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Abstract 
Environmental exposures during the perinatal period are known to have a long-term effect on adult 

physical and mental health. One such influential environmental exposure is the time of year of birth 

which affects the amount of daylight, nutrients, and viral load that an individual is exposed to in the 

key developmental period. Here we investigate associations between season of birth (seasonality), 

four mental health traits (n=135,541) and multi-modal neuroimaging measures (n=33,815) within 

the UK Biobank. Summer births were associated with probable recurrent Major Depressive Disorder 

(β=0.024, pcorr=0.048), greater mean cortical thickness in temporal and occipital lobes and in the 

middle temporal, fusiform, superior temporal, and lingual gyri regions (β range=0.013 - 0.020, 

pcorr<0.05). Winter births were associated with greater white matter integrity globally, in the 

association fibers, thalamic radiations, and six individual tracts (β range=-0.010 to -0.021, pcorr<0.05). 

Results of sensitivity analyses that adjusted for birth weight were similar, with additional 

associations found between winter birth and frontal, occipital and cingulate lobe surface areas, as 
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well as fractional anisotropy in the forceps minor. Sensitivity analyses also revealed an additional 

association between summer birth and greater cingulate thickness. Overall, results suggest that 

seasonality affects brain structure in later life and may have a role in lifetime recurrent Major 

Depressive Disorder. The small effect sizes observed here warrant further research to validate the 

results in the context of different latitudes and co-examine genetic and epigenetic measures to 

potentially reveal informative biological pathways. 

Key words: Seasonality, season of birth, birth month, UK Biobank, neuroimaging, mental health 

 

Introduction 
Season of birth has long been hypothesised to have enduring effects on human health [1]. The 

relatively recent “Foetal Origins of Adult Disease” hypothesis proposes that intra-uterine exposures 

influence later adult health, including mental health outcomes [2, 3]. Seasonality of birth has been 

associated with multiple diseases [4], including psychiatric [5-7],
 
neurodevelopmental [8], 

cardiovascular [9], inflammatory [10], and genetic [11]. The mechanisms by which seasonality may 

affect risk to these disorders are hypothesised to include interactions with photoperiod and sunlight 

[12], nutrition [13], risk of pre-term birth and early life infection [14], and maternal vitamin D 

deficiency [15]. These interactions could also be mediated by genetic [16], epigenetic [17] or 

environmental changes [5] in utero or perinatally. 

Perinatal photoperiod directly affects the physiology, brain morphology and behaviour of many 

animals via transplacental signalling to melatonin receptors in the developing medio-basal 

hypothalamus [18, 19]. Many of these season-of-birth effects endure into adulthood, including 

altered circadian timing [20], changes in affective behaviour, hippocampal volume [21] and changes 

to serotonergic and dopaminergic systems in the brain [22]. The wider effects of season of birth on 

human brain structure have been investigated using magnetic resonance imaging with winter births 

associated with increased grey matter volume of the superior temporal gyrus in a study of over 550 
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individuals [23]. However, in a larger study of 13,000 Rotterdam Study participants there was no 

effect of season of birth on any imaging derived measures [24]. 

Differences in photoperiod exposure during the perinatal and postweaning time windows have been 

associated with enduring changes in anxiety and depressive-like behaviours in developmentally 

stable adulthood periods within animal models [25, 26], with shorter photoperiods associated with 

increased presence and severity of these behaviours. Differences in brain morphology have been 

associated with mental health disorders including depression [27-29], externalizing behaviour [30] 

and schizophrenia [31, 32]. The associations between brain morphology and mental health thus 

warrant an investigation of associations of seasonality with both brain morphology and mental 

health.  

Birth seasonality likely plays a multifaceted role in the aetiology of adult mental health, either 

alongside or independently of seasonality-induced brain morphology changes. However, to date, the 

potential relationship between seasonality of birth, mental health traits and imaging measures has 

not been examined at scale. This study, therefore, aims to individually explore associations between 

seasonality of birth and (a) mental health disorders, and (b) brain imaging measures within the UK 

Biobank. 

Materials & Methods 

UK Biobank 

The UK Biobank (UKB) is a well-characterised community cohort of over 500,000 participants aged 

37-73 years at recruitment (2006-2010) [33]. All participants were invited to an initial assessment in 

which baseline data were collected, including month of birth, birth weight, and birth location. 

Mental health information was collected for all individuals at baseline using a Touchscreen 

Questionnaire, and for 157,348 participants between 2016 and 2017 using a Mental Health 

Questionnaire [34] (MHQ). A subset of the cohort (n=42,709) was invited to the first imaging visit in 

2014 where brain scans, including T1-weighted (T1) and diffusion tensor imaging (DTI), were 
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obtained. Data were accessed under the UKB Application Number 4844. UKB has approval from the 

NHS National Research Ethics Service as a research tissue bank (References 16/NW/0274 and 

11/NW/0382).  

Seasonality 

Seasonality of birth was examined as a quantitative phenotypic trait (�) capturing the month of birth 

(UKB data-field 52) following the approach of Howard et al. (35). The birth month of each participant 

(�) was transformed via a cos function, with the lowest phenotypic score (-1) corresponding to those 

born in December and the highest phenotypic score corresponding to those born in June (+1), as 

below: 

�� � �1 � ��	 �2 ��������������12 �� 

Mental health traits 

Four mental health trait phenotypes were obtained from responses to the Touchscreen 

Questionnaire and the “Thoughts and Feelings” section of the MHQ. Where participants had 

completed both questionnaires (n=85,266), the MHQ responses were used to generate phenotypes 

due to the greater specificity of this questionnaire (see S2.2.1A and S2.2.1B Methods for UKB data-

fields used). Participants who had answered “Prefer not to answer” or “I don’t know” to any 

questions or with insufficient symptom data (i.e., only one reported symptom) were removed at this 

stage. The remaining participants (n=170,982) were categorised into four mental health-related 

phenotypes: probable recurrent Major Depressive Disorder (P-RMDD) (n=39,528 cases), probable 

single episode Major Depressive Disorder (P-SEMDD) (n=16,430 cases), probable Hypomania 

(n=9,104 cases) and probable Mania (n=2,569 cases), plus a control group (n=103,351) as previously 

validated by Smith et al. (36) (see S2.2.1C and S2.2.1D Methods for grouping specification). At this 

point, participants who were of non-white ethnicity (n=9,581), did not report a UK or Republic of 

Ireland birthplace or had unrecoverable geographical birthplace co-ordinate data (n=9,897) (See S2.1 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 13, 2023. ; https://doi.org/10.1101/2023.08.09.23293866doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.09.23293866
http://creativecommons.org/licenses/by/4.0/


5 

 

Methods for geographical data processing), had missing Townsend Deprivation Index values (n=189), 

or had chosen to withdraw from further studies (n=8) were excluded. Furthermore, participants who 

reported other neuropsychiatric or sleep-related conditions (n=28), brain cancer diagnoses (n=2), or 

reported having done shift work (n=13,241) were also excluded. This resulted in a total of 32,946 

exclusions with 138,036 participants remaining (see S2.3.1A Methods for exclusion details). 

Any overlaps between the groupings were removed to create distinct phenotypes that did not share 

a probable diagnosis: P-RMDD (n=31,652), P-SEMDD (n=13,529), probable Unipolar Mania (P-UM) 

(n=1,202) and probable Bipolar Depression (P-BD) (n=5,140) (see S2.2.1D Methods for overlaps 

permitted). Both the P-RMDD and the P-SEMDD groups exclude participants within the probable 

Mania or probable Hypomania groups. P-UM excludes participants within either depression group, 

whereas the P-BD grouping allows for participants also within either depression grouping and 

follows the definitions used in Sangha et al. (37). Participants who completed the MHQ lead 

questions for mania (UKB data-fields 20501 and 20502) and depression (UKB data-fields 20446, 

20441), and/or the Touchscreen Questionnaire lead questions for mania (UKB data-fields 4642, 

4653) and depression (UKB data-fields 4598, 4631) but had not been classified into one of the four 

phenotypes, were defined as controls (n=84,018). The total sample size was therefore 135,541 (see 

S2.3.1B Methods for group sample sizes). Participant demographics for the mental health 

phenotypes are provided in Table 1. 
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Control 

(N=84018) 

Probable Major 

Depressive 

Disorder 

(n=13529) 

Probable Single 

Episode 

Depression 

(n=31652) 

Probable 

Unipolar 

Mania 

(n=1202) 

Probable 

Bipolar 

Depression 

(n=5140) 

Total 

(n=135541) 

Sex       

  Female 39245 (46.7%) 9306 (68.8%) 21329 (67.4%) 460 (38.3%) 3039 (59.1%) 73379 (54.1%) 

  Male 44773 (53.3%) 4223 (31.2%) 10323 (32.6%) 742 (61.7%) 2101 (40.9%) 62162 (45.9%) 

Age (years)       

  Mean (SD) 62.8 (8.32) 61.5 (8.09) 60.3 (8.28) 61.2 (8.42) 59.8 (7.81) 62.0 (8.35) 

Ethnicity       

  White 62 (0.1%) 7 (0.1%) 29 (0.1%) 2 (0.2%) 8 (0.2%) 108 (0.1%) 

  British 81900 (97.5%) 13129 (97.0%) 30522 (96.4%) 1152 (95.8%) 4908 (95.5%) 131611 (97.1%) 

  Irish 1222 (1.5%) 225 (1.7%) 591 (1.9%) 23 (1.9%) 131 (2.5%) 2192 (1.6%) 

  Any other white     

background 
834 (1.0%) 168 (1.2%) 510 (1.6%) 25 (2.1%) 93 (1.8%) 1630 (1.2%) 

Month of Birth       

  January 6894 (8.2%) 1140 (8.4%) 2666 (8.4%) 108 (9.0%) 443 (8.6%) 11251 (8.3%) 

  February 6686 (8.0%) 1079 (8.0%) 2474 (7.8%) 93 (7.7%) 380 (7.4%) 10712 (7.9%) 

  March 7655 (9.1%) 1241 (9.2%) 2928 (9.3%) 109 (9.1%) 449 (8.7%) 12382 (9.1%) 

  April 7264 (8.6%) 1172 (8.7%) 2794 (8.8%) 123 (10.2%) 429 (8.3%) 11782 (8.7%) 

  May 7572 (9.0%) 1209 (8.9%) 2915 (9.2%) 99 (8.2%) 457 (8.9%) 12252 (9.0%) 

  June 6952 (8.3%) 1135 (8.4%) 2787 (8.8%) 111 (9.2%) 447 (8.7%) 11432 (8.4%) 

  July 7161 (8.5%) 1143 (8.4%) 2696 (8.5%) 113 (9.4%) 434 (8.4%) 11547 (8.5%) 

  August 6917 (8.2%) 1164 (8.6%) 2534 (8.0%) 96 (8.0%) 427 (8.3%) 11138 (8.2%) 

  September 6920 (8.2%) 1128 (8.3%) 2536 (8.0%) 92 (7.7%) 464 (9.0%) 11140 (8.2%) 

  October 6741 (8.0%) 1078 (8.0%) 2465 (7.8%) 87 (7.2%) 410 (8.0%) 10781 (8.0%) 

  November 6483 (7.7%) 983 (7.3%) 2373 (7.5%) 91 (7.6%) 385 (7.5%) 10315 (7.6%) 

  December 6773 (8.1%) 1057 (7.8%) 2484 (7.8%) 80 (6.7%) 415 (8.1%) 10809 (8.0%) 

Birth Location       

  Cluster 1 39860 (47.4%) 6404 (47.3%) 15039 (47.5%) 556 (46.3%) 2410 (46.9%) 64269 (47.4%) 

  Cluster 2 8600 (10.2%) 1438 (10.6%) 3225 (10.2%) 110 (9.2%) 548 (10.7%) 13921 (10.3%) 

  Cluster 3 15088 (18.0%) 2459 (18.2%) 5477 (17.3%) 226 (18.8%) 910 (17.7%) 24160 (17.8%) 

  Cluster 4 20470 (24.4%) 3228 (23.9%) 7911 (25.0%) 310 (25.8%) 1272 (24.7%) 33191 (24.5%) 

Table 1. Participant demographic details for mental health trait analysis. SD = Standard deviation. 

Birth location was obtained using k-means clustering (see Statistical models section for full details) 

 

Brain imaging measures 

T1-weighted and DTI brain scans were obtained for 42,709 participants on their first imaging visit 

[38], with complete brain imaging data available for 37,048 participants. Participants with outlier 

values in global measures of cortical surface area (n=112), mean cortical thickness (n=217), cortical 
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volume (n=117), subcortical volume (n=90), mean diffusivity (MD) (n=105), or fractional anisotropy 

(FA) (n=232) were excluded. Global measures were derived by conducting principal component 

analyses (PCA) on data from the entire sample [39], and measure outliers were defined as values ±3 

standard deviations from the sample mean for that measure. Participants of non-white ethnicity 

(n=1,168), non-UK/Republic of Ireland, non-specified (n=1,874) or unrecoverable geographical 

(n=581) birthplace, with a missing Townsend Deprivation Index value (n=26), or who wished to 

withdraw from future studies (n=4) were also excluded. No participants had to be removed due to 

head motion in the scanner. A total of 32,815 participants were included after 3,651 exclusions.  

Demographics of participants included in the analyses of brain imaging measures are provided in 

Table 2. An additional sensitivity analysis was conducted using only individuals with birth weight 

data (n=21,182). 
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Total 

(n=32815) 

Sex  

  Female 17519 (53.4%) 

  Male 15296 (46.6%) 

Age (years)  

  Mean (SD) 63.7 (7.43) 

Ethnicity  

  White 16 (0.0%) 

  British 31812 (96.9%) 

  Irish 578 (1.8%) 

  Any other white background 409 (1.2%) 

Birth Weight (kg)  

  Mean (SD) 3.36 (0.614) 

  Median [Min, Max] 3.37 [0.740, 6.78] 

Month of Birth  

  January 2731 (8.3%) 

  February 2669 (8.1%) 

  March 3018 (9.2%) 

  April 2864 (8.7%) 

  May 2873 (8.8%) 

  June 2754 (8.4%) 

  July 2802 (8.5%) 

  August 2709 (8.3%) 

  September 2673 (8.1%) 

  October 2640 (8.0%) 

  November 2445 (7.5%) 

  December 2636 (8.0%) 

Birth Location   

  Cluster 1 6046 (18.4%) 

  Cluster 2 11871 (36.2%) 

  Cluster 3 2644 (8.1%) 

  Cluster 4 12254 (37.3%) 

Scanner Site  

  Cheadle 20111 (61.3%) 

  Reading 3954 (12.0%) 

  Newcastle 8750 (26.7%) 

Table 2. Participant demographic details for neuroimaging analysis. SD = Standard deviation. Birth 

location was obtained using k-means clustering (see Statistical models section for full details) 
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Brain morphology measures 

Brain morphometric measures were obtained by the UK Biobank with FreeSurfer 6.0 toolkit [40-42]  

and included volumes of seven subcortical structures for each hemisphere, as well as volume, 

thickness and surface area measures of 31 cortical regions for each hemisphere, based on the 

Desikan-Killiany-Tourville atlas [43] (n=32,815, see S1.1 Methods for full pre-analysis QC). Similar 

measures were analysed in Harris et al. (39) (UKB category 192) and Shen et al. (29). Global and 

lobar cortical thickness, surface area and cortical volume measures were derived manually for each 

hemisphere (n=32,815). Lobar measures were obtained for the frontal, parietal, temporal, occipital 

and cingulate lobes (see S2.2.2A Methods for group composition). All brain morphometric measures 

were normalised. 

White matter microstructure measures 

White matter (WM) microstructure measures consisted of FA and MD values for 12 bilateral tracts 

and 3 unilateral tracts derived by the UK Biobank with the FSL probabilistic tractography toolkit (See 

S1.1 Methods) [38, 44]. Additional fiber-related FA and MD measures were derived as the scores on 

the first unrotated principal components from PCA, which combined bi-hemispheric (left and right) 

and unilateral measures from all relevant individual fiber tracts. The three whole-brain fiber bundles 

derived were the association fibers, projection fibers and thalamic radiations (see Methods S2.2.2A 

for fiber definitions). Global FA and MD measures were derived as the scores on the first unrotated 

principal components from PCA analyses which combined all bi-hemispheric and unilateral tract 

measures. Proportions of variance explained by the first principal components are provided in 

Methods S2.2.2B. Thirty-eight WM integrity measures were analysed in total (19 FA and 19 MD) 

(n=32,815) and all WM microstructure measures were normalised. 
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Statistical models 

Mental health traits 

To investigate associations between the four mental health phenotypes and seasonality, logistic 

binomial regression analyses were performed, covarying for sex, age, age2, Townsend Deprivation 

Index, assessment centre attended and place of birth location. Place of birth locations were derived 

with k-means clustering of participant birth north / east co-ordinates from the Ordnance Survey data 

(UKB variables 129 and 130), performed using “kclust” function in the R “stats” package. Twenty 

clustering iterations were run to identify four birth location clusters (see S2.1.1 Methods and S1-S3 

Fig), and each participant was assigned to a cluster to define place of birth. Sex, assessment centre 

and place of birth were coded as categorical variables. A Bonferroni multiple analysis correction was 

applied over the four phenotypes examined (P < 0.0125 (α = 0.05 / 4)). Effect sizes were 

standardised throughout. 

Brain imaging measures 

Linear regression models were applied to assess associations between seasonality and all unilateral, 

fiber-related or global brain measures. Mixed-effects models were applied to assess associations 

between seasonality and all bilateral brain measures (“nlme” package in R version 3.2.3). Sex, age, 

age
2
, Townsend Deprivation Index, assessment centre, four UKB head position covariates (X, Y, Z and 

table position) and place of birth cluster index (see S4-S6 Fig) were included as covariates in all 

analyses. Sex, assessment centre and place of birth were coded as categorical variable Hemisphere 

was controlled for as a random effect in the mixed-effect models for all bi-hemispheric measures 

(see S2.1.2 Methods). Standardised intra-cranial volume was also covaried for in all analyses of brain 

morphometric measures. 

False Discovery Rate (FDR) correction was applied separately across individual and regional brain 

morphology and white matter microstructure measures per modality (Methods S2.4.1). Global 

measures were not corrected. A P-value threshold for significance was set to 0.05 and effect sizes 

were standardised throughout. All statistical analyses were performed using R (version 3.2.3). A 
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sensitivity analysis was conducted to reassesses the brain imaging measures for an association with 

seasonality after fitting birth weight as an additional fixed effect covariate.  

Results 

Seasonality associations with mental health traits 

Probable recurrent Major Depressive Disorder was associated with seasonality, with a higher 

prevalence observed in summer births (β= 0.024, pcorr= 0.048). No other mental health traits were 

associated with seasonality (Table 3). Effect sizes are reported as log-transformed odd ratios. 

Mental Health Trait Effect Size(β) 

/ Log(OR) 

S.E. p-uncorr p-corr 

Probable recurrent Major Depressive Disorder 0.024 0.010 0.012 0.048 

Probable single Episode Major Depressive Disorder 0.016 0.013 0.243 0.973 

Probable Unipolar Mania 0.061 0.041 0.139 0.554 

Probable Bipolar Depression 0.007 0.021 0.754 1.000 

Table 3. Mental health traits associated with seasonality. p-uncorr = p-uncorrected value; p-corr = 

Bonferroni p-corrected value; S.E = standard error.  

 

Seasonality associations with brain imaging measures 

Greater mean temporal lobe thickness (β= 0.011, pcorr= 0.017) and greater mean occipital lobe 

thickness (β= 0.010, pcorr= 0.025) were associated with summer births. Summer births were also 

associated with four individual regional cortical thickness measures: middle temporal gyrus (β= 

0.018, pcorr= 0.027), fusiform gyrus (β= 0.018, pcorr= 0.031), superior temporal gyrus (β= 0.016, pcorr= 

0.033), and lingual gyrus (β= 0.016, pcorr= 0.049) (Fig 1). 
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Fig 1. Standardised effect sizes of brain morphology measures associated with seasonality mapped 

onto the Desikan-Killiany-Tourville atlas for (A) mean cortical thickness of the temporal and occipital 

lobes in the main analyses and in the sensitivity analyses for (B) mean cortical thickness of the 

middle temporal, fusiform, superior temporal and lingual gyri, (C) mean cortical thickness of the 

temporal, occipital and cingulate lobes, and (D) cortical surface area of the frontal, occipital and 

cingulate lobes. Darker colour indicates associations with winter births, lighter colour indicates 

associations with summer births. 

 

Winter births were associated with higher global FA (β= -0.013, p=0.001), higher FA in the 

association and thalamic fibers (respectively β= -0.016, pcorr= 2.63 × 10-5 and β= -0.011, pcorr= 0.004), 

and higher FA in six of 15 individual WM tracts (effect sizes ranging from β= -0.009 to β= -0.016) (Fig 

2, S3.1 Results). No MD measures were associated with seasonality. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 13, 2023. ; https://doi.org/10.1101/2023.08.09.23293866doi: medRxiv preprint 

https://doi.org/10.1101/2023.08.09.23293866
http://creativecommons.org/licenses/by/4.0/


 

Fig 2. Standardised effect sizes for white matter microstructure neuroimaging measures associated 

with seasonality in the main and sensitivity analyses. All shown measures were associated with 

seasonality (pcorr<0.05), except for FA Forceps Minor in the main analysis (ns = non-significant). 

 

When birth weight was additionally covaried for in the sensitivity analyses, four additional cortical 

morphometric measures were identified as significantly associated with seasonality: frontal lobe 

surface area (β= -0.010, pcorr= 0.025), occipital lobe surface area (β= -0.011, pcorr= 0.025), cingulate 

surface area (β= -0.010, pcorr= 0.026), and cingulate cortical thickness (β= 0.013, pcorr= 0.007) (Fig 1). 

Four previously identified associations remained significant with greater observed effect sizes (range 

β= 0.013 to β= 0.020) (see S3.2 Results) With regard to WM measures, an additional association of 

FA in the forceps minor with winter births was identified when correcting for birth weight (β= -0.011, 

pcorr= 0.029), while all previous associations remained significant with larger effect sizes (see Fig 2, 

S3.2.5-S3.2.7 Results for further details). 
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Discussion  

This study investigated associations between seasonality and mental health traits and neuroimaging 

measures in a large-scale cross-sectional dataset. Seasonality was associated with probable 

recurrent Major Depressive Disorder, as well as with a range of brain morphology and white matter 

microstructure brain imaging measures. Summer births were associated with a higher prevalence of 

probable recurrent Major Depressive Disorder, as well as greater mean thickness in the temporal, 

occipital and cingulate lobes, and the middle temporal, fusiform, superior temporal, and lingual gyri. 

Winter births were associated with more constrained water molecule diffusion and thus higher 

white matter integrity globally, in two white matter fiber tract bundles and in seven individual white 

matter tracts, as well as greater area measures in the frontal, occipital and cingulate areas. These 

results lend additional support to existing evidence of season of birth effects in adult health. 

In this study P-RMDD was associated with summer births, aligning with northern hemisphere spring 

associations with MDD risk in English outpatients (n=16,726) [6], severity in a small MDD case-

control study (45 cases and 90 controls) [45] and earlier disease onset in 855 Korean MDD patients 

[46]. However, there exist idiosyncrasies in the seasonality phenotypes derived in these studies, 

which range from monthly, to two- and four-season seasonality categories per participant, making 

for inexact comparison. A hemispheric six-month shift has also been observed between seasonality 

and depression symptoms, with higher scores associating with spring births (March-May) in the 

Northern hemisphere and autumn births (September-November) in the Southern hemisphere, in a 

small young adult and adolescent cohort [47]. Although an excess of August births in MDD patients 

has also been observed in the Southern hemisphere within a Brazilian retrospective study of MDD 

cases and controls (n=98,457) [48]. However, no associations between month of birth and 

depression symptoms were found in a similarly aged cohort in a recent Europe wide study 

(n=72,370) [49]. For P-RMDD, therefore, our findings provide a seasonality association within a UK 

population sample adding another datapoint to the ambiguous literature. 
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Unlike P-RMDD, single episode MDD was not associated with seasonality in this study. The more 

than two-fold reduction in sample size for P-SEMDD (n=13,529) may have limited statistical power to 

detect associations. An unshared aetiology may also be a factor, with more severe 

neurophysiological observations made in clinically comparable recurrent MDD cases versus single 

episode MDD cases [50], and an earlier age of onset and familial risk for recurrent MDD [51, 52]. 

Gene � environment effects [53] and genetic variants [54, 55] associated with recurrent MDD 

support this distinction. Therefore, seasonality effects may vary within depressive subtypes, with a 

more marked effect on persistent cases in response to seasonal perinatal and natal environments. 

Bipolar affective disorder has been associated with January births [6] (OR=1.09, 95% CI= 1.03–1.15, p 

=0.002), and for DSM-III bipolar disorder cases a seasonal pattern has been observed with significant 

excess births in December and a total of 5.8% seasonal excess births to expected births [56].  

However, the current study did not find a seasonal association, possibly due to the inclusion of both 

P-RMDD and P-SEMDD within P-BD since only the former associated with seasonality. It is also 

possible that the self-reported phenotype used may not fully capture cases with sufficient fidelity to 

yield associations. UM, a relatively unexplored BD-subtype [57], had the largest effect size of the 

mental health traits but was not associated with seasonality potentially due to the small number of 

cases available. Re-examination of this phenotype in a larger UM sample is therefore warranted. 

In line with previous studies, we find seasonality to be associated with a cluster of white matter 

microstructure measures, with novel findings for brain morphology regional measures. Overall, six 

regional and four individual brain morphology measures were associated with seasonality, all of 

which were either in the area or mean thickness category, despite the lack of associations for 

volumetric measures and seasonality expressed as daylength in similarly powered UKB studies [16]. 

Thickness of the temporal lobe has been shown to be significantly reduced in schizophrenic patients 

[58], and the disorder’s own association with winter births [59], may offer an opportunity for further 

study. Since cortical thickness has been less explored in the field, these associations merit closer 

study.  
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The observation of multiple negative associations for DTI FA measures in association with summer 

births, corroborates previous findings in which sections of the corpus callosum, the internal capsule, 

the corona radiata, the posterior thalamic radiation and the sagittal striatum were also found to 

have decreased FA values in summer compared to winter births [60], with the majority of these 

associations retaining significance in our sensitivity analysis. For summer births, lower FA measures, 

or less restricted and more isotropic diffusivity, may point to greater tissue disorganisation, itself 

generally accompanied by reduced axonal myelination, axonal loss, or a higher proportion of 

crossing fibers. Since global and regional measures yielded the strongest associations, alongside 

seven individual measures, seasonality may exert a non-localised effect on white matter integrity 

and thus warrant further analysis to specify possible mechanisms. The overall association of the 

thalamic radiations bundle and the association fibers bundle, composed of two and three individual 

tracts with individual associations respectively, provides novel evidence for lower values in summer 

births.  

Birth seasonality effects, therefore, may independently induce penetrable changes in white matter 

integrity in a subset of tract bundles, an effect discernible through DTI-ascertained measures. Brain 

structure and connectivity measures are a promising endophenotype for mental, neurological, and 

physiological illness. The range of neuroimaging associations with seasonality found here offers a 

starting point for further probing into the mechanistic relationship between them. 

This study was limited in geographical scope with the aim of keeping latitudinal and longitudinal 

variation minimal between subjects. Since season of birth effects have been shown to be greater at 

higher latitudes [59], possibly mediated by larger annual photoperiod shifts, studies in these regions, 

or meta-studies encompassing them might provide further insight. 

Although our mental health trait phenotypes align well with DSM-5 diagnostic criteria [34], they do 

not reflect formal diagnoses and therefore may under- or over-extend seasonality associations 

present under stricter definitions. A symptom-by-symptom study could also elucidate individual 
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patterns in associations, such as MDD sleep aberrances and evidenced seasonality mediated sleep 

differences [16]. The natural patterns of distribution in birth seasonality [61] with April and May 

annual birth-rate peaks in UKB [16]
 
should also be accounted for, as should the seasonal pattern in 

procreation habits observed in psychiatric disorders such as schizophrenia, which may be tied to 

heritable components [62]
 
of mental health disorders independently. Here, birth seasonality 

variation was assessed comparing winter births with summer birth. However, this provides those 

born in spring and autumn with similar phenotypic scores and therefore will not model differences 

between those born in those periods. Future studies could co-model a range of seasonality 

phenotypes to contextualise the extent of these potential differences. 

Since historically, seasonality effects on psychiatric conditions have been more pronounced in public 

versus private hospitals [63] and affected by urbanicity and education level , studies that account for 

these variables could provide a better picture of seasonality associations, although Townsend 

Deprivation Area may be a sufficient proxy for these measures. Generally, the lag between the time 

of birth and seasonality-related outcomes in later life makes their association prone to confounders 

which must be further considered. Overall, the small effect sizes found in this study suggest a limited 

role for seasonality in adult health, although usage of larger sample sizes and inclusion of more 

covariates could modify this.  

Lastly, although our study supports an association between seasonality and adult health, 

identification of the mechanisms by which these effects are actualised is beyond the scope of the 

current study. Longitudinal studies tracking changes in mental health and neuroimaging measures 

would more precisely quantify within-individual shifts over the lifetime and ease the identification of 

key developmental periods in which these take place. Since circadian patterns of gene expression 

have been demonstrated to be weaker in post-mortem human subjects with MDD [64], further 

studies examining deficiencies in circadian rhythmicity at the transcriptomic level and their 

associations with mental health traits in the context of month of birth could also be beneficial. A 
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combinatorial approach including genetic and gene expression data would give insight into 

differential seasonality programming and begin to specify possible biological pathways.  

In summary, we demonstrated seasonality of birth associations with adult health as measured by 

mental health traits and neuroimaging. The small effect sizes of our associations with global, 

regional, and individual brain imaging measures, as well as probable recurrent Major Depressive 

Disorder warrants replication in larger and more diverse datasets as well as those offering wider 

latitudinal ranges. A continuation of the examination of seasonality associations with mental health 

is also encouraged within higher powered studies or those utilising diagnosed cases.   
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