Supplementary Materials

What are genetic variants associated with "cigarette smoking initiation" really capturing?
Exploring pleiotropy in genetic analyses of smoking-related exposures
European Journal of Epidemiology
Zoe E. Reed ${ }^{1,2^{*}}$, Robyn E. Wootton ${ }^{1,2,3}$, Jasmine N. Khouja ${ }^{1,2}$, Tom G. Richardson ${ }^{2}$, Eleanor Sanderson ${ }^{2}$, George Davey Smith ${ }^{2}$, Marcus R Munafò ${ }^{1,2,4}$

1 School of Psychological Science, University of Bristol, Bristol, UK
2 MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
3 Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
4 National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
*Corresponding author: zoe.reed@bristol.ac.uk

Contents

Section 1. Smoking related exposures Page 4
Section 2. PheWAS to identify plausible and implausible phenotypes Page 4
Section 3. Plausible phenotype selection Page 5
Section 4. UK Biobank genetic data Page 6
Section 5. ALSPAC genetic data Page 6
Section 6. Genome-wide association studies in UK Biobank Page 8
Section 7. Polygenic risk score construction in UK Biobank Page 8
Section 8. Polygenic risk score construction in ALSPAC Page 8
Supplementary Table S1. Top 100 associaitons in the PheWAS Page 9
Supplementary Table S2. Details of plausible phenotypes in UK Biobank.
Page 13
Supplementary Table S3. Details of implausible phenotypes in UK Biobank
Supplementary Table S4. ALSPAC phenotypes for plausible phenotypes
Supplementary Table S5. ALSPAC phenotypes for implausible phenotypes
Supplementary Table S6. Summary statistics for UK Biobank sample with data available
Page 27Supplementary Table S7. Associations between the polygenic risk scoresfor lifetime smoking score, smoking heaviness and smoking initiation andplausible outcomes in UK Biobank
Supplementary Table S8. Associations between the polygenic risk scoresfor lifetime smoking score, smoking heaviness and smoking initiation andimplausible outcomes in UK BiobankSupplementary Table S9. Summary statistics for ALSPAC sample with dataavailable
Supplementary Table S10. Associations between the polygenic risk scoresfor lifetime smoking score, smoking heaviness and smoking initiation andplausible outcomes in ALSPAC
Supplementary Table S11. Associations between the polygenic risk scores
Page 15
Page 17
Page 22
Page 29for lifetime smoking score, smoking heaviness and smoking initiation andimplausible outcomes in ALSPAC

Supplementary Fig S1. Associations between polygenic risk scores for lifetime smoking score (blue), smoking heaviness (red, from darkest to lightest is never, former and current) and smoking initiation (green) and plausible phenotypes (linear models)

Supplementary Fig S2. Associations between polygenic risk scores for lifetime smoking score (blue), smoking heaviness (red, from darkest to lightest is never, former and current) and smoking initiation (green) and plausible phenotypes (logistic models)

Supplementary Fig S3. Associations between polygenic risk scores for lifetime smoking score (blue), smoking heaviness (red, from darkest to lightest is never, former and current) and smoking initiation (green) and plausible phenotypes (ordinal models)

Supplementary Fig S4. Associations between polygenic risk scores for lifetime smoking score (blue), smoking heaviness (red, from darkest to lightest is never, former and current) and smoking initiation (green) and implausible phenotypes (linear models)

Supplementary Fig S5. Associations between polygenic risk scores for lifetime smoking score (blue), smoking heaviness (red, from darkest to lightest is never, former and current) and smoking initiation (green) and implausible phenotypes (logistic models)

Supplementary Fig S6. Associations between polygenic risk scores for lifetime smoking score (blue), smoking heaviness (red, from darkest to lightest is never, former and current) and smoking initiation (green) and implausible phenotypes (ordinal models)

References Page 63

Section 1. Smoking related exposures

In UK Biobank, for smoking initiation, we included any participants who indicated they currently or previously smoked in the ever smoked group and anyone who indicated they had never smoked in the other group (UKBB field number: 20116). For smoking heaviness, we used number of cigarettes smoked per day (UKBB field number: 3456). Where the participant was a former smoker, cigarettes per day when they did smoke was used as a measure of heaviness (UKBB field number: 2887). Participants who reported smoking less than one or more than 150 cigarettes per day were removed by UK Biobank and those reporting more than 100 cigarettes per day were asked to confirm this. Participants were informed that for hand-rolled cigarettes, one gram of tobacco was equivalent to one cigarette.

In UK Biobank, the lifetime smoking index, which was constructed in a previous study, was designed to capture a number of aspects of smoking behaviour (i.e., initiation, heaviness and duration). We used measures of smoking status (current, former or never), age at initiation (UKBB field number: 3436 and 2867) and cessation (UKBB field number: 2897), if applicable, and number of cigarettes smoked per day (as for our smoking heaviness measure). The smoking measures were combined with a simulated half-life constant which captured the exponentially decreasing effect of smoking over time on health outcomes. The best fitting value for this was 18 and further details of the simulations to obtain this value can be found in the original article describing this measure [1]. We standardised the lifetime smoking index to have a mean of 0 and a standard deviation (SD) of 1.

Data on smoking status and cigarettes per day (CPD) were also available in ALSPAC. Smoking status was collected for both mothers and fathers/partners when they were asked if they had ever been a smoker (collected during pregnancy). We included measures of cigarettes per day obtained at two timepoints for mothers and one for fathers/partners. For mothers we included two timepoints as the first measure was obtained just after pregnancy and may not be a good representation of usual smoking habits for this reason. Therefore, we also included a measure collected 8 months after birth. For the first measure mothers were asked how many cigarettes they smoked per day over the past week (categorical variable with 'not at all', ' 1 to 4 ', ' 5 to 9 ', ' 10 to 14 ', ' 15 to 19 ', ' 20 to 24 ', ' 25 to 29 ' and ' 30 or more'). For the second measure mothers were asked how many cigarettes per day they currently smoke (same categories as previous). The fathers/partners CPD measure was also obtained 8 months after birth, and they were asked the same question as mothers.

Section 2. PheWAS to identify plausible and implausible phenotypes

We initially conducted a phenome-wide association study (PheWAS) [2] for smoking initiation using a polygenic risk score of smoking initiation as the exposure, constructed in UK Biobank. To avoid sample overlap, we used GWAS summary statistics from the GWAS and Sequencing Consortium of Alcohol and Nicotine use (GSCAN) GWAS [3] for smoking initiation, excluding the UK Biobank sample. We meta-analysed results from GWAS of 23andMe, Inc. only data and all results excluding UK Biobank and 23andMe. The metaanalysis was conducted using the genome-wide association meta-analysis (GWAMA) software [4]. We used genome-wide significant SNPs only in our polygenic risk score. The PheWAS was conducted using the PHEnome Scan ANalysis Tool (PHESANT) software
package [5], which performs phenome scans on data from UK Biobank. We used this to test the association of our polygenic risk score with all of these outcomes (21,409 variables). Of these, 566 variables were associated with the polygenic risk score (at a Bonferroni adjusted p-value threshold of 2.34×10^{-06}). From the top 100 most associated of these (a threshold we decided a priori) we selected variables to be plausible and implausible phenotypes in these analyses (our outcome variables). We did not include those that were conceptually related to the main smoking phenotypes e.g., age stopped smoking and for similar variables we selected the one that we believed captured the most information. Plausible phenotypes were those known (or strongly believed) to be causally related to smoking. Implausible phenotypes are those that are unlikely to be causally related to smoking.

Section 3. Plausible phenotype selection

Plausible phenotypes are those likely to be caused by smoking, whereas implausible phenotypes are those unlikely to be caused by smoking. We have listed these below with a brief description of the evidence for why a phenotype is considered plausibly downstream of smoking.

- Body mass index (BMI): There is evidence that smoking leads to a decrease in BMI [6-8], further supported by studies that demonstrate an increase in BMI following smoking cessation [9].
- Body fat percentage: There is less evidence for the relationship with body fat percentage, however associations tend to be in the same direction as BMI (i.e., smoking is associated with lower body fat percentage) [10]. As there is overlap between BMI and body fat percentage, we believe that body fat percentage is also plausibly downstream of smoking.
- Wheeze: Previous studies have found an association between smoking and experiencing wheezing [11]. Wheeze is also a core symptom of asthma and smoking may causally lead to an increased risk of asthma [12].
- C-reactive protein (CRP): CRP levels have been found to be increased in smokers [13], also observed in a Mendelian Randomisation study [14].
- Ever reported COPD: Smoking has been well-established as a leading cause of COPD [15].
- Had dentures: Smoking is associated with poorer oral health, including tooth loss [16,17], which would in turn lead to increased use of dentures.
- Overall health rating: In line with some of the other evidence of the negative health impact of smoking presented in this section, smoking impacts a range of healthrelated outcomes and is associated with poorer overall health [18].
- Gamma glutamyl transferase (GGT): GGT has been found to be increased in current and former smokers [19].
- White blood cell count: There is evidence that smoking leads to increased counts of white blood cells [20,21].
- Mean sphered cell volume: Smoking is associated with increased red blood cell volume [22].
- Seen GP for nerves, anxiety, or depression: There is evidence to suggest that smoking may increase risk of both anxiety and depression [1,23-25], although a bidirectional effect may also be present.
- Numbers of medications taken: We did not find studies specifically examining this relationship. However, given that smoking is associated with poorer health, increased medication use will likely be downstream of this effect as well.
- Alcohol consumption: There is evidence to suggest that smoking could lead to increased alcohol consumption, but this relationship is likely to be complex [26].

Section 4. UK Biobank genetic data

There were 488,377 participants with genotyped samples of which 49,979 were genotyped using the UK BiLEVE array and 438,398 using the UK Biobank axiom array. Pre-imputation quality control, phasing and imputation have been described elsewhere [27]. In summary, multiallelic SNPs and those with a MAF $\leq 1 \%$ were removed. Phasing of genotype data was performed using a modified version of the SHAPEIT2 algorithm. The SNPs used were imputed to the Haplotype Reference Consortium (HRC) reference panel, using IMPUTE2 algorithms. A graded filtering with different imputation qualities for different MAF ranges was used (Info>0.3 for MAF>3\%, Info>0.6 for MAF 1-3\%, Info>0.8 for MAF 0.5-1\% and Info>0.9 for MAF 0.1-0.5\%), where MAF and info scores were recalculated on an in-house derived 'European' subset. Individuals with sex-mismatch or sex-chromosome aneuploidy were excluded ($\mathrm{N}=814$). In-house quality control filtering of the UK Biobank data is described in a published protocol [28].

We restricted the sample to individuals of "White British" ancestry and who have very similar ancestral backgrounds according to principal components analysis ($\mathrm{N}=409,703$) [27]. Estimated kinship coefficients using the KING toolset [29] identified 107,162 pairs of related individuals. An in-house algorithm was then applied to this list and preferentially removed the individuals related to the greatest number of other individuals until no related pairs remain. These individuals were excluded ($N=79,448$). Additionally, 2 individuals were removed due to them relating to a very large number (>200) of individuals. After these exclusions and excluding individuals who had withdrawn their data, we included 336,988 individuals in our analyses.

Section 5. ALSPAC genetic data

Samples for children were genotyped using the Illumina HumanHap 550 quad chip. Genome-wide data for children were generated by Sample Logistics and Genotyping Facilities at the Wellcome Trust Sanger Institute and LabCorp (Laboratory Corporation of America) using support from 23andMe. Quality control measures were used, and individuals were excluded based on gender mismatches, minimal or excessive heterozygosity, disproportionate levels of individual missingness (>3\%) and insufficient sample replication (identity by descent [IBD] <0.8). Population stratification was assessed by multidimensional scaling analysis and compared with Hapmap II (release 22) European descent (CEU), Han Chinese, Japanese and Yoruba reference populations; all individuals with non-European ancestry were removed. SNPs with a minor allele frequency (MAF) of $<1 \%$, a call rate of $<95 \%$ or evidence of violations of Hardy-Weinberg equilibrium ($\mathrm{P}<5 \times 10^{-07}$) were removed. Cryptic relatedness was measured as the proportion of IBD>0.1.

Samples for mothers were genotyped using the Illumina human660W-quad array at Centre National de Génotypage (CNG) and genotypes were called with Illumina GenomeStudio.

Quality control measures were used. SNPs were removed if they displayed more than 5\% missingness and a Hardy-Weinberg equilibrium P value of $<1 \times 10^{-06}$. SNPs with a MAF $<1 \%$ were removed. Samples were excluded if they displayed $>5 \%$ missingness, had indeterminable X chromosome heterozygosity or extreme autosomal heterozygosity. Samples showing evidence of population stratification were identified by multidimensional scaling of genome-wide identity by state pairwise distances using the four HapMap populations as reference, and then excluded. Cryptic relatedness was assessed using an IBD estimate >0.125, which is expected to correspond to approximately 12.5% alleles shared IBD or a relatedness at the first cousin level.

Related individuals that passed all other quality control thresholds were retained during subsequent phasing and imputation. 9,115 children and 500,527 SNPs and 9.048 mothers and 526,688 SNPs passed these filters. 477,482 SNP genotypes in common between mothers and children were removed. SNPs with genotype missingness $>1 \%$ were also removed. 321 individuals were removed due to potential ID mismatches. Haplotypes were estimated using ShapeIT (V2.r644) which utilises relatedness during phasing. A phased version of the 1000 genomes reference panel (Phase 1, version 3) was obtained from the Impute2 reference data repository (phased using ShapelT v2.r644, haplotype release date Dec 2013). Imputation of the target data was performed using Impute V2.2.2 against the reference panel using all 2186 reference haplotypes (including non-Europeans).

Samples for fathers/partners were genotyped using the Illumina HumanCoreExome chip genotyping platforms by the ALSPAC lab and called using GenomeStudio. Quality control measures were used. SNPs were removed if they displayed a call rate of <95\%, evidence for violations of Hardy-Weinberg equilibrium ($\mathrm{P}<1 \times 10^{-07}$), failed GenomeStudio quality control measures or were duplicates. Samples were excluded if they displayed $>5 \%$ missingness, had minimal or excessive heterozygosity, gender mismatches or possible contamination. Samples showing evidence of population stratification were identified by multidimensional scaling analysis and compared with 1000 Genomes phase 3 data and principal component analysis. All individuals with non-European ancestry were removed. Cryptic relatedness was assessed in GCTA using relatedness >0.1.

Data that passed quality control steps were phased. 155,336 monomorphic SNPs, 1033 markers not in 1000 genomes, 11,842 A/T or G/C SNPs and 10 duplicate sites were then removed to give 337,732 SNPs on chromosomes 1-23. Of the 329,363 markers on chromosomes 1-22, 298,742 overlapped the reference genome. Data was imputed to the 1000 genomes phase 1 version 3 using the Michigan Imputation Server. Individuals were also removed if their sample ID assigned historically did not match the genetically assigned sample ID.

There were 8,237 eligible children, 8,196 eligible mothers and 2,201 fathers/partners with available genotype data after exclusion of related subjects and these quality control steps.

Section 6. Genome-wide association studies in UK Biobank

We conducted genome-wide association studies (GWAS) of smoking heaviness (cigarettes per day) and smoking initiation (ever/never) using the BOLT-LMM software [30], adjusting for age, sex and genotyping chip in the model. BOLT-LMM performs a linear regression and
therefore for our binary outcome of smoking initiation the output betas represented an absolute 'risk difference' scale. Therefore, we transformed the betas and standard errors to obtain log odds ratios using following formula (for standard error we replace beta with standard error):

$$
\log O R=\frac{\beta \text { bolt }}{\mu(1-\mu)}
$$

where μ is the case prevalence (ncase/(ncase + ncontrol)). We used the number of cases and controls in our sample to obtain a prevalence of 0.45 .

Section 7. Polygenic risk score construction in UK Biobank

To construct the polygenic risk scores we identified genetic variants robustly associated with each smoking trait (based on $\mathrm{P}<5 \times 10^{-8}$) and then pruned them to identify independent genetic variants by applying linkage disequilibrium (LD) clumping (based on $r^{2}<0.001$). A reference panel of 10,000 randomly selected and unrelated UK Biobank individuals of European descent was used for LD clumping [31]. Polygenic risk scores were subsequently generated using the software PLINK [32] and standardised to have a mean of 0 and an SD of 1.

Section 8. Polygenic risk score construction in ALSPAC

We created polygenic risk scores for smoking heaviness, smoking initiation and lifetime smoking in ALSPAC. For smoking heaviness and initiation, we used summary statistics from the GWAS we conducted in UK Biobank. For lifetime smoking we used summary statistics from a published GWAS of lifetime smoking [1]. We filtered SNPs by an imputation score of 0.8 . After this filtering and selecting SNPs where genotype data was available in our ALSPAC samples, SNPs were clumped for linkage disequilibrium, using the -clump command in PLINK and an R^{2} of 0.001 . We generated weighted polygenic risk scores for each phenotype using the 'score' command in PLINK which creates averages of valid per-allele scores, using the weights from the respective GWAS (effect estimates for smoking heaviness and lifetime smoking and log odds ratios for smoking initiation). We present results for polygenic risk scores constructed at the $p<5 \times 10^{-8}$ threshold in the discovery GWAS. Polygenic risk scores were z-standardised; therefore, results can be interpreted as per standard deviation (SD) increase in score.

For the lifetime smoking polygenic risk score there were approximately 142 SNPs, for the smoking heaviness polygenic risk score there were approximately 9 SNPs and for the smoking initiation polygenic risk score there were approximately 151 SNPs.

Supplementary Table S1. Top 100 associaitons in the PheWAS

Phenotype	N (total or no/yes)	Beta	Lower Cl	Upper Cl	P-value
Past tobacco smoking	311147	-0.14	-0.15	-0.13	$\begin{aligned} & <2.06 \times 10^{-} \\ & 269 \end{aligned}$
Smoking status	184005/335804	999.00	999.00	999.00	$\begin{aligned} & <2.06 \mathrm{E}^{-} \\ & 269 \end{aligned}$
Ever smoked	$\begin{aligned} & 132831 / 203010 \\ & (335841) \end{aligned}$	0.14	0.13	0.14	$\begin{aligned} & <2.06 \mathrm{E}^{-} \\ & 269 \end{aligned}$
Age first had sexual intercourse	296920	-0.06	-0.07	-0.06	$2.06 \mathrm{E}^{-269}$
Current tobacco smoking	336812	0.17	0.16	0.18	$1.67 \mathrm{E}^{-193}$
Maternal smoking around birth	$\begin{array}{\|l} \hline 201188 / 88460 \\ (289648) \end{array}$	0.11	0.10	0.11	$3.41 \mathrm{E}^{-148}$
Tobacco smoking	51588/85937	999.00	999.00	999.00	$7.28 \mathrm{E}^{-143}$
Date F17 first reported (mental and behavioural disorders due to use of tobacco)	$\begin{aligned} & \hline 311833 / 25155 \\ & (336988) \end{aligned}$	0.15	0.14	0.16	$1.11 \mathrm{E}^{-113}$
Qualifications: College or University degree	$\begin{aligned} & 227110 / 106749 \\ & (333859) \\ & \hline \end{aligned}$	-0.08	-0.09	-0.08	$8.45 \mathrm{E}^{-109}$
Lifetime number of sexual partners	277634	0.08	0.07	0.08	$1.17 \mathrm{E}^{-98}$
Leg fat percentage (right)	331063	0.02	0.02	0.02	$1.36 \mathrm{E}^{-93}$
Leg fat percentage (left)	331045	0.02	0.02	0.02	$1.87 \mathrm{E}^{-93}$
Education score (England)	288592	0.04	0.03	0.04	$2.33 \mathrm{E}^{-90}$
Leg fat mass (left)	331042	0.03	0.02	0.03	$3.60 \mathrm{E}^{-90}$
Leg fat mass (right)	331060	0.03	0.02	0.03	$7.94 \mathrm{E}^{-90}$
Body mass index (BMI)	331083	0.03	0.03	0.04	$1.00 \mathrm{E}^{-79}$
Body mass index (BMI)	335908	0.03	0.03	0.04	$8.72 \mathrm{E}^{-79}$
Qualifications: A levels/AS levels or equivalent	$\begin{aligned} & \hline 241673 / 92186 \\ & (333859) \end{aligned}$	-0.07	-0.08	-0.07	$5.57 \mathrm{E}^{-78}$
Whole body fat mass	330540	0.03	0.03	0.03	$1.22 \mathrm{E}^{-77}$
Employment score (England)	288592	0.03	0.03	0.04	$8.03 \mathrm{E}^{-76}$
Waist circumference	336415	0.03	0.02	0.03	$6.41 \mathrm{E}^{-74}$
Body fat percentage	330893	0.02	0.02	0.03	$1.18 \mathrm{E}^{-71}$
Own or rent accommodation lived in	182447/332896	999.00	999.00	999.00	$2.68 \mathrm{E}^{-70}$
Arm fat mass (left)	330933	0.03	0.03	0.03	$6.72 \mathrm{E}^{-70}$
Arm fat mass (right)	330992	0.03	0.03	0.03	$9.63 \mathrm{E}^{-70}$
Health score (England)	288592	0.03	0.03	0.04	$1.80 \mathrm{E}^{-69}$
Index of Multiple Deprivation (England)	288592	0.03	0.03	0.04	$6.44 \mathrm{E}^{-69}$

Trunk fat mass	330861	0.03	0.03	0.03	$2.98 \mathrm{E}^{-67}$
Qualifications	$\begin{aligned} & 276778 / 57081 \\ & (333859) \end{aligned}$	0.08	0.07	0.09	$6.02 \mathrm{E}^{-66}$
Age completed full time education	226242	-0.07	-0.07	-0.06	$1.18 \mathrm{E}^{-63}$
Weight	331090	0.03	0.02	0.03	$1.53 \mathrm{E}^{-63}$
Weight	336024	0.03	0.02	0.03	$3.08 \mathrm{E}^{-63}$
Income score (England)	288592	0.03	0.03	0.03	$3.42 \mathrm{E}^{-63}$
Wheeze or whistling in the chest in last year	$\begin{array}{\|l} \hline 263092 / 68032 \\ (331124) \end{array}$	0.07	0.06	0.08	$8.03 \mathrm{E}^{-63}$
Arm fat percentage (right)	331017	0.02	0.02	0.02	$6.41 \mathrm{E}^{-62}$
Age at first live birth	124051	-0.05	-0.05	-0.04	$4.05 \mathrm{E}^{-61}$
Arm fat percentage (left)	330966	0.02	0.02	0.02	$2.27 \mathrm{E}^{-59}$
Trunk fat percentage	330880	0.02	0.02	0.03	$9.88 \mathrm{E}^{-57}$
Alcohol usually taken with meals	$\begin{array}{\|l} \hline 55075 / 117237 \\ (172312) \\ \hline \end{array}$	-0.08	-0.09	-0.07	$3.93 \mathrm{E}^{-53}$
C-reactive protein	320589	0.03	0.02	0.03	$5.52 \mathrm{E}^{-53}$
Townsend deprivation index at recruitment	336591	0.03	0.02	0.03	$2.25 \mathrm{E}^{-52}$
Date J44 first reported (other chronic obstructive pulmonary disease)	$\begin{aligned} & \hline 326520 / 10468 \\ & (336988) \end{aligned}$	0.15	0.13	0.17	$2.42 \mathrm{E}^{-49}$
Mouth/teeth dental problems: Dentures	$\begin{array}{\|l\|} \hline 279583 / 56336 \\ (335919) \end{array}$	0.07	0.06	0.08	$4.53 \mathrm{E}^{-47}$
Average weekly beer plus cider intake	241456	0.06	0.05	0.07	$1.05 \mathrm{E}^{-46}$
Light smokers, at least 100 smokes in lifetime	$\begin{aligned} & 50401 / 41710 \\ & (92111) \\ & \hline \end{aligned}$	0.09	0.08	0.10	$1.22 \mathrm{E}^{-41}$
Hip circumference	336371	0.02	0.02	0.03	$5.41 \mathrm{E}^{-41}$
Overall health rating	335806	0.05	0.04	0.05	$1.04 \mathrm{E}^{-40}$
Arm predicted mass (left)	330914	0.01	0.01	0.02	$1.44 \mathrm{E}^{-40}$
Attendance/disability/mobility allowance	$\begin{aligned} & \hline 19082 / 315780 \\ & (334862) \end{aligned}$	-0.10	-0.11	-0.08	$3.67 \mathrm{E}^{-40}$
Arm fat-free mass (left)	330926	0.01	0.01	0.02	$1.14 \mathrm{E}^{-39}$
Leisure/social activities: Religious group	$\begin{array}{\|l\|} \hline 288619 / 47542 \\ (336161) \end{array}$	-0.07	-0.08	-0.06	$1.34 \mathrm{E}^{-39}$
Pack years of smoking	100944	0.04	0.03	0.05	$3.13 \mathrm{E}^{-39}$
Cereal intake	322455	-0.04	-0.05	-0.04	$4.03 \mathrm{E}^{-39}$
Illness, injury, bereavement, stress in last 2 years: Financial difficulties	$\begin{array}{\|l} 297736 / 37257 \\ (334993) \end{array}$	0.07	0.06	0.08	$5.05 \mathrm{E}^{-38}$
Average total household income before tax	290450	-0.04	-0.05	-0.04	$3.79 \mathrm{E}^{-37}$
Arm predicted mass (right)	330982	0.01	0.01	0.02	$6.46 \mathrm{E}^{-37}$

Pack years adult smoking as proportion of life span exposed to smoking	100944				$9.04 \mathrm{E}^{-37}$
Basal metabolic rate	331076	0.04	0.03	0.05	
Attendance/disability/mobility allowance: Disability living allowance	$320532 / 14330$ (334862)	0.11	0.09	0.12	
Seen doctor (GP) for nerves, anxiety, tension or depression	$219601 / 115287$ (334888)	0.05	0.04	0.05	$1.19 \mathrm{E}^{-36}$
Arm fat-free mass (right)	330988	0.01	0.01	0.02	$1.12 \mathrm{E}^{-35}$
Age started smoking in former smokers	81817	-0.04	-0.05	-0.04	$5.86 \mathrm{E}^{-35}$
Age started oral contraceptive pill	144192	-0.03	-0.03	-0.02	$1.47 \mathrm{E}^{-34}$
Impedance of arm (left)	331060	-0.01	-0.02	-0.01	$9.67 \mathrm{E}^{-34}$
Qualifications: O levels/GCSEs or equivalent	$173754 / 160105$				
Number of treatments/medications taken	$333859)$	-0.04	-0.05	-0.04	$3.63 \mathrm{E}^{-33}$
Father's age at death	248380	0.04	0.03	0.04	$7.66 \mathrm{E}^{-33}$
Time spend outdoors in summer	306336	-0.02	-0.03	-0.02	$8.45 \mathrm{E}^{-33}$
Year ended full time education	86337	0.04	0.03	0.05	$1.01 \mathrm{E}^{-32}$
Gamma glutamyltransferase	321101	0.02	-0.02	-0.01	$2.16 \mathrm{E}^{-32}$
Risk taking	$242684 / 82908$	0.02	0.02	$7.38 \mathrm{E}^{-32}$	
Current employment status: (325592)	$323591 / 12458$				
(336049)					

Patient classification on admission (recoded): Inpatient	$132820 / 204168$ (336988)				$1.57 \mathrm{E}^{-28}$
Whole body fat-free mass	331060	0.04	0.03	0.05	
Ever taken cannabis	110342	0.08	0.01	0.01	$1.56 \mathrm{E}^{-27}$
Ease of skin tanning	330266	-0.03	-0.04	-0.03	$1.72 \mathrm{E}^{-27}$
Whole body water mass	331086	0.01	0.01	0.01	$3.02 \mathrm{E}^{-27}$
Types of physical activity in last 4 weeks	$315948 / 19431$ (335379)	0.08	0.07	0.09	$5.71 \mathrm{E}^{-27}$
Taking other prescription medications	$178431 / 157682$ (336113)	0.04	0.03	0.04	$5.80 \mathrm{E}^{-27}$
Mother's age	130898	-0.02	-0.02	-0.01	$6.22 \mathrm{E}^{-27}$
Qualifications: Other professional qualifications eg: nursing, teaching	$235971 / 97888$ (333859)	-0.04	-0.05	-0.03	$1.10 \mathrm{E}^{-26}$
Alcohol intake versus 10 years previously	313088	0.04	0.03	0.04	$1.19 \mathrm{E}^{-26}$
Pain type(s) experienced in last month: Back pain	$251368 / 85080$ (336448)	0.04	0.03	0.05	$3.37 \mathrm{E}^{-26}$
Liking for gherkins	125076	0.05	0.04	0.06	$4.48 \mathrm{E}^{-26}$
Mean sphered cell volume	321653	0.02	0.02	0.02	$6.13 \mathrm{E}^{-26}$
Miserableness	$189898 / 141688$ (331586)	0.04	0.03	0.04	$7.57 \mathrm{E}^{-26}$
Liking for cigarette smoking	118235	0.12	0.09	0.14	$7.86 \mathrm{E}^{-26}$
Fed-up feelings	$196440 / 133906$ (330346)	0.04	0.03	0.04	$8.73 \mathrm{E}^{-26}$
Operative procedures - secondary OPCS4: z94.3 Left sided operation	$232690 / 104298$ (336988)	0.04	0.03	0.05	$1.65 \mathrm{E}^{-25}$
Operative procedures - OPCS4: z94.3 Left sided operation	$232690 / 104298$ (336988)	0.04	0.03	0.05	$1.65 \mathrm{E}^{-25}$

Phenotype	Biobank field number	Phenotype description
Body mass index (BMI)	21001	Calculated from measures of standing height (using a Seca 202 device, cm) and weight (measured by a variety of means, Kg) collected during visits ($\mathrm{Kg} / \mathrm{m} 2$).
Body fat percentage	23099	Body composition estimation by impedance measurement, as a percentage in 0.1% increments. Measured using the Tanita BC418MA body composition analyser.
Wheeze or whistling in the chest in last year	2316	Participants asked* "In the last year have you ever had wheeze or whistling in the chest?", (yes/no).
C-reactive protein ${ }^{1}$	30710	Measured by immunoturbidimetric - high sensitivity analysis on a Beckman Coulter AU5800 (mg/L).
Date first reported (other chronic obstructive pulmonary disease)	131492	Date of the first occurrence of any code mapped to the 3character ICD10 J44. This code corresponds to "other chronic obstructive pulmonary disease".
Mouth/teeth dental problems: Dentures	6149\#6	Participants asked* "Do you have any of the following?", of which dentures was one of the options. We created a binary (yes/no) variable from this for dentures.
Overall health rating	2178	Participants asked* "In general how would you rate your overall health?". The options were: excellent, good, fair and poor. In our results we refer to this as poorer health rating due to the coding being in this direction.
Gamma glutamyl transferase ${ }^{1}$	30730	Measured by enzymatic rate method on a Beckman Coulter AU5800 (U/L).
White blood cell (leukocyte) count ${ }^{1}$	30000	Result of white blood cell count, performed on blood samples obtained at visits, i.e., number of leukocytes. The Beckman analyser was used, and samples were typically analysed within 24 hours of blood draw (10^{9} cells/L).
Mean sphered cell volume	30270	Obtained from the Beckman Coulter LH750 (femtolitres).
Seen doctor (GP) for nerves, anxiety, tension or depression	2090	Participants asked* "Have you ever seen a general practitioner (GP) for nerves, anxiety, tension or depression?", (yes/no).
Number of treatments/ medications taken ${ }^{1}$	137	The number of treatments (medications) entered (as a count of field 20003). This was from a verbal interview by a trained nurse on prescription medications. If the participant responded that they were taking regular medication, then they were asked if they could tell the

		interviewer what these were. This included medication taken regularly and not short-term medications, prescribed medication not taken, over-thx10-counter medications or vitamins and supplements.
Amount of alcohol drunk on a typical drinking day	20403	Participants asked* "How many drinks containing alcohol do you have on a typical day when you are drinking?", where a 'drink' was defined as one unit of alcohol. Options were 1 or 2, 3 or 4, 5 or 6, 7,8 or 9 and 10 or more. Only participants who had indicated they drink alcohol in the question "how often do you have a drink containing alcohol?".

* Participants were asked these questions as part of the Assessment Centre Environment (ACE) touch screen questionnaire. Participants could also answer "do not know" or "prefer not to answer" or similar for most questions, but these data were removed for analyses.
${ }^{1}$ Variables that were inverse normal rank transformed

Supplementary Table S3. Details of implausible phenotypes in UK Biobank

Phenotype	Biobank ID	Phenotype description Lifetime number of sexual partners 2149 Age at first live birth

phone in last 3 months		a mobile phone?". This was only asked to participants who had indicated they used a mobile phone at least once per week in the past or did not know whether they had used it. The options were: less than 5 mins, 5-29 mins, 30-59 mins, 1-3 hours, 4-6 hours and more than 6 hours.
Ease of skin tanning	1727	Participants asked* "What would happen to your skin if it was repeatedly exposed to bright sunlight without any protection. The options were: get very tanned, get moderately tanned, get mildly or occasionally tanned, never tan, only burn.
Mother's age at time of questionnaire	1845	Participants asked* "what is her age now?". This was only asked to participants who had indicated that their mother (or adopted mother) was still alive. Responses <participants age + 10 years or >122 were rejected, and participants asked to confirm if response was greater than participant's age by 14 years or >105.
Pain type(s) experienced in last month (back pain)	6159 (4)	Participants asked* "In the last month have you experienced any of the following that interfered with your usual activities? (You can select more than one answer)?". Participants could select multiple options of which back pain was one of the options. We created a binary (yes/no) variable from this for back pain.
Had an operation on the left-side of the body	41210 (Z943)	Obtained from hospital inpatient records. Operative procedures are coded according to the office of Population Censuses and Surveys Classification of Interventions and Procedures, version 4 (OPCS-4). Z943 is indicative of a left sided operation and we created a binary (yes/no) variable from this.

[^0]
Supplementary Table S4. ALSPAC phenotypes for plausible phenotypes

Phenotype	Sample	ALSPAC questionnaire or clinic timepoint	Phenotype description
Body mass index (BMI)	Mother	FOM clinic	Calculated from measures of height (using a Harpenden stadiometer to the nearest 1 mm , m) and weight (using the Tanita scales to the nearest $0.1 \mathrm{Kg}, \mathrm{Kg}$) collected during visits $\left(\mathrm{Kg} / \mathrm{m}^{2}\right)$.
	Father	FOF clinic	Calculated from measures of height (using a Harpenden stadiometer to the nearest 1 mm , m) and weight (using the Tanita scales to the nearest $0.1 \mathrm{Kg}, \mathrm{Kg}$) collected during visits $\left(\mathrm{Kg} / \mathrm{m}^{2}\right)$.
	Child	Age 7 clinic	Calculated from measures of height (using a Harpenden stadiometer to the nearest 1 mm , cm) and weight (using the Tanita body fat analyser to the nearest $50 \mathrm{~g}, \mathrm{Kg}$) collected during visits ($\mathrm{Kg} / \mathrm{m}^{2}$).
Body fat percentage	Mother	FOM clinic	Calculated from body fat mass (g) and weight (Kg, described above). Body fat mass was measured using Dual Emission X-ray Absorptiometry (DXA, Lunar Prodigy). This measure was obtained from a full body scan (not obtained in pregnant women).
	Father	FOF clinic	Calculated from body fat mass (g) and weight (Kg, described above). Body fat mass was measured using Dual Emission X-ray Absorptiometry (DXA, Lunar Prodigy). This measure was obtained from a full body scan.
	Child	Age 9 clinic	Calculated from body fat mass (g) and weight (Kg , described above but used weight collected at age 9 clinic here). Body fat mass was measured using Dual Emission X-ray Absorptiometry (DXA, Lunar Prodigy). This measure was obtained from a full body scan.
Wheeze or whistling in the chest	Mother	Pregnancy	Participants asked "Have you had any of the following in the past two years: attacks of wheezing with whistling on the chest". The options were: yes (often or sometimes); no.
	Father	Pregnancy	Participants asked "Have you had any of the following in the past two years: attacks of wheezing with whistling on the chest?". The options were: yes (often or sometimes); no.

	Child	Child aged 6 months (T1) and 30 (T2) months	T1: Mother was asked "Has your baby had any of the following: wheezing?". The options were: yes (often or sometimes); no. T2: Mother was asked "Has he/she had any of the following since he/she was 18 months old: wheezing?". The options were: yes (often or sometimes); no.
C-reactive protein (CRP)	Mother	FOM clinic ${ }^{1}$	Obtained from fasting blood samples which, after collection, were spun, frozen and stored at $-80^{\circ} \mathrm{C}$. High-sensitivity CRP concentrations were measured using an automated particleenhanced immunoturbidimetric assay (Roche, Welwyn Garden City, UK) with a minimum detection limit of $0.01 \mathrm{mg} / \mathrm{L}$. (mg / L)
	Father	FOF clinic ${ }^{1}$	Obtained from fasting blood samples which, after collection, were spun, frozen and stored at $-80^{\circ} \mathrm{C}$. High-sensitivity CRP concentrations were measured using an automated particleenhanced immunoturbidimetric assay (Roche, Welwyn Garden City, UK) with a minimum detection limit of $0.01 \mathrm{mg} / \mathrm{L}$. (mg / L)
	Child	Age 9 clinic 1	Obtained from non-fasting blood samples which, after collection, were spun, frozen and stored at $-80^{\circ} \mathrm{C}$. High-sensitivity CRP concentrations were measured using an automated particle-enhanced immunoturbidimetric assay (Roche, Welwyn Garden City, UK) with a minimum detection limit of $0.01 \mathrm{mg} / \mathrm{L}$. (mg / L)
Overall health rating	Mother	Child aged 8 weeks (T1) and 8 months (T2)	T1: Participants asked "How would you describe your health now?". The options were: hardly ever well; often unwell; mostly well; always well. T2: Participants asked "Which of the following would you say describes your health now?". The options were: hardly ever feel really well; often feel unwell; mostly feel well and healthy; always fit and well.
	Father	Child aged 8 weeks (T1) and 8 months (T2)	T1: Participants asked "How would you describe your health now?". The options were: hardly ever well; often unwell; mostly fit and well; always fit and well. T2: Participants asked "Which of the following would you say describes your health now?".

			The options were: hardly ever feel really well; often feel unwell; mostly feel well and healthy; always fit and well.
	Child	Child aged 4 weeks (T1) and 6 months (T2)	T1: Participants asked "How would you describe the health of your baby now?". The options were: almost always unwell; sometimes quite ill; healthy but a few minor problems; very healthy. T2: Participants asked "How would you assess the health of your baby?". The options were: almost always unwell; sometimes quite ill; healthy but a few minor problems; very healthy no problems.
Gamma glutamyl transferase	Child	Age 9 clinic	Obtained from non-fasting blood samples which, after collection, were spun, frozen and stored at $-80^{\circ} \mathrm{C}$. High-sensitivity CRP concentrations were measured using an automated particle-enhanced immunoturbidimetric assay (Roche, Welwyn Garden City, UK) with a minimum detection limit of $0.01 \mathrm{mg} / \mathrm{L}$. (U/L)
Seen doctor (GP) for anxiety/nerves or depression (separate phenotypes)	Mother	Child aged 8 months (T1) and 21 months (T2)	T1: Participants asked "Have you had any of the following since the baby was born: a) anxiety or nerves, b) depression". The options were: yes and saw doctor; yes did not see doctor; no. T2: Participants asked "Have you had any of the following since your toddler was 8 months old: a) anxiety or nerves, b) depression". The options were: yes and saw doctor; yes did not see doctor; no.
	Father	Child aged 8 months (T1) and 21 months (T2)	T1: Participants asked "Have you had any of the following since the new baby was born: a) anxiety or nerves, b) depression". The options were: yes and consulted doctor, yes but did not consult doctor, no. T2: Participants asked "Have you had any of the following since your toddler was 8 months old: a) anxiety or nerves, b) depression". The options were: yes and consulted doctor; yes but did not consult doctor; no.
	Child	Child aged 91 months	The number of general anxiety symptoms from the following items for which "yes, but not on most days" or "yes happened on more

			days than not" were ticked (other options was "no not at all") was calculated and an indicator for whether any general anxiety symptoms were reported was created. Questions: a) Does worrying lead to him/her being restless, feeling keyed up, tense or on edge, or being unable to relax? b) Does worrying lead to him/her feeling tired or 'worn out' more easily? c) Does worrying lead to difficulties on concentrating or his/her mind going blank? d) Does worrying lead to irritability? e) Does worrying lead to him/her looking physically tense (tense muscles)? f) Does worrying interfere with his/her sleep (e.g., difficulty in falling or staying asleep, or restless sleep, or doesn't have a good night's sleep)?
Number of medications taken	Mother	Child aged 8 weeks (T1) ${ }^{1}$ and 21 months (T2) ${ }^{1}$	T1: The number of medications was calculated from the following question: "Please name all the pills, medicines or ointments you are currently using or have used since the baby was born." T2: The number of medications was calculated from the following question: "Please list all the medicines and pills that you have taken in the past month."
	Father	Child aged 21 months (T1) ${ }^{1}$ and 73 months (T2) ${ }^{1}$	T1: The number of medications was calculated from the following question: "Please name all the medicines, pills and ointments that you have taken in the past month." T2: The number of medications was calculated from the following question: "Please list all the drugs, medicines and ointments that you have taken in the past month."
	Child	Child aged 4 weeks (T1) ${ }^{1}$	T1: The number of medications was calculated from the following question: "Please list all the

		and 24 months (T2)	ointments, pills and medicines that have been given to your baby while he/she has been at home."				
T2: The number of different types of							
medications was calculated from the following							
question: "Children often have accidents or							
illnesses that need treatment. Please indicate							
which of the following have been given to							
your child since he was 15 months old". The							
options were: cough medicine;							
antibiotics/penicillin; throat medicine;							
vitamins; paracetamol/calpol; ointment for							
skin; eye ointment; diarrhoea mixture or pills;							
dimotapp/decongestant; ear drops; eye drops;							
teething gel; laxative; other (please describe).				$	$	Amount of	
:---	:---						
alcohol drunk	Mother						
Pregnancy	Participants asked "How often have you drunk alcoholic drinks? Please indicate for each of the following times: Before this pregnancy?". The options were: never; less than 1 glass a week; at least 1 glass a week; 1-2 glasses every day; at least 3-9 glasses every day; at least 10 glasses every day"						
	Father						
Pregnancy	Participants asked "How often have you drunk alcoholic drinks: Before your partner became pregnant?". The options were: never; less than once a week; at least once a week; 1-2 glasses every day,; 3-9 glasses every day; at least 10 glasses every day"						

[^1]
Supplementary Table S5. ALSPAC phenotypes for implausible phenotypes

Phenotype	Sample	ALSPAC questionnaire or clinic timepoint	Phenotype description
Age at first pregnancy	Mother	Pregnancy	Participant asked "How old were you when you became pregnant for the very first time?"
Townsend deprivation index at recruitment	Mother	Pregnancy (T1) and child aged 8 weeks (T2)	Postcode data for participants has been linked to publicly available data on Townsend deprivation scores. Each variable is coded as quintiles (5 categories) to minimise disclosure risk. This data is available for all mother questionnaires, and we have used T1 and T2 in this study. A higher score indicates greater levels of socioeconomic deprivation.
Attends a place of worship	Mother	Pregnancy	Participant asked "Do you go to a place of worship?". The options were: yes, at least once a week; yes, at least once a month; yes, at least once a year; not at all.
	Father	Pregnancy	Participant asked "Do you go to a place of worship?". The options were: yes, at least once a week; yes, at least once a month; yes, at least once a year; not at all.
	Child	Child aged 115 months	Participant asked "Does he/she attend a place of worship (church, mosque, etc)?". The options were: yes, often; yes, sometimes; no, not at all.
Cereal intake (separate phenotypes for oat, wholegrain or bran and other)	Mother	Pregnancy (32 weeks gestation) (T1) and child aged 47 months (T2)	T1: Participants asked: "How many times a week nowadays do you eat: I) Oat cereals (e.g., porridge, Ready Brek, Muesli) m) Wholegrain or bran cereals (e.g., All bran, Bran flakes, Weetabix, Wheatflakes, Fruit and Fibre) n) Other cereals (e.g., Cornflakes, Rice Krispies, Special K, Frosties)" The options were: Never or rarely; once in 2 weeks; 1 to 3 times per week; 4 to 7 times per week; more than once a day.

\(\left.$$
\begin{array}{|l|l|l|l|}\hline & & & \begin{array}{l}\text { T2: Participants asked: "Mothers eat a variety } \\
\text { of different things. How often nowadays do you } \\
\text { eat the following foods? Please answer every } \\
\text { question even if you never eat the food (in this } \\
\text { case tick 'Never or rarely': } \\
\text { I) Oat cereals (e.g., porridge, Ready Brek, }\end{array}
$$

Muesli)

m) Wholegrain or bran cereals (e.g., All bran,

Bran flakes, Weetabix, Wheatflakes, Fruit and

Fibre, Shredded Wheat)\end{array}\right\}\)| n) Other cereals (e.g., Cornflakes, Rice Krispies, |
| :--- |
| Special K, Frosties)" |

$\left.\left.\left.\begin{array}{|l|l|l|l|}\hline & & \begin{array}{l}\text { aged 47 } \\ \text { months (T2) }\end{array} & \begin{array}{l}\text { The options were: Never or rarely; once in } 2 \\ \text { weeks; } 1 \text { to 3 times per week; } 4 \text { to } 7 \text { times per } \\ \text { week; more than once a day. }\end{array} \\ \text { T2: Participants asked: "How many times }\end{array}\right\} \begin{array}{l}\text { nowadays do you eat: Cabbage, brussel } \\ \text { sprouts, kale and other green leafy } \\ \text { vegetables?" }\end{array}\right\} \begin{array}{l}\text { The options were: Never or rarely; Once in 2 } \\ \text { weeks; } 1 \text { to 3 times per week; 4 to 7 times per } \\ \text { week; more than once a day. }\end{array}\right\}$
\(\left.$$
\begin{array}{|l|l|l|l|}\hline & \text { Father } & \begin{array}{l}\text { Child aged 85 } \\
\text { months }\end{array} & \begin{array}{l}\text { Participants were first asked if they have a } \\
\text { mobile phone and if they answered yes they } \\
\text { were asked: "How often do you use it?". }\end{array}
$$

\hline The options were: At least once a day; 4 to 6\end{array}\right\}\)| Child |
| :--- |
| times a week; 1 to 3 times a week; less than |
| once a week. | \left\lvert\, | Child aged |
| :--- |
| 122 months | | Participants asked: "How long altogether do |
| :--- |
| you usually use a mobile phone now?" They |
| were asked to respond for "on a school day" |
| and "on a weekend day". |\right.

[^2]
Supplementary Table S6. Summary statistics for UK Biobank sample with data available

Phenotype	N	Mean (SD) or percentage (\%)
Ever smoked	335,804	45.20\% (9.93\% current and 35.27\% former)
Smoking heaviness (CPD, for current or former smokers)	100,150	18.25 (10.10)
Lifetime smoking score	335,820	0.34 (0.68)
Age (years)	336,988	56.87 (8.00)
Sex (females)	336,988	53.79\%
Body mass index ($\mathrm{Kg} / \mathrm{m}^{2}$)	335,908	27.39 (4.75)
Body fat percentage	330,893	31.35 (8.52)
Wheeze or whistling in the chest in last year	331,124	20.55\%
C-reactive protein (mg/L)	320,589	2.58 (4.37)
Ever reported COPD	336,988	3.11\%
Had dentures	335,919	12.95\%
Overall health rating (percentage in each group)	335,806	$\begin{array}{\|l\|} \hline \text { Excellent }=16.87 \% \\ \text { Good }=58.68 \% \\ \text { Fair }=20.32 \% \\ \text { Poor }=4.12 \% \\ \hline \end{array}$
Gamma glutamyl transferase (U/L)	321,101	37.30 (41.73)
White blood cell count (10^{9} cells/L)	326,996	6.89 (2.01)
Mean sphered cell volume (femtolitres)	321,653	82.87 (5.25)
Seen GP for nerves, anxiety, tension or depression	334,888	34.42\%
Number of treatments/ medications taken	336,947	2.45 (2.65)
Alcohol drunk on typical drinking day (percentage in each group)	101,397	$\begin{aligned} & \hline 1 \text { or } 2=51.07 \% \\ & 3 \text { or } 4=27.49 \% \\ & 5 \text { or } 6=12.10 \% \\ & 7,8 \text { or } 9=6.52 \% \\ & 10 \text { or } \text { more }=2.83 \% \\ & \hline \end{aligned}$
Lifetime number of sexual partners	277,634	7.29 (64.03)
Age at first live birth	124,051	25.39 (4.54)
Townsend deprivation index (higher score = more deprived)	336,591	-1.58 (2.93)
Takes part in a religious group	336,161	8.59\%
Cereal intake (bowls/week)	336,304	4.66 (2.74)
Risk-taking (responded yes)	325,592	25.46\%

Time spent watching television (hours/day)	334,630	2.83 (1.61)
Liking for cabbage (percentage in each group)	127,891	$\begin{array}{\|l} \hline 1 \text { (extremely dislike) }=2.31 \% \\ 2=1.47 \% \\ 3=2.10 \% \\ 4=3.15 \% \\ 5 \text { (neither like nor dislike) }=7.49 \% \\ 6=13.26 \% \\ 7=23.17 \% \\ 8=21.57 \% \\ 9 \text { (extremely like) }=25.48 \% \\ \hline \end{array}$
Weekly usage of mobile phone (percentage in each group)	281,062	$\begin{aligned} & \text { Less than } 5 \text { mins }=21.81 \% \\ & 5-29 \text { mins }=39.49 \% \\ & 30-59 \text { mins }=17.00 \% \\ & 1-3 \text { hours. }=13.72 \% \\ & 4-6 \text { hours }=3.95 \% \\ & \text { More than } 6 \text { hours }=4.04 \% \end{aligned}$
Ease of skin tanning (percentage in each group, higher = less likely to tan)	330,266	```Get very tanned = 20.11% Get moderately tanned = 40.78% Get mildly or occasionally tanned = 21.54% Never tan, only burn = 17.58%```
Mother's age at time of questionnaire	130,898	78.59 (8.10)
Back pain experienced in last month	336,448	11.89\%
Operation on the left-side of the body	336,988	1.53\%

[^3]
Supplementary Table S7. Associations between the polygenic risk scores for lifetime smoking score, smoking heaviness and smoking initiation and plausible outcomes in UK Biobank

Outcome	Model	N	Beta or OR (95\% CI)	P-value
Lifetime smoking score PRS				
BMI	Linear	335,908	0.09 (0.08 to 0.11)	1.06×10^{-29}
Body fat percentage	Linear	330,893	0.11 (0.09 to 0.14)	1.66×10^{-25}
Wheeze	Logistic	331,124	1.04 (1.03 to 1.05)	1.21×10^{-17}
C-reactive protein	Linear	320,589	0.02 (0.01 to 0.02)	1.17×10^{-21}
Ever reported COPD	Logistic	336,988	1.11 (1.08 to 1.13)	2.10×10^{-23}
Had dentures	Logistic	335,919	1.04 (1.03 to 1.05)	2.06×10^{-12}
Poorer health rating	Ordinal	335,806	1.03 (1.02 to 1.04)	6.24×10^{-19}
Gamma glutamyl transferase	Linear	321,101	0.01 (0.01 to 0.02)	4.50×10^{-19}
White blood cell count	Linear	326,996	0.01 (0.01 to 0.02)	1.93×10^{-16}
Mean sphered cell volume	Linear	321,653	0.03 (0.01 to 0.05)	2.77×10^{-03}
Seen GP for nerves, anxiety, tension or depression	Logistic	334,888	1.02 (1.01 to 1.02)	6.60×10^{-06}
Number of treatments/ medications taken	Linear	336,947	0.01 (0.01 to 0.01)	4.86×10^{-12}
Alcohol drunk on typical drinking day	Ordinal	101,397	1.03 (1.02 to 1.04)	6.24×10^{-06}
Smoking heaviness PRS - never smokers				
BMI	Linear	183,478	0.02 (-0.002 to 0.04)	0.07
Body fat percentage	Linear	180,874	0.02 (-0.01 to 0.04)	0.29
Wheeze	Logistic	181,268	1.003 (0.99 to 1.02)	0.58
C-reactive protein	Linear	175,026	$\begin{array}{\|l} \hline 0.002(-0.002 \text { to } \\ 0.007) \\ \hline \end{array}$	0.29
Ever reported COPD	Logistic	184,005	1.00 (0.95 to 1.05)	0.96
Had dentures	Logistic	183,439	1.00 (0.98 to 1.02)	0.93
Poorer health rating	Ordinal	183,522	1.002 (0.99 to 1.01)	0.74
Gamma glutamyl transferase	Linear	175,282	$\begin{array}{\|l} \hline 0.00007(-0.004 \text { to } \\ 0.004) \\ \hline \end{array}$	0.98
White blood cell count	Linear	178,443	$\begin{array}{\|l\|} \hline-0.003(-0.007 \text { to } \\ 0.002) \\ \hline \end{array}$	0.26
Mean sphered cell volume	Linear	175,491	-0.01 (-0.04 to 0.01)	0.30
Seen GP for nerves, anxiety, tension or depression	Logistic	182,924	1.00 (0.99 to 1.01)	0.51
Number of treatments/ medications taken	Linear	183,980	$\begin{aligned} & 0.004 \text { (-0.0003 to } \\ & 0.008) \end{aligned}$	0.07
Alcohol drunk on typical drinking day	Ordinal	58,040	1.00 (0.98 to 1.02)	0.98
Smoking heaviness PRS - former smokers				
BMI	Linear	118,082	0.02 (-0.007 to 0.05)	0.15
Body fat percentage	Linear	116,254	0.01 (-0.03 to 0.04)	0.58

Wheeze	Logistic	116,544	1.01 (1.00 to 1.03)	0.08
C-reactive protein	Linear	112,756	0.007 (0.001 to 0.01)	0.02
Ever reported COPD	Logistic	118,447	1.04 (1.007 to 1.07)	0.01
Had dentures	Logistic	118,128	1.01 (0.99 to 1.03)	0.18
Poorer health rating	Ordinal	118,020	1.01 (1.00 to 1.03)	0.02
Gamma glutamyl transferase	Linear	112,958	$\begin{aligned} & -0.002(-0.008 \text { to } \\ & 0.003) \end{aligned}$	0.41
White blood cell count	Linear	115,058	0.004 (-0.001 to 0.01)	0.12
Mean sphered cell volume	Linear	113,157	-0.01 (-0.04 to 0.02)	0.51
Seen GP for nerves, anxiety, tension or depression	Logistic	117,745	1.00 (0.99 to 1.02)	0.64
Number of treatments/ medications taken	Linear	118,437	$\begin{aligned} & 0.005(-0.0002 \text { to } \\ & 0.01) \end{aligned}$	0.06
Alcohol drunk on typical drinking day	Ordinal	92,224	0.99 (0.98 to 1.01)	0.59
Smoking heaviness PRS - current smokers				
BMI	Linear	33,177	-0.10 (-0.15 to -0.05)	2.19×10^{-04}
Body fat percentage	Linear	32,625	-0.15 (-0.22 to -0.08)	4.31×10^{-05}
Wheeze	Logistic	32,197	1.02 (0.99 to 1.04)	0.15
C-reactive protein	Linear	31,694	0.01 (-0.0004 to 0.02)	0.06
Ever reported COPD	Logistic	33,352	1.06 (1.03 to 1.10)	5.06×10^{-04}
Had dentures	Logistic	33,208	0.98 (0.96 to 1.01)	0.29
Poorer health rating	Ordinal	33,109	1.01 (0.99 to 1.03)	0.48
Gamma glutamyl transferase	Linear	31,746	-0.007 (-0.02 to 0.003)	0.17
White blood cell count	Linear	32,360	0.006 (-0.005 to 0.02)	0.27
Mean sphered cell volume	Linear	31,887	0.05 (-0.01 to 0.12)	0.11
Seen GP for nerves, anxiety, tension or depression	Logistic	33,087	0.98 (0.96 to 1.00)	0.06
Number of treatments/ medications taken	Linear	33,347	-0.005 (-0.02 to 0.005)	0.32
Alcohol drunk on typical drinking day	Ordinal	6,921	1.01 (0.97 to 1.05)	0.68
Smoking initiation PRS				
BMI	Linear	335,908	0.07 (0.06 to 0.09)	1.82×10^{-18}
Body fat percentage	Linear	330,893	0.09 (0.07 to 0.11)	3.76×10^{-17}
Wheeze	Logistic	331,124	1.03 (1.02 to 1.04)	1.38×10^{-13}
C-reactive protein	Linear	320,589	0.01 (0.01 to 0.01)	8.99×10^{-08}
Ever reported COPD	Logistic	336,988	1.07 (1.05 to 1.09)	1.43×10^{-10}
Had dentures	Logistic	335,919	1.02 (1.01 to 1.03)	4.48×10^{-04}
Poorer health rating	Ordinal	335,806	1.03 (1.02 to 1.03)	1.40×10^{-15}
Gamma glutamyl transferase	Linear	321,101	0.01 (0.01 to 0.01)	2.26×10^{-09}
White blood cell count	Linear	326,996	0.01 (0.01 to 0.01)	1.45×10^{-08}
Mean sphered cell volume	Linear	321,653	0.04 (0.02 to 0.06)	1.76×10^{-05}
Seen GP for nerves, anxiety, tension or depression	Logistic	334,888	1.03 (1.02 to 1.04)	7.18×10^{-14}

Number of treatments/ medications taken	Linear	336,947	$0.01(0.01$ to 0.01$)$	1.31×10^{-10}
Alcohol drunk on typical drinking day	Ordinal	101,397	$1.04(1.03$ to 1.05$)$	1.85×10^{-11}

For linear regression models the effect estimate is beta and for logistic and ordinal regressions this is the odds ratio. OR=odds ratio, $\mathrm{Cl}=$ confidence interval, $\mathrm{PRS}=$ polygenic risk score, $\mathrm{BMI}=$ body mass index, $\mathrm{COPD}=$ chronic obstructive pulmonary disease, GP=general practitioner.

Supplementary Table S8. Associations between the polygenic risk scores for lifetime smoking score, smoking heaviness and smoking initiation and implausible outcomes in UK Biobank

Outcome	Model	N	Beta or OR (95\% CI)	P-value
Lifetime smoking score PRS				
Lifetime number of sexual partners	Linear	277,634	0.01 (0.01 to 0.02)	4.64×10^{-12}
Age at first live birth	Linear	124,051	-0.12 (-0.14 to -0.09)	5.30×10^{-20}
Townsend deprivation index	Linear	336,591	0.04 (0.03 to 0.05)	1.23×10^{-17}
Takes part in a religious group	Logistic	336,161	0.96 (0.95 to 0.98)	8.44×10^{-09}
Cereal intake	Linear	336,304	-0.01 (-0.02 to -0.01)	1.10×10^{-12}
Risk taking	Logistic	325,592	1.02 (1.01 to 1.03)	1.68×10^{-06}
Time spent watching television	Linear	334,630	0.02 (0.01 to 0.02)	1.05×10^{-26}
Liking for cabbage	Ordinal	127,891	1.02 (1.01 to 1.03)	1.94×10^{-05}
Weekly usage of mobile phone	Ordinal	281,062	1.02 (1.01 to 1.02)	3.88×10^{-07}
Ease of skin tanning	Ordinal	330,266	0.97 (0.97 to 0.98)	1.03×10^{-17}
Mother's age at time of questionnaire	Linear	130,898	-0.06 (-0.09 to -0.04)	2.25×10^{-06}
Back pain experienced in last month	Logistic	336,448	1.01 (1 to 1.02)	0.05
Operation on the left-side of the body	Logistic	336,988	0.99 (0.97 to 1.02)	0.58
Smoking heaviness PRS - never smokers				
Lifetime number of sexual partners	Linear	153,616	$\begin{aligned} & 0.0006(-0.004 \text { to } \\ & 0.005) \end{aligned}$	0.80
Age at first live birth	Linear	74,130	-0.002 (-0.03 to 0.03)	0.89
Townsend deprivation index	Linear	183,783	0.02 (0.005 to 0.03)	0.007
Takes part in a religious group	Logistic	183,569	1.01 (1.00 to 1.03)	0.17
Cereal intake	Linear	183719	$\begin{aligned} & -0.003(-0.007 \text { to } \\ & 0.001) \end{aligned}$	0.19
Risk taking	Logistic	178,202	1.00 (0.99 to 1.01)	0.98
Time spent watching television	Linear	182,824	$\begin{aligned} & \hline-0.001(-0.006 \text { to } \\ & 0.003) \\ & \hline \end{aligned}$	0.58
Liking for cabbage	Ordinal	74,613	1.01 (1.00 to 1.03)	0.02
Weekly usage of mobile phone	Ordinal	151,060	1.01 (1.00 to 1.01)	0.26
Ease of skin tanning	Ordinal	180,056	1.00 (0.99 to 1.01)	0.69
Mother's age at time of questionnaire	Linear	76,827	0.02 (-0.01 to 0.05)	0.25

Back pain experienced in last month	Logistic	183,749	0.99 (0.98 to 1.01)	0.34
Operation on the left-side of the body	Logistic	184,005	0.97 (0.94 to 1.01)	0.14
Smoking heaviness PRS-former smokers				
Lifetime number of sexual partners	Linear	277,634	$\begin{array}{\|l\|} \hline-0.002(-0.007 \text { to } \\ 0.004) \\ \hline \end{array}$	0.59
Age at first live birth	Linear	124,051	-0.0008 (-0.05 to 0.05)	0.97
Townsend deprivation index	Linear	336,591	-0.002 (-0.02 to 0.01)	0.79
Takes part in a religious group	Logistic	336,161	1.00 (0.98 to 1.03)	0.81
Cereal intake	Linear	336,304	$\begin{array}{\|l\|} \hline-0.004(-0.009 \text { to } \\ 0.002) \\ \hline \end{array}$	0.20
Risk taking	Logistic	325,592	1.00 (0.98 to 1.01)	0.61
Time spent watching television	Linear	334,630	$\begin{array}{\|l} \hline 0.002(-0.004 \text { to } \\ 0.007) \\ \hline \end{array}$	0.55
Liking for cabbage	Ordinal	127,891	1.00 (0.98 to 1.01)	0.56
Weekly usage of mobile phone	Ordinal	281,062	1.00 (0.99 to 1.01)	0.74
Ease of skin tanning	Ordinal	330,266	0.99 (0.98 to 1.00)	0.21
Mother's age at time of questionnaire	Linear	130,898	-0.03 (-0.07 to 0.02)	0.26
Back pain experienced in last month	Logistic	336,448	0.99 (0.98 to 1.02)	0.95
Operation on the left-side of the body	Logistic	336,988	1.01 (0.96 to 1.06)	0.65
Smoking heaviness PRS - current smokers				
Lifetime number of sexual partners	Linear	277,634	-0.002 (-0.01 to 0.009)	0.69
Age at first live birth	Linear	124,051	-0.09 (-0.19 to -0.003)	0.04
Townsend deprivation index	Linear	336,591	-0.01 (-0.05 to 0.03)	0.55
Takes part in a religious group	Logistic	336,161	1.02 (0.96 to 1.08)	0.58
Cereal intake	Linear	336,304	-0.004 (-0.01 to 0.007)	0.50
Risk taking	Logistic	325,592	1.00 (0.98 to 1.02)	0.98
Time spent watching television	Linear	334,630	-0.002 (-0.01 to 0.01)	0.77
Liking for cabbage	Ordinal	127,891	0.98 (0.94 to 1.02)	0.31
Weekly usage of mobile phone	Ordinal	281,062	1.00 (0.98 to 1.02)	0.77
Ease of skin tanning	Ordinal	330,266	0.99 (0.97 to 1.01)	0.21
Mother's age at time of questionnaire	Linear	130,898	0.04 (-0.05 to 0.12)	0.40
Back pain experienced in last month	Logistic	336,448	0.98 (0.95 to 1.01)	0.24

Operation on the left-side of the body	Logistic	336,988	$0.95(0.87$ to 1.05$)$	0.32
Smoking initiation PRS				
Lifetime number of sexual partners	Linear	277,634	$0.02(0.02$ to 0.02$)$	6.39×10^{-29}
Age at first live birth	Linear	124,051	$-0.08(-0.11$ to -0.06$)$	8.26×10^{-11}
Townsend deprivation index	Linear	336,591	$0.04(0.03$ to 0.05$)$	7.15×10^{-16}
Takes part in a religious group	Logistic	336,161	$0.97(0.96$ to 0.98$)$	1.29×10^{-07}
Cereal intake	Linear	336,304	$-0.01(-0.01$ to -0.01$)$	3.46×10^{-08}
Risk taking	Logistic	325,592	$1.03(1.02$ to 1.03$)$	2.93×10^{-10}
Time spent watching television	Linear	334,630	$0.01(0.01$ to 0.02$)$	6.18×10^{-14}
Liking for cabbage	Ordinal	127,891	$1.02(1.01$ to 1.03$)$	2.49×10^{-06}
Weekly usage of mobile phone	Ordinal	281,062	$1.02(1.01$ to 1.03$)$	3.25×10^{-08}
Ease of skin tanning	Ordinal	330,266	$0.99(0.98$ to 0.99$)$	6.34×10^{-06}
Mother's age at time of questionnaire	Linear	130,898	$-0.07(-0.1$ to -0.05$)$	1.72×10^{-08}
Back pain experienced in last month	Logistic	336,448	$1.01(1$ to 1.02$)$	0.19
Operation on the left-side of the body	Logistic	336,988	$0.96(0.94$ to 0.99$)$	0.005

For linear regression models the effect estimate is beta and for logistic and ordinal regressions this is the odds ratio. $\mathrm{OR}=$ odds ratio, $\mathrm{Cl}=$ confidence interval, $\mathrm{PRS}=$ polygenic risk score.

Supplementary Table S9. Summary statistics for ALSPAC sample with data available

Phenotype	Sample	N	Mean (SD) or percentage (\%)
Ever smoked	Mother	12,997	50.90\%
	Father/ Partner	9,820	55.20\%
Smoking heaviness (CPD, for ever smokers)	Mother (T1)	11,568	$\begin{aligned} & \hline \text { None }=77.32 \% \\ & 1 \text { to } 4=3.99 \% \\ & 5 \text { to } 9=4.47 \% \\ & 10 \text { to } 14=5.81 \% \\ & 15 \text { to } 19=4.09 \% \\ & 20 \text { to } 24=3.09 \% \\ & 25 \text { to } 29=0.73 \% \\ & 30+=0.52 \% \\ & \hline \end{aligned}$
	Mother (T2)	11,018	$\begin{array}{\|l\|} \hline \text { None }=75.75 \% \\ 1 \text { to } 4=3.82 \% \\ 5 \text { to } 9=4.47 \% \\ 10 \text { to } 14=5.81 \% \\ 15 \text { to } 19=4.92 \% \\ 20 \text { to } 24=3.96 \% \\ 25 \text { to } 29=0.93 \% \\ 30+=0.35 \% \end{array}$
	Father/ Partner	7,001	None=72.58\% 1 to 4=3.34\% 5 to 9=3.57\% 10 to 14=5.78\% 15 to 19=5.70\% 20 to 24=6.01\% 25 to 29=1.81\% 30+=1.20\%
Age at first time point (years)	Mother	10,135	27.75 (4.92)
	Father/ Partner	8,121	30.64 (5.70)
	Child	11,878	0.10 (0.06)
Sex (females)	Child	13,923	48.38\%
BMI	Mother	4,557	26.57 (5.13)
	Father/ Partner	1,884	27.48 (3.89)
	Child	7,567	16.16 (1.88)
Body fat percentage	Mother	4,412	36.75 (8.08)

	Father/ Partner	1,758	26.61 (6.82)
	Child	6,843	23.14 (9.06)
Wheeze	Mother	12,223	16.89\%
	Father/ Partner	8,443	18.44\%
	Child (T1)	11,314	21.49\%
	Child (T2)	10,157	19.32\%
C-reactive protein	Mother	3,889	1.52 (1.55)
	Father/ Partner	1,713	1.53 (1.32)
	Child	4,392	0.33 (0.35)
Overall health	Mother (T1)	11,436	Hardly ever well=0.70\% Often unwell=4.74\% Mostly well=63.21\% Always well=31.35\%
	Mother (T2)	11,116	Hardly ever well=0.76\% Often unwell=4.17\% Mostly well=62.71\% Always well=32.35\%
	Father/ Partner (T1)	8,285	Rarely well= 0.22% Often unwell=1.88\% Mostly healthy=44.39\% Always healthy=53.51\%
	Father/ Partner (T2)	7,059	Hardly ever well= 0.45% Often feel unwell=2.42\% Mostly feel well=52.61\% Always fit and well=44.51\%
	Child (T1)	12,094	Almost always unwell= 0.12% Sometimes quite ill=0.21\% Healthy=19.36\% Very healthy $=80.31 \%$
	Child (T2)	11,252	Mostly unwell=0.93\% Sometimes quite ill=2.58\% Minor problems=36.61\% Very healthy=59.88\%
Gamma glutamyl transferase	Child	4,703	16.80 (5.12)
Seen GP for nerves/anxiety	Mother (T1)	11,088	No=79.25\% Yes, did not see GP=16.41\% Yes, saw GP=4.35\%
	Mother (T2)	10,018	No=81.30\% Yes, did not see GP=13.73\%

$\left.\begin{array}{|l|l|l|l|}\hline & & & \text { Yes, saw GP=4.97\% } \\ \hline & \begin{array}{l}\text { Father/ } \\ \text { Partner (T1) }\end{array} & 7,046 & \begin{array}{l}\text { No=86.19\% } \\ \text { Yes, did not see GP=12.18\% } \\ \text { Yes, saw GP=1.63\% }\end{array} \\ \hline & \begin{array}{l}\text { Father/ } \\ \text { Partner (T2) }\end{array} & 6,123 & \begin{array}{l}\text { No=85.20\% } \\ \text { Yes, did not see GP=13.10\% } \\ \text { Yes, saw GP=1.70\% }\end{array} \\ \hline \text { Seen GP for depression } & \text { Mother (T1) } & 11,088 & \begin{array}{l}\text { Child } \\ \text { No=68.70\% } \\ \text { Yes, did not see GP=23.34\% } \\ \text { Yes, saw GP=7.95\% }\end{array} \\ \hline & \text { Mother (T2) } & 10,063 & \begin{array}{l}\text { No=75.81\% } \\ \text { Yes, did not see GP=16.28\% } \\ \text { Yes, saw GP=7.91\% }\end{array} \\ \hline & \text { Father/ } \\ \text { Partner (T1) }\end{array} \quad 7,044 \begin{array}{l}\text { No=89.34\% } \\ \text { Yes, did not see GP=9.58\% } \\ \text { Yes, saw GP=1.08\% }\end{array}\right\}$

Townsend deprivation index	Mother (T1)	7,991	$\begin{aligned} & 1=25.83 \% \\ & 2=14.52 \% \\ & 3=18.71 \% \\ & 4=26.63 \% \\ & 5=14.32 \% \end{aligned}$
	Mother (T2)	10,583	$\begin{aligned} & 1=27.34 \% \\ & 2=14.76 \% \\ & 3=19.48 \% \\ & 4=25.22 \% \\ & 5=13.20 \% \end{aligned}$
Attends a place of worship	Mother	11,974	Not at all=56.56\% >1 per year=29.19\% >1 per month=6.91\% >1 per week=7.34\%
	Father/ Partner	9,543	Not at all=63.38\% >1 per year=26.23\% >1 per month=4.30\% >1 per week=6.10\%
	Child	7,327	No=54.24\% Yes, sometimes=29.68\% Yes, often=16.08\%
Oat cereal intake	Mother (T1)	11,988	Never/rarely=43.71\% Once in 2 weeks=15.27\% 1 to 3 times per week=17.16\% 4 to 7 times per week=21.76\% >1 per day=2.10\%
	Mother (T2)	9,433	Never/rarely=61.44\% Once in 2 weeks=16.07\% 1 to 3 times per week=12.70\% 4 to 7 times per week=9.39\% >1 per day=0.39\%
	Father/ Partner	5,031	Never/rarely=62.41\% Once in 2 weeks=15.11\% 1 to 3 times per week=11.51\% 4 to 7 times per week=10.55\% >1 per day=0.42\%
	Child	8,984	Never/rarely=53.52\% Once in 2 weeks=17.52\% 1 to 3 times per week=21.26\% 4 to 7 times per week=7.50\% >1 per day=0.20\%
Wholegrain/bran cereal intake	Mother (T1)	11,988	Never/rarely=32.56\% Once in 2 weeks=13.96\% 1 to 3 times per week=24.02\% 4 to 7 times per week=27.47\% >1 per day=1.99\%

	Mother (T2)	9,443	Never/rarely=34.80\% Once in 2 weeks=17.28\% 1 to 3 times per week=21.91\% 4 to 7 times per week=25.08\% >1 per day=0.92\%
	Father/ Partner	5,030	Never/rarely=42.03\% Once in 2 weeks=17.26\% 1 to 3 times per week=20.28\% 4 to 7 times per week=19.58\% >1 per day=0.85\%
	Child	9,176	Never/rarely=21.71\% Once in 2 weeks=13.35\% 1 to 3 times per week=39.28\% 4 to 7 times per week=24.67\% >1 per day=0.99\%
Other cereal intake	Mother (T1)	11,988	Never/rarely=37.99\% Once in 2 weeks=19.53\% 1 to 3 times per week=26.40\% 4 to 7 times per week=15.28\% >1 per day=0.81\%
	Mother (T2)	9,443	Never/rarely=38.95\% Once in 2 weeks=18.88\% 1 to 3 times per week=25.44\% 4 to 7 times per week=15.94\% >1 per day=0.80\%
	Father/ Partner	5,031	Never/rarely=34.47\% Once in 2 weeks=20.57\% 1 to 3 times per week=26.22\% 4 to 7 times per week=17.25\% >1 per day=1.13\%
	Child	9,386	Never/rarely=7.56\% Once in 2 weeks=7.89 1 to 3 times per week=42.82\% 4 to 7 times per week $=40.02 \%$ >1 per day=1.70\%
Risk taking (higher = avoids risks more)	Child (T1)	10,021	Never=18.71\% Hardly ever=31.27\% Sometimes=37.14\% Often=10.09\% Very often=2.78\%
	Child (T2)	9,891	Never=15.44\% Hardly ever=29.08\% Sometimes=40.34\% Often=12.01\% Very often=3.13\%
Time spent watching television (weekday)	Mother	6,981	2.38 (1.37)

	Father/ Partner	3,637	2.30 (1.32)
	Child	9,913	Not at all=2.10\% <1 hour=26.44\% 1 to 2 hours=46.08\% >2 hours=25.38\%
Time spent watching television (weekend day)	Mother	6,491	3.15 (1.75)
	Father/ Partner	3,427	3.31 (1.82)
	Child	9,830	```Not at all=3.34% <1 hour=25.34% 1 to 2 hours=43.62% >2 hours=27.70%```
Cabbage intake	Mother (T1)	11,988	Never/rarely=9.92\% Once in 2 weeks=19.49\% 1 to 3 times per week=60.07\% 4 to 7 times per week=10.23\% >1 per day=0.30\%
	Mother (T2)	9,428	Never/rarely=7.24\% Once in 2 weeks=17.02\% 1 to 3 times per week=62.47\% 4 to 7 times per week=13.06\% >1 per day=0.20\%
	Father/ Partner	9,798	Never/rarely=12.05\% Once in 2 weeks=17.03\% 1 to 3 times per week=53.50\% 4 to 7 times per week=16.72\% >1 per day=0.69\%
	Child (T1)	9,891	Never/rarely=31.57\% Once in 2 weeks=16.78\% 1 to 3 times per week=43.88\% 4 to 7 times per week=7.56\% >1 per day=0.20\%
	Child (T2)	9,501	Never/rarely=26.68\% Once in 2 weeks=14.20\% 1 to 3 times per week=49.84\% 4 to 7 times per week=9.08\% >1 per day=0.20\%
Mobile phone usage	Mother	3,635	```<1 per week=40.69% 1 to 3 times per week=26.19% 4 to }6\mathrm{ times per week=11.77% >1 per day=21.35%```
	Father/ Partner	2,243	```<1 per week=17.12% 1 to 3 times per week=18.86% 4 to 6 times per week=15.07% >1 per day=48.95%```

	Child (weekday)	6,099	Not at all=65.55\% <15 minutes=30.07\% 15 to 30 minutes=3.16\% >30 minutes $=1.21 \%$
	Child (weekend day)	6,440	Not at all=27.03\% <15 minutes=58.73\% 15 to 30 minutes $=9.92 \%$ >30 minutes=4.32\%
Mother's age at time of questionnaire	Mother	10,135	54.75 (8.28)
	Father/ Partner	7,209	57.15 (8.58)
Back pain	Mother (T1)	11,555	67.65\%
	Mother (T2)	11,088	59.60\%
	Father/ Partner	8,451	46.92\%

[^4]Supplementary Table S10. Associations between the polygenic risk scores for lifetime smoking score, smoking heaviness and smoking initiation and plausible outcomes in ALSPAC

		Child (T1)	6,716	0.98 (0.93 to 1.05)	0.62
		Child (T2)	6,081	1.03 (0.97 to 1.10)	0.33
C-reactive protein	Linear	Mother	1,662	0.007 (-0.04 to 0.05)	0.77
		Father/ Partner	544	0.01 (-0.07 to 0.10)	0.75
		Child	3,570	0.03 (-0.001 to 0.06)	0.06
Overall health	Ordinal	Mother (T1)	3,392	1.01 (0.94 to 1.08)	0.84
		Mother (T2)	3,365	1.03 (0.96 to 1.10)	0.46
		Father/ Partner (T1)	710	0.91 (0.78 to 1.06)	0.23
		Father/ Partner (T2)	699	1.00 (0.86 to 1.17)	0.97
		Child (T1)	6,864	1.01 (0.95 to 1.08)	0.71
		Child (T2)	6,689	0.98 (0.93 to 1.03)	0.36
Gamma glutamyl transferase	Linear	Child	3,811	0.13 (-0.03 to 0.29)	0.12
Seen GP for nerves/anxiety	Ordinal	Mother (T1)	3,358	0.98 (0.89 to 1.07)	0.60
		Mother (T2)	2,996	1.03 (0.93 to 1.13)	0.62
		Father/ Partner (T1)	696	1.15 (0.90 to 1.46)	0.27
		Father/ Partner (T2)	667	1.00 (0.80 to 1.25)	0.99
	Logistic	Child	5,381	1.01 (0.96 to 1.07)	0.70
Seen GP for depression	Ordinal	Mother (T1)	3,358	1.00 (0.92 to 1.08)	0.97
		Mother (T2)	3,011	1.01 (0.93 to 1.11)	0.77
		Father/ Partner (T1)	696	1.12 (0.81 to 1.57)	0.49
		Father/ Partner (T2)	667	0.94 (0.71 to 1.25)	0.66
Number of treatments/ medications taken	Linear	Mother (T1)	3,436	0.02 (-0.01 to 0.05)	0.26

		Father/ Partner (T2)	493	0.87 (0.67 to 1.13)	0.29
Seen GP for depression	Ordinal	Mother (T1)	2,945	1.02 (0.95 to 1.10)	0.60
		Mother (T2)	2,517	0.97 (0.88 to 1.06)	0.44
		Father/ Partner (T1)	537	0.94 (0.69 to 1.28)	0.70
		Father/ Partner (T2)	493	1.01 (0.78 to 1.31)	0.92
Number of treatments/ medications taken	Linear	Mother (T1)	3,076	-0.01 (-0.05 to 0.02)	0.43
		Mother (T2)	1,982	-0.02 (-0.06 to 0.02)	0.43
		Father/ Partner (T1)	375	-0.14 (-0.24 to -0.03)	0.01
		Father/ Partner (T2)	350	-0.03 (-0.12 to 0.07)	0.59
Alcohol drunk on typical drinking day	Ordinal	Mother	3,454	0.92 (0.86 to 0.98)	0.006
		Father/ Partner	642	0.99 (0.85 to 1.16)	0.94
Smoking initiation PRS					
BMI	Linear	Mother	3,176	0.36 (0.19 to 0.54)	0.00005
		Father/ Partner	1,100	0.22 (-0.006 to 0.44)	0.06
		Child	5,474	0.04 (-0.009 to 0.09)	0.11
Body fat percentage	Linear	Mother	3,097	0.34 (0.05 to 0.62)	0.02
		Father/ Partner	1,018	0.16 (-0.25 to 0.56)	0.44
		Child	5,078	0.12 (-0.11 to 0.35)	0.31
Wheeze	Logistic	Mother	6,720	1.02 (0.96 to 1.09)	0.48
		Father/ Partner	1,386	1.03 (0.89 to 1.19)	0.69
		Child (T1)	6,716	1.00 (0.94 to 1.06)	0.97
		Child (T2)	6,081	1.06 (1.00 to 1.13)	0.07
C-reactive protein	Linear	Mother	2,773	-0.01 (-0.05 to 0.02)	0.50
		Father/ Partner	1,015	0.03 (-0.04 to 0.09)	0.42

		Child	3,570	0.02 (-0.01 to 0.05)	0.27
Overall health	Ordinal	Mother (T1)	6,575	0.97 (0.92 to 1.02)	0.23
		Mother (T2)	6,462	1.03 (0.98 to 1.08)	0.31
		Father/ Partner (T1)	1,307	0.94 (0.84 to 1.05)	0.26
		Father/ Partner (T2)	1,279	0.98 (0.88 to 1.09)	0.73
		Child (T1)	6,864	1.03 (0.97 to 1.09)	0.34
		Child (T2)	6,689	1.02 (0.97 to 1.07)	0.43
Gamma glutamyl transferase	Linear	Child	3,811	0.10 (-0.06 to 0.26)	0.22
Seen GP for nerves/anxiety	Ordinal	Mother (T1)	6,452	1.03 (0.96 to 1.09)	0.42
		Mother (T2)	5,593	1.01 (0.94 to 1.08)	0.75
		Father/ Partner (T2)	1,277	1.00 (0.84 to 1.18)	0.98
		Father/ Partner (T2)	1,203	0.99 (0.84 to 1.16)	0.87
	Logistic	Child	5,381	0.92 (0.87 to 0.97)	0.004
Seen GP for depression	Ordinal	Mother (T1)	6,452	1.04 (0.98 to 1.10)	0.16
		Mother (T2)	5,617	1.02 (0.96 to 1.09)	0.51
		Father/ Partner (T1)	1,277	0.90 (0.73 to 1.11)	0.32
		Father/ Partner (T2)	1,203	1.08 (0.90 to 1.31)	0.41
Number of treatments/ medications taken	Linear	Mother (T1)	6,662	-0.007 (-0.03 to 0.02)	0.55
		Mother (T2)	4,343	$-0.003(-0.03$ to 0.03)	0.85
		Father/ Partner (T1)	901	0.003 (-0.06 to 0.07)	0.93
		Father (T2)	831	-0.02 (-0.08 to 0.05)	0.57

		Child (T1)	6,893	$-0.01(-0.03$ to 0.01)	0.42
		Child (T2)	6,034	$0.01(-0.03$ to 0.05$)$	0.56
Alcohol drunk on typical drinking day	Ordinal	Mother	7,167	$1.06(1.02$ to 1.11$)$	0.006
		Father	1,467	$1.09(0.99$ to 1.21$)$	0.08

For linear regression models the effect estimate is beta and for logistic and ordinal regressions this is the odds ratio. OR=odds ratio, $\mathrm{Cl}=$ confidence interval, $\mathrm{PRS}=$ polygenic risk score, $\mathrm{BMI}=$ body mass index, COPD=chronic obstructive pulmonary disease, GP=general practitioner. T1 = time point 1, T2 = time point 2

Supplementary Table S11. Associations between the polygenic risk scores for lifetime smoking score, smoking heaviness and smoking initiation and implausible outcomes in ALSPAC

Outcome	Model	Sample	N	Beta or OR (95\% CI)	P-value
Lifetime smoking score PRS					
Age at first pregnancy	Linear	Mother	7,199	-0.19 (-0.28 to -0.10)	5.85×10^{-05}
Townsend deprivation index	Ordinal	Mother (T1)	4,376	1.06 (1.01 to 1.12)	0.02
		Mother (T2)	6,174	1.05 (1.00 to 1.09)	0.05
Attends a place of worship	Ordinal	Mother	2,990	0.91 (0.87 to 0.96)	0.0002
		Father	1,442	0.98 (0.80 to 1.12)	0.77
		Child	5,110	0.90 (0.85 to 0.95)	0.00008
Oat cereal intake	Ordinal	Mother (T1)	6,712	0.96 (0.92 to 1.01)	0.09
		Mother (T2)	5,662	0.91 (0.85 to 0.98)	0.02
		Father	1,155	0.90 (0.80 to 1.01)	0.06
		Child	5,671	0.97 (0.92 to 1.01)	0.17
Wholegrain/bran cereal intake	Ordinal	Mother (T1)	6,712	0.92 (0.86 to 0.96)	0.0003
		Mother (T2)	5,662	0.94 (0.89 to 0.98)	0.007
		Father	1,156	0.98 (0.88 to 1.08)	0.65
		Child	5,776	0.97 (0.92 to 1.01)	0.14
Other cereal intake	Ordinal	Mother (T1)	6,712	1.05 (1.00 to 1.09)	0.04
		Mother (T2)	5,662	0.98 (0.94 to 1.03)	0.50
		Father	1,149	0.95 (0.86 to 1.06)	0.36
		Child	5,901	1.01 (0.96 to 1.06)	0.76
Risk taking (higher = avoids risks more)	Ordinal	Child (T1)	6,023	0.92 (0.88 to 0.96)	0.0005
		Child (T2)	5,991	0.96 (0.92 to 1.01)	0.08
Time spent watching television (weekday)	Linear	Mother	4,426	0.05 (0.02 to 0.08)	0.0006
		Father	1,066	0.03 (-0.03 to 0.09)	0.35
	Ordinal	Child	6,072	1.03 (0.99 to 1.08)	0.17
Time spent watching television (weekend day)	Linear	Mother	4,129	0.03 (0.006 to 0.06)	0.02
		Father	1,019	0.04 (-0.02 to 0.10)	0.19
	Ordinal	Child	6,033	1.06 (1.01 to 1.11)	0.01
Cabbage intake	Ordinal	Mother (T1)	6,712	1.01 (0.97 to 1.06)	0.55

		Mother (T2)	5,661	1.03 (0.97 to 1.08)	0.35
		Father	1,463	1.04 (0.95 to 1.15)	0.40
		Child (T1)	6,058	1.06 (1.01 to 1.11)	0.02
		Child (T2)	5,973	1.007 (0.96 to 1.06)	0.78
Mobile phone usage	Ordinal	Mother	2,306	1.08 (1.00 to 1.16)	0.06
		Father	630	0.98 (0.84 to 1.14)	0.75
		Child (weekday)	4,208	1.06 (1.00 to 1.13)	0.06
		Child (weekend day)	4,444	1.05 (0.99 to 1.11)	0.09
Mother's age at time of questionnaire	Linear	Mother	5,688	-0.17 (-0.32 to -0.03)	0.02
		Father	1,217	-0.31 (-0.62 to -0.002)	0.05
Back pain	Logistic	Mother (T1)	6,643	1.03 (0.98 to 1.08)	0.26
		Mother (T2)	6,652	1.00 (0.94 to 1.04)	0.69
		Father	1,388	0.98 (0.88 to 1.09)	0.66
Smoking heaviness PRS - never smokers					
Age at first pregnancy	Linear	Mother	3,690	0.03 (-0.08 to 0.15)	0.56
Townsend deprivation index	Ordinal	Mother (T1)	2,176	1.03 (0.95 to 1.11)	0.48
		Mother (T2)	3,173	1.05 (0.99 to 1.12)	0.12
Attends a place of worship	Ordinal	Mother	3,426	1.01 (0.95 to 1.07)	0.78
		Father	808	1.05 (0.92 to 1.20)	0.49
		Child	5,110	0.99 (0.94 to 1.05)	0.79
Oat cereal intake	Ordinal	Mother (T1)	3,451	0.98 (0.92 to 1.04)	0.51
		Mother (T2)	3,008	0.98 (0.91 to 1.05)	0.52
		Father	637	1.07 (0.92 to 1.24)	0.40
		Child	5,671	1.009 (0.96 to 1.06)	0.72
Wholegrain/bran cereal intake	Ordinal	Mother (T1)	3,451	0.99 (0.93 to 1.05)	0.67
		Mother (T2)	3,008	1.00 (0.94 to 1.06)	0.96
		Father	638	1.04 (0.90 to 1.20)	0.56
		Child	5,776	0.99 (0.94 to 1.03)	0.54
Other cereal intake	Ordinal	Mother (T1)	3,451	0.95 (0.90 to 1.01)	0.11
		Mother (T2)	3,008	0.97 (0.91 to 1.04)	0.38
		Father	635	0.99 (0.85 to 1.13)	0.78

		Child	5,901	1.0009 (0.95 to 1.05)	0.97
Risk taking (higher = avoids risks more)	Ordinal	Child (T1)	6,023	0.98 (0.93 to 1.02)	0.30
		Child (T2)	5,991	1.00 (0.96 to 1.05)	0.94
Time spent watching television (weekday)	Linear	Mother	2,397	0.006 (-0.03 to 0.04)	0.76
		Father	595	0.01 (-0.07 to 0.09)	0.75
	Ordinal	Child	6,072	1.00 (0.95 to 1.05)	0.95
Time spent watching television (weekend day)	Linear	Mother	2,238	0.02 (-0.02 to 0.06)	0.33
		Father	570	-0.01 (-0.09 to 0.07)	0.79
	Ordinal	Child	6,033	1.02 (0.97 to 1.07)	0.48
Cabbage intake	Ordinal	Mother (T1)	3,451	1.04 (0.97 to 1.11)	0.24
		Mother (T2)	3,007	1.02 (0.95 to 1.09)	0.63
		Father	818	1.03 (0.90 to 1.18)	0.65
		Child (T1)	6,058	1.02 (0.97 to 1.07)	0.39
		Child (T2)	5,973	1.00 (0.95 to 1.05)	0.90
Mobile phone usage	Ordinal	Mother	1,235	0.94 (0.85 to 1.05)	0.26
		Father	331	1.00 (0.83 to 1.22)	0.98
		Child (weekday)	4,208	1.02 (0.96 to 1.09)	0.52
		Child (weekend day)	4,444	1.03 (0.97 to 1.10)	0.28
Mother's age at time of questionnaire	Linear	Mother	2,972	-0.06 (-0.25 to 0.14)	0.58
		Father	685	0.19 (-0.22 to 0.61)	0.36
Back pain	Logistic	Mother (T1)	3,425	0.99 (0.92 to 1.06)	0.81
		Mother (T2)	3,358	0.98 (0.92 to 1.05)	0.60
		Father	772	1.00 (0.86 to 1.16)	0.96
Smoking heaviness PRS - ever smokers					
Age at first pregnancy	Linear	Mother	3,471	-0.07 (-0.21 to 0.07)	0.33
Townsend deprivation index	Ordinal	Mother (T1)	2,091	0.94 (0.87 to 1.02)	0.13
		Mother (T2)	2,864	0.95 (0.89 to 1.01)	0.12
Attends a place of worship	Ordinal	Mother	3,062	0.89 (0.83 to 0.96)	0.003
		Father	629	1.00 (0.85 to 1.17)	0.97
Oat cereal intake	Ordinal	Mother (T1)	3,129	0.98 (0.92 to 1.04)	0.52
		Mother (T2)	2,559	1.01 (0.93 to 1.10)	0.77

		Father	476	1.04 (0.86 to 1.25)	0.70
Wholegrain/bran cereal intake	Ordinal	Mother (T1)	3,129	0.98 (0.92 to 1.06)	0.06
		Mother (T2)	2,559	0.98 (0.87 to1.06)	0.65
		Father	476	0.93 (0.79 to 1.10)	0.39
Other cereal intake	Ordinal	Mother (T1)	3,129	1.03 (0.96 to 1.10)	0.39
		Mother (T2)	2,559	1.04 (0.97 to 1.12)	0.24
		Father	472	0.94 (0.80 to 1.11)	0.47
Time spent watching television (weekday)	Linear	Mother	1,956	0.02 (-0.02 to 0.07)	0.35
		Father	435	-0.07 (-0.16 to 0.03)	0.52
Time spent watching television (weekend day)	Linear	Mother	1,824	0.01 (-0.03 to 0.06)	0.54
		Father	411	-0.03 (-0.12 to 0.06)	0.52
Cabbage intake	Ordinal	Mother (T1)	3,129	1.04 (0.97 to 1.11)	0.31
		Mother (T2)	2,559	1.02 (0.94 to 1.10)	0.70
		Father	639	1.07 (0.93 to 1.25)	0.34
Mobile phone usage	Ordinal	Mother	1,027	0.95 (0.84 to 1.07)	0.39
		Father	275	0.96 (0.76 to 1.21)	0.72
Mother's age at time of questionnaire	Linear	Mother	2,613	-0.07 (-0.28 to 0.15)	0.54
		Father	528	0.312 (-0.16 to 0.79)	0.19
Back pain	Logistic	Mother (T1)	3,069	1.01 (0.94 to 1.10)	0.71
		Mother (T2)	2,945	0.93 (0.87 to 1.01)	0.07
		Father	574	0.97 (0.83 to 1.15)	0.76
Smoking initiation PRS					
Age at first pregnancy	Linear	Mother	7,199	-0.15 (-0.24 to -0.06)	0.001
Townsend deprivation index	Ordinal	Mother (T1)	4,376	1.04 (0.99 to 1.10)	0.13
		Mother (T2)	6,174	1.02 (0.98 to 1.07)	0.33
Attends a place of worship	Ordinal	Mother	6,613	0.92 (0.88 to 0.96)	0.0004
		Father	1,442	0.94 (0.85 to 1.04)	0.20
		Child	5,110	0.95 (0.90 to 1.00)	0.05
Oat cereal intake	Ordinal	Mother (T1)	6,712	1.00 (0.96 to 1.04)	0.94
		Mother (T2)	5,662	0.94 (0.89 to 0.99)	0.01
		Father	1,155	0.90 (0.80 to 1.01)	0.07

		Child	5,671	0.98 (0.93 to 1.03)	0.44
Wholegrain/bran cereal intake	Ordinal	Mother (T1)	6,712	0.96 (0.92 to 1.00)	0.08
		Mother (T2)	5,662	0.96 (0.92 to 1.01)	0.09
		Father	1,156	0.98 (0.88 to 1.08)	0.66
		Child	5,776	1.00 (0.95 to 1.05)	0.96
Other cereal intake	Ordinal	Mother (T1)	6,712	1.03 (0.99 to 1.08)	0.15
		Mother (T2)	5,662	0.98 (0.94 to 1.03)	0.45
		Father	1,149	0.95 (0.86 to 1.06)	0.37
		Child	5,901	1.01 (0.96 to 1.06)	0.78
Risk taking (higher = avoids risks more)	Ordinal	Child (T1)	6,023	0.93 (0.88 to 0.97)	0.001
		Child (T2)	5,991	0.95 (0.91 to 1.00)	0.04
Time spent watching television (weekday)	Linear	Mother	4,426	0.02 (-0.01 to 0.04)	0.27
		Father	1,066	-0.03 (-0.08 to 0.03)	0.39
	Ordinal	Child	6,072	1.01 (0.96 to 1.06)	0.69
Time spent watching television (weekend day)	Linear	Mother	4,129	0.02 (-0.008 to 0.05)	0.15
		Father	1,019	-0.02 (-0.08 to 0.04)	0.51
	Ordinal	Child	6,033	1.00 (0.96 to 1.05)	0.88
Cabbage intake	Ordinal	Mother (T1)	6,712	1.01 (0.96 to 1.06)	0.64
		Mother (T2)	5,661	0.99 (0.94 to 1.04)	0.68
		Father	1,463	1.01 (0.92 to 1.11)	0.86
		Child (T1)	6,058	1.05 (1.01 to 1.11)	0.02
		Child (T2)	5,973	0.99 (0.95 to 1.04)	0.74
Mobile phone usage	Ordinal	Mother	2,306	1.08 (1.00 to 1.16)	0.05
		Father	630	1.01 (0.87 to 1.17)	0.88
		Child (weekday)	4,208	1.01 (0.95 to 1.08)	0.73
		Child (weekend day)	4,444	1.04 (0.98 to 1.10)	0.16
Mother's age at time of questionnaire	Linear	Mother	5,688	-0.16 (-0.30 to -0.02)	0.03
		Father	1,217	-0.35 (-0.67 to -0.03)	0.03
Back pain	Logistic	Mother (T1)	6,643	1.02 (0.97 to 1.07)	0.50
		Mother (T2)	6,452	1.00 (0.95 to 1.05)	1.00
		Father	1,388	1.04 (0.93 to 1.16)	0.46

For linear regression models the effect estimate is beta and for logistic and ordinal regressions this is the odds ratio. $\mathrm{OR}=$ odds ratio, $\mathrm{Cl}=$ confidence interval, $\mathrm{PRS}=$ polygenic risk score. $\mathrm{T} 1=$ time point $1, \mathrm{~T} 2=$ time point 2

Supplementary Fig S1. Associations between polygenic risk scores for lifetime smoking score (blue), smoking heaviness (red, from darkest to lightest is never, former and current) and smoking initiation (green) and plausible phenotypes (linear models)

Associations between polygenic risk scores for lifetime smoking index (blue), smoking heaviness (red, from darkest to lightest is never and ever, except for children where there is a single result) and smoking initiation (green) and plausible phenotypes from linear models. Results are presented for mothers (a), fathers/partners (b) and children (c). The effect estimate is beta for linear regressions. $\mathrm{BMI}=$ body mass index, CRP=C-reactive protein, GGT=Gamma Glutamyl Transferase, GP=general practitioner.

Supplementary Fig S2. Associations between polygenic risk scores for lifetime smoking score (blue), smoking heaviness (red, from darkest to lightest is never, former and current) and smoking initiation (green) and plausible phenotypes (logistic models)
a)

b) Wheeze

c) Wheeze T_{1}

Wheeze T2

Associations between polygenic risk scores for lifetime smoking index (blue), smoking heaviness (red, from darkest to lightest is never and ever, except for children where there is a single result) and smoking initiatin (green) and plausible from logistic models. Results are presented for mothers (a), fathers/partners (b) and children (c). The effect estimate is odds ratios for logistic regressions.

Supplementary Fig S3. Associations between polygenic risk scores for lifetime smoking score (blue), smoking heaviness (red, from darkest to lightest is never, former and current) and smoking initiation (green) and plausible phenotypes (ordinal models)
a)

b) Overall health T 1

c)

Associations between polygenic risk scores for lifetime smoking index (blue), smoking heaviness (red, from darkest to lightest is never and ever, except for children where there is a single result) and smoking initiation (green) and plausible from ordinal models. Results are presented for mothers (a), fathers/partners (b) and children (c). The effect estimate is odds ratios for ordinal regressions.

Supplementary Fig S4. Associations between polygenic risk scores for lifetime smoking score (blue), smoking heaviness (red, from darkest to lightest is never, former and current) and smoking initiation (green) and implausible phenotypes (linear models)

Associations between polygenic risk scores for lifetime smoking index (blue), smoking heaviness (red, from darkest to lightest is never and ever, except for children where there is a single result) and smoking initiation (green) and implausible phenotypes from linear models. Results are presented for mothers (a), fathers/partners (b) and children (c). The effect estimate is beta for linear regressions. BMI=body mass index, CRP=C-reactive protein, GGT=Gamma Glutamyl Transferase, GP=general practitioner.

Supplementary Fig S5. Associations between polygenic risk scores for lifetime smoking score (blue), smoking heaviness (red, from darkest to lightest is never, former and current) and smoking initiation (green) and implausible phenotypes (logistic models)

Associations between polygenic risk scores for lifetime smoking index (blue), smoking heaviness (red, from darkest to lightest is never and ever, except for children where there is a single result) and smoking initiation (green) and plausible and implausible phenotypes from logistic models. Results are presented for mothers (a), fathers/partners (b) and children (c). The effect estimate is odds ratios for logistic regressions.

Supplementary Fig S6. Associations between polygenic risk scores for lifetime smoking score (blue), smoking heaviness (red, from darkest to lightest is never, former and current) and smoking initiation (green) and implausible phenotypes (ordinal models)

Associations between polygenic risk scores for lifetime smoking index (blue), smoking heaviness (red, from darkest to lightest is never and ever, except for children where there is a single result) and smoking initiation (green) and implausible phenotypes from ordinal models. Results are presented for mothers (a), fathers/partners (b) and children (c). The effect estimate is odds ratios for ordinal regressions.

References

1. Wootton RE, Richmond RC, Stuijfzand BG, Lawn RB, Sallis HM, Taylor GMJ, et al. Evidence for causal effects of lifetime smoking on risk for depression and schizophrenia: a Mendelian randomisation study. Psychol Med [Internet]. 2019 [cited 2020 Aug 18];1-9. Available from: https://www.cambridge.org/core/product/identifier/S0033291719002678/type/journal_art icle
2. Denny JC, Ritchie MD, Basford MA, Pulley JM, Bastarache L, Brown-Gentry K, et al. PheWAS: Demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics. 2010;26:1205-10.
3. Liu M, Jiang Y, Wedow R, Li Y, Brazel DM, Chen F, et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat Genet [Internet]. 2019 [cited 2020 Jul 1];51:237-44. Available from:
http://www.nature.com/articles/s41588-018-0307-5
4. Mägi R, Morris AP. GWAMA: Software for genome-wide association meta-analysis. BMC Bioinformatics. 2010;11:288.
5. Millard LA, Davies NM, Gaunt TR, Davey Smith G, Tilling K. Software application profile: PHESANT: A tool for performing automated phenome scans in UK Biobank. Int J Epidemiol [Internet]. 2018 [cited 2020 Aug 18];47:29-35. Available from:
https://academic.oup.com/ije/article/47/1/29/4347232
6. Åsvold BO, Bjørngaard JH, Carslake D, Gabrielsen ME, Skorpen F, Davey Smith G, et al. Causal associations of tobacco smoking with cardiovascular risk factors: a Mendelian randomization analysis of the HUNT Study in Norway. Int J Epidemiol [Internet]. 2014 [cited 2022 Nov 16];43:1458-70. Available from:
https://academic.oup.com/ije/article/43/5/1458/2949577
7. Audrain-Mcgovern J, Benowitz NL. Cigarette Smoking, Nicotine, and Body Weight. Clin Pharmacol Ther [Internet]. 2011 [cited 2022 Nov 16];90:164. Available from:
/pmc/articles/PMC3195407/
8. Freathy RM, Kazeem GR, Morris RW, Johnson PCD, Paternoster L, Ebrahim S, et al. Genetic variation at CHRNA5-CHRNA3-CHRNB4 interacts with smoking status to influence body mass index. Int J Epidemiol [Internet]. 2011 [cited 2022 Nov 16];40:1617. Available from: /pmc/articles/PMC3235017/
9. Courtemanche C, Tchernis R, Ukert B. The effect of smoking on obesity: Evidence from a randomized trial. J Health Econ. 2018;57:31-44.
10. Clair C, Chiolero A, Faeh D, Cornuz J, Marques-Vidal P, Paccaud F, et al. Dose-dependent positive association between cigarette smoking, abdominal obesity and body fat: Crosssectional data from a population-based survey. BMC Public Health [Internet]. 2011 [cited 2022 Nov 16];11:1-10. Available from:
https://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-11-23
11. Bjerg A, Ekerljung L, Eriksson J, Ólafsdóttir IS, Middelveld R, Franklin KA, et al. Higher Risk of Wheeze in Female than Male Smokers. Results from the Swedish GA2LEN Study. PLoS One [Internet]. 2013 [cited 2022 Nov 16];8. Available from: /pmc/articles/PMC3554721/ 12. Skaaby T, Taylor AE, Jacobsen RK, Paternoster L, Thuesen BH, Ahluwalia TS, et al. Investigating the causal effect of smoking on hay fever and asthma: a Mendelian randomization meta-analysis in the CARTA consortium. Scientific Reports 2017 7:1 [Internet]. 2017 [cited 2022 Nov 16];7:1-9. Available from:
https://www.nature.com/articles/s41598-017-01977-w
12. Ohsawa M, Okayama A, Nakamura M, Onoda T, Kato K, Itai K, et al. CRP levels are elevated in smokers but unrelated to the number of cigarettes and are decreased by longterm smoking cessation in male smokers. Prev Med (Baltim). 2005;41:651-6.
13. Galan D, Perry BI, Warrier V, Davidson CC, Stupart O, Easton D, et al. Applying Mendelian randomization to appraise causality in relationships between smoking, depression and inflammation. Scientific Reports 2022 12:1 [Internet]. 2022 [cited 2022 Nov 16];12:1-12. Available from: https://www.nature.com/articles/s41598-022-19214-4
14. Laniado-Laborin R. Smoking and Chronic Obstructive Pulmonary Disease (COPD). Parallel Epidemics of the 21st Century. Int J Environ Res Public Health [Internet]. 2009 [cited 2022 Nov 16];6:209. Available from: /pmc/articles/PMC2672326/
15. Hanioka T, Ojima M, Tanaka K, Matsuo K, Sato F, Tanaka H. Causal assessment of smoking and tooth loss: A systematic review of observational studies. BMC Public Health [Internet]. 2011 [cited 2022 Nov 16];11:1-10. Available from:
https://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-11-221
16. Leite FRM, Nascimento GG, Scheutz F, López R. Effect of Smoking on Periodontitis: A Systematic Review and Meta-regression. Am J Prev Med. 2018;54:831-41.
17. West R. Tobacco smoking: Health impact, prevalence, correlates and interventions. Psychol Health. 2017;32:1018-36.
18. Dongcheol L, Hyun Wuk K, Yu II K. Association between Cigarette Smoking and Serum Gamma-Glutamyl Transferase Level. Int J Respir Pulm Med. 2019;6.
19. Pedersen KM, Çolak Y, Ellervik C, Hasselbalch HC, Bojesen SE, Nordestgaard BG. Smoking and Increased White and Red Blood Cells. Arterioscler Thromb Vasc Biol [Internet]. 2019 [cited 2022 Nov 16];39:965-77. Available from: https://www.ahajournals.org/doi/abs/10.1161/ATVBAHA.118.312338
20. Sunyer J, Muñoz A, Peng Y, Margolick J, Chmiel JS, Oishi J, et al. Longitudinal Relation between Smoking and White Blood Cells. Am J Epidemiol [Internet]. 1996 [cited 2022 Nov 16];144:734-41. Available from: https://academic.oup.com/aje/article/144/8/734/78814 22. Malenica M, Prnjavorac B, Bego T, Dujic T, Semiz S, Skrbo S, et al. Effect of Cigarette Smoking on Haematological Parameters in Healthy Population. Medical Archives [Internet]. 2017 [cited 2022 Nov 16];71:132. Available from: /pmc/articles/PMC5511531/ 23. Fluharty M, Taylor AE, Grabski M, Munafò MR. The Association of Cigarette Smoking With Depression and Anxiety: A Systematic Review. Nicotine \& Tobacco Research [Internet]. 2017 [cited 2022 Nov 16];19:3. Available from: /pmc/articles/PMC5157710/
21. Yuan S, Yao H, Larsson SC. Associations of cigarette smoking with psychiatric disorders: evidence from a two-sample Mendelian randomization study. Sci Rep [Internet]. 2020 [cited 2022 Nov 16];10. Available from: /pmc/articles/PMC7427799/
22. Taylor GMJ, Treur J. An application of the stress-diathesis model: A review about the association between smoking tobacco, smoking cessation, and mental health. SSRN [Internet]. 2022; Available from: https://ssrn.com/abstract=4162942
23. Reed ZE, Wootton RE, Munafò MR. Using Mendelian randomization to explore the gateway hypothesis: possible causal effects of smoking initiation and alcohol consumption on substance use outcomes. Addiction [Internet]. 2022 [cited 2022 Nov 16];117:741-50. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/add. 15673
24. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203-9.
25. Mitchell R, Hemani G, Dudding T, Corbin L, Harrison S, Paternoster L. UK Biobank Genetic Data: MRC-IEU Quality Control, Version 2. 2019;
26. Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust relationship inference in genome-wide association studies. Bioinformatics. 2010;26:2867-73.
27. Loh PR, Tucker G, Bulik-Sullivan BK, Vilhjálmsson BJ, Finucane HK, Salem RM, et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat Genet [Internet]. 2015;47:284-90. Available from: http://www.nature.com/articles/ng. 3190 31. Kibinge NK, Relton CL, Gaunt TR, Richardson TG. Characterizing the Causal Pathway for Genetic Variants Associated with Neurological Phenotypes Using Human Brain-Derived Proteome Data. Am J Hum Genet. 2020;106:885-92.
28. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.

[^0]: * Participants were asked these questions as part of the Assessment Centre Environment (ACE) touch screen questionnaire. Participants could also answer "do not know" or "prefer not to answer" or similar for most questions, but these data were removed for analyses.
 ${ }^{1}$ Variables that were inverse normal rank transformed
 ${ }^{2}$ Opposite to any adverse effect on fertility in phenome-wide association study

[^1]: ${ }^{1}$ Variables that were inverse normal rank transformed. FOM = focus on mothers, FOF = focus on fathers, $\mathrm{T} 1=$ time point 1, T2 = time point 2

[^2]: ${ }^{1}$ Variables that were inverse normal rank transformed. $\mathrm{T} 1=$ time point $1, \mathrm{~T} 2=$ time point 2

[^3]: ${ }^{1}$ Lifetime smoking score is standardised, CPD=cigarettes per day, COPD=chronic obstructive pulmonary disease

[^4]: CPD=cigarettes per day. T1 = time point 1, T2 = time point 2

