an onset-to-shedding distribution (mean 0.7 and standard deviation 2.6 [1]). The272

Gamma and Weibull distributions were discretised by taking their value at integer times and273

normalising. All of these distributions are presented in Supplementary Figure S1.274
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2.9 Estimating Curvewise Extrema275

Our primary methods produce pointwise estimates of the hidden states at each time step (e.g.276

mean and quantiles of the samples at each fixed value of t). As the timing of peaks and troughs277

can be quite variable between particles, using pointwise statistics to quantify the heights and278

timings of peaks or troughs (e.g. local maxima in the median value across particles) can be279

misleading [11]. For this purpose, is important to consider these on a curvewise basis (e.g.280

median of the local maxima across particles). This requires samples from the joint posterior281

distribution P (Xs:t|y1:T ) over some fixed window s : t.282

We achieve this by increasing our resampling length h and halting the algorithm when the period283

of interest is contained in (T − h, T − 30) where T represents the final stopping time. Limiting284

the lower window to t ≥ T − h ensures that complete trajectories are faithfully resampled over285

the time period of interest. Limiting the upper window to t ≤ T − 30 ensures we are using286

appropriately smoothed samples that are sufficiently informed by data.287

3 Supplementary Results288

3.1 Synthetic Verification of Hidden State Estimates289

Before analysing real-world data, we performed synthetic tests to verify our model. We imposed290

a prescribed time-varying reproduction number and CAR and ran a forward simulation of our291

model to calculate the median number of infections, cases and wastewater data for a fixed value292

of α. We then used the simulated case and wastewater data as inputs to the particle filter to293

estimate Rt and CARt. To investigate how the addition of wastewater data affected model294

performance, we ran the particle filter with three different sets of inputs: only case data, only295

wastewater data, and both case and wastewater data. The results are shown in Figure S2.296

The parameters used were σR = 0.1, σCAR = 0.02, kc = 100, and kw = 1 × 10−6 along with297

α = 3× 109.298

All three data combinations resulted in a reasonable estimate of Rt (Figure S2). The model error299

was smallest when using both reported cases and wastewater data as input (root mean square300

error between the true solution and the median of the particle filter output was 3.4 and 0.7301

times larger when only using reported cases or wastewater data, respectively). Previous work302

has estimated Rt from reported case data [12]. The results presented in Figure S2 demonstrate303

that Rt can also be estimated from wastewater data independently from case data and that the304

most accurate result is achieved by combining reported case information with wastewater data.305

13



Figure S2: Synthetic results showing (left) instantaneous reproduction number, (centre-left)

case ascertainment rate, (centre-right) wastewater data in genome copies per person per day

(gc/p/d) and (right) reported cases. Results are shown when using (a) only reported cases

as input data for the particle filter, (b) only wastewater data, and (c) both reported cases

and wastewater data. Solid lines present central estimates. Shaded regions show 95% CrIs on

the value of the hidden states (left and centre-left columns) and 95% CrIs on the prediction

distribution for wastewater data and reported cases (centre-right and right columns). Black

dashed lines indicate the synthetic data. Vertical red lines in hidden state plots (left and

centre-left columns) indicate the end of the two wind-in periods (see Supplementary Materials

sec. 2.2).

For CAR, there were significant differences between the three different sets of input data (Fig-306

ure S2). When using only reported cases or wastewater data separately, the model did not have307

sufficient information to inform estimates of CAR. As a consequence, estimates were either308

inaccurate or did not capture the temporal trend and had very wide credible intervals. When309

reported case information was combined with wastewater data, there was good agreement be-310

tween the estimated CAR and the true solution, with a relatively narrow credible interval. This311

illustrates the value of combining wastewater data with reported case information to obtain312

reliable estimates of changes in CAR over time.313
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3.2 Visualising Log-Likelihood Estimates314

As discussed in section 2.6, we simulated the model likelihood on a coarse grid of parameter val-315

ues to get a preliminary estimate of the plausible range of parameter values. We present exam-316

ples of two outputs in figure S3. The left-plot shows log-likelihood estimates for σR for the third317

estimation window (1 July 2022 to 30 September 2022) while the right-plot shows a bivariate318

heatmap of log-likelihood estimate for σCAR and kc. Code to reproduce these figures is provided319

in the usefulscripts subfolder at https://github.com/nicsteyn2/NZWastewaterModelling.320

Figure S3: Log-likelihood estimates for various values of σR (left) and various combinations of

values of σCAR and kc (right).

3.3 Sensitivity to Delay Distributions321

The model relies upon three distributions describing the delay from infection to reporting,322

shedding detected viral genome copies, and infecting other people. We test the effect of shifting323

these distributions by one day backward or forward. We do this by appending a zero at the324

start (to shift times backward), or by removing the first entry in d (to shift times forward),325

where di is the probability vector specifying the likelihood the delay takes i days. This has the326

effect of shifting the mean of the distributions by approximately one day in either direction.327

Figures S4 to S6 show the effect of these shifts to be minimal, with the exception of the shedding328

distribution, where shifts can substantially impact estimates of the absolute case ascertainment329

rate, even though the relative case ascertainment rate is similar despite the shifts.330

Note, due to computational limitations we do not re-fit fixed parameters for each shift, although331

the effect of doing this is expected to be negligible.332
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Figure S4: The effect of shifting the reporting time distribution by one day forward or backward.
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Figure S5: The effect of shifting the shedding time distribution by one day forward or backward.
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Figure S6: The effect of shifting the generation time distribution by one day forward or back-

ward.
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4 Particle Marginal Metropolis-Hastings Outputs333

This section presents the trace plots, pairwise scatterplots of samples, pairwise correlations of334

samples, univariate kernel density plots, and the Gelman-Rubin diagnostic for each of the four335

parameters over the five three-month time periods in which they are estimated. Each of the336

eight chains were run for 5,000 iterations, with the initial 100 samples dropped as a wind-in337

period (although as discussed in section 2.6, our initial choices of parameter values mean this338

is somewhat superfluous).339

The Gelman-Rubin diagnostic tests for convergence by comparing intra-chain variance with340

inter-chain variance. We use the coda package in R [13] to calculate a point estimate and 95%341

upper confidence bound on the Gelman-Rubin diagnostic. It is generally accepted that values342

less than 1.1 imply convergence, although some use the more relaxed cutoff of 1.2. These are343

reported in table S3.344

Table S3: Gelman-Rubic diagnostics and total sample sizes (for all eight chains) for each pa-

rameter and time period.

Period starting σR σCAR kc kw Sample size

1 Jan 2022 1.01 (1.01) 1.01 (1.02) 1.01 (1.01) 1.00 (1.02) 39,200

1 Apr 2022 1.00 (1.01) 1.01 (1.06) 1.01 (1.02) 1.01 (1.02) 39,200

1 Jul 2022 1.01 (1.02) 1.01 (1.02) 1.01 (1.03) 1.01 (1.01) 39,200

1 Oct 2022 1.01 (1.02) 1.01 (1.04) 1.02 (1.04) 1.00 (1.01) 39,200

1 Jan 2023 1.02 (1.04) 1.02 (1.05) 1.04 (1.09) 1.01 (1.03) 39,200
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4.1 Period 1: 1 January 2022 – 31 March 2022345

Figure S7: MCMC trace plots for period 1.

Figure S8: MCMC pairwise scatter plots, univariate kernel densities, and pairwise correlation

estimates for period 1.

20



4.2 Period 2: 1 April 2022 – 30 June 2022346

Figure S9: MCMC trace plots for period 2.

Figure S10: MCMC pairwise scatter plots, univariate kernel densities, and pairwise correlation

estimates for period 2.
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4.3 Period 3: 1 July 2022 – 30 September 2022347

Figure S11: MCMC trace plots for period 3.

Figure S12: MCMC pairwise scatter plots, univariate kernel densities, and pairwise correlation

estimates for period 3.
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4.4 Period 4: 1 October 2022 – 31 December 2022348

Figure S13: MCMC trace plots for period 4.

Figure S14: MCMC pairwise scatter plots, univariate kernel densities, and pairwise correlation

estimates for period 4.
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Period 5: 1 January 2023 - 31 March 2022349

Figure S15: MCMC trace plots for period 5.

Figure S16: MCMC pairwise scatter plots, univariate kernel densities, and pairwise correlation

estimates for period 5.
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