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Abstract 16 

 17 

The circulating proteome offers insights into the biological pathways that underlie disease. Here, we 18 

test relationships between 1,468 Olink protein levels and the incidence of 23 age-related diseases and 19 

mortality, over 16 years of electronic health linkage in the UK Biobank (N=47,600). We report 3,201 20 

associations between 961 protein levels and 21 incident outcomes, identifying proteomic indicators of 21 

multiple morbidities. Next, protein-based scores (ProteinScores) are developed using penalised Cox 22 

regression. When applied to test sets, six ProteinScores improve Area Under the Curve (AUC) 23 

estimates for the 10-year onset of incident outcomes beyond age, sex and a comprehensive set of 24 24 

lifestyle factors, clinically-relevant biomarkers and physical measures. Furthermore, the ProteinScore 25 

for type 2 diabetes outperformed a polygenic risk score, a metabolomic score and HbA1c – a clinical 26 

marker used to monitor and diagnose type 2 diabetes. These data characterise early proteomic 27 

contributions to major age-related disease and demonstrate the value of the plasma proteome for risk 28 

stratification. 29 

Introduction 30 

 31 

Omics signatures are increasingly used to hone clinical trial design 1, while also opening up avenues 32 

for more personalised healthcare 2,3. Of all the omics layers that can be measured from a single blood 33 

test, proteomics arguably holds the most intrinsic predictive potential, given that proteins are the 34 

intermediary effectors of health maintenance and disease and are often the targets of pharmacological 35 

interventions. Several studies have shown that circulating proteins can discriminate disease cases from 36 

controls and delineate risk of incident diagnoses 4–11. Screening the proteome against incident 37 

outcomes has been shown to identify sets of individual protein markers – some of which have then 38 

been causally-implicated in disease 8,12–14. This demonstrates the value protein data have in informing 39 

therapeutic targeting and reflecting the internal processes occurring in the body that precede formal 40 

diagnoses. 41 
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While singular protein markers offer insight into the mediators of disease, harnessing multiple proteins 42 

simultaneously can be expected to generate predictive tools with even greater clinical utility 15. 43 

Although cross-sectional case-control studies can inform on the molecular signatures of diagnosed 44 

diseases, longitudinal approaches that assess early biomarker signatures relating to time-to-disease are 45 

more suited to risk stratification. Clinically-available risk profiling scores that rely on lifestyle and 46 

health information such as QRISK and ASSIGN typically profile 10-year onset risk of disease 16,17. 47 

Scores such as these stratify where individuals lie on the disease-risk continuum for a population, but 48 

do not include omics features. While proteomic and metabolomics scores have been developed for 49 

certain time-to-event outcomes in isolation 9,18–22, these predictors are rarely developed and tested at 50 

scale. Proteomic predictors have been trained using the SomaScan platform for diabetes and 51 

cardiovascular event risk and multiple lifestyle and health indicators 23. Metabolomics data have been 52 

recently shown to facilitate incident disease prediction in the UK Biobank 24. However, no study has 53 

systematically assessed proteomic score generation for multiple incident morbidities.  54 

Here, we quantify how large-scale proteomic sampling can identify candidate protein targets and 55 

facilitate the prediction of incident outcomes in the UK Biobank (Fig. 1). We use 1,468 Olink plasma 56 

protein measurements in 47,600 individuals available as part of the UK Biobank Pharma Proteomics 57 

Project (UKB-PPP) 25. First, Cox proportional hazards (PH) models are used to characterise 58 

associations between each protein and 23 incident diseases, ascertained via data linkage to primary 59 

and secondary care records and mortality over 16 years of follow-up. Next, the dataset is randomly 60 

split into training and testing subsets to train proteomic scores (ProteinScores) and assess their utility 61 

for modelling either 5-year or 10-year onset of the 19 incident outcomes that had a minimum of 150 62 

cases available. Type 2 diabetes is taken forward to explore the potential value that ProteinScores may 63 

offer, beyond clinical biomarkers, polygenic risk scores (PRS) and metabolomics measures. 64 

 65 
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66 
Figure 1. Proteomic assessment of 23 incident diseases and mortality in the UK Biobank 67 

(N=47,600). First, individual Cox proportional hazards (PH) models were used to profile relationships 68 

between baseline protein analytes and incident diseases or death, over a maximum of 16 years of 69 

electronic health linkage. Associations that had P < 3.1x10-6 (Bonferroni-adjusted threshold) in 70 

minimally-adjusted (age and sex) and lifestyle-adjusted models were retained. Proteins associated with 71 

multiple morbidities were identified and associations were explored by year of case follow-up. Next, 72 

proteomic predictors (ProteinScores) were trained using Cox PH elastic net regression for 19 of the 73 

incident outcomes with a minimum of 150 cases. All ProteinScores were developed for 10-year onset 74 

of disease, except endometriosis, cystitis and amyotrophic lateral sclerosis that had case distributions 75 

that were better-suited to 5-year assessment (80% of cases diagnosed by year 8 of follow-up). Of fifty 76 

ProteinScore iterations with randomly sampled train and test populations, the ProteinScore with 77 

median improvement in AUC beyond a minimally-adjusted model was selected. Improvements in 78 

AUC and PRAUC due to adding the ProteinScores into models with increasingly complex covariate 79 

structures were quantified. The type 2 diabetes trait was taken forward as a case study to explore the 80 

potential value ProteinScores may offer, in the context of HbA1c (a clinically used biomarker), a 81 

polygenic risk score (PRS) and integration of metabolomics features for scoring. 82 

 83 
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Results 85 

The UKB-PPP sample 86 

Of the 1,472 protein levels available in the UKB-PPP sample, 1,463 are unique, due to CXCL8, IL6 87 

and TNF having multiple analyte measurements (annotation information provided in Supplementary 88 

Table 1). After quality control and removal of outliers, measurements for 52,744 individuals were 89 

available. In this study, a total sample of 47,600 individuals with 1,468 protein analytes was used, after 90 

exclusions for related individuals and missing data (Supplementary Fig. 1, Methods). The 1,468 91 

analyte measurements correspond to 1,459 unique protein levels. Demographic and phenotypic 92 

information is presented in Supplementary Table 2. Principal components analyses indicated that the 93 

first 678 components explained a cumulative variance of 90% in the protein levels (Supplementary 94 

Table 3).  95 

Protein associations with incident outcomes 96 

First, differential plasma protein levels that were associated with the onset of 23 diseases (that included 97 

leading causes of disability, morbidity and reductions in healthy life expectancy) 26–28 were identified, 98 

up to 16 years prior to formal diagnoses. Time-to-mortality was also considered as an outcome (4,446 99 

individuals had died during the 16-year follow-up period). A total of 35,232 associations were tested 100 

(1,468 analytes and 24 outcomes). The number of cases and controls available in Cox PH models, with 101 

mean time-to-onset for cases is presented for each outcome in Table 1. 102 

In minimally-adjusted (age- or age- and sex-adjusted) models, there were 5,252 associations between 103 

1,209 unique protein analytes and 23 outcomes (Bonferroni-adjusted P threshold = 3.1x10-6) 104 

(Supplementary Table 4). Further adjustment for health and lifestyle risk factors (body mass index 105 

(BMI), alcohol consumption, social deprivation, education status, smoking status and physical 106 

activity) led to the attenuation of 2,051 of the minimally-adjusted associations, with 3,201 that 107 
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remained (Bonferroni-adjusted P threshold = 3.1x10-6) (Fig. 2a, Supplementary Table 5). The 3,201 108 

associations involved 961 unique protein analytes and 21 outcomes, ranging from one association for 109 

amyotrophic lateral sclerosis, cystitis and multiple sclerosis, to 646 and 664 for mortality and liver 110 

disease, respectively. No associations were found for brain/CNS cancer, major depression and 111 

schizophrenia. Supplementary Table 6 summarises the 961 unique protein analytes selected across 112 

the 3,201 associations by disease and by direction of effect (i.e. 303 associations with Hazard Ratio 113 

(HR) < 1 and 2,898 associations with HR > 1).  114 

Proteomic signatures of multimorbidity 115 

Fifty-four proteins had associations with eight or more incident morbidities (Fig. 2b); in all instances, 116 

elevated levels of the proteins were associated with the increased incidence of disease or death (i.e. 117 

HR > 1). Of the 54 proteins, GDF15 had the largest number of associations (11 incident outcomes), 118 

followed by IL6 and PLAUR (10 incident outcomes). In logistic regression models run between the 119 

1,468 protein analytes and multimorbidity status (a binary trait defined as individuals that had three or 120 

more diagnoses of the 23 diseases over the 16-year follow-up period), 720 associations had P < 3.1x10-121 

6 (Supplementary Table 7). All 54 proteins that were associated with eight or more morbidities in the 122 

Cox PH associations were present in the multimorbidity status associations. GDF15, TNFRSF10B, 123 

WFDC2 and PLAUR had both the largest absolute effect sizes and smallest p-values, which was 124 

consistent with their position as top markers of multimorbidity in the individual Cox PH associations 125 

presented in Fig. 2b. 126 

Cox PH sensitivity analyses 127 

Understanding whether protein-disease associations are stronger in the near-term of case follow-up is 128 

of interest when considering the clinical use-case for biomarkers. Modelling near-term versus long-129 

term case follow-up is also important to understand the confidence that can be ascribed to associations 130 

failing the Cox PH assumption (Schoenfeld residual test P < 0.05). Therefore, a sensitivity analyses 131 
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that modelled each of the 35,232 Cox PH associations over increasing yearly case follow-up intervals 132 

was performed (Supplementary Table 8). Of the 3,201 protein-disease associations identified over 133 

the maximum 16-year follow-up, 2,915 and 1,957 of these associations remained (P < 3.1x10-6, the 134 

Bonferroni-adjusted threshold) when restricting cases up to 10-year and 5-year onset, respectively 135 

(Supplementary Table 9). Of the 684 failures in the local (protein) Cox PH assumption observed in 136 

the 16-year follow-up analyses, 665 and 410 were observed in the 10-year and 5-year onset analyses. 137 

Relatively minor deviations in magnitude of effect size were observed for these associations by year 138 

of follow-up. These results can be examined visually for each of the 35,232 protein-disease 139 

associations tested in a Shiny app available at: https://protein-disease-ukb.optima-health.technology 140 

[Username: ukb_diseases, Password: UKBshinyapp]. The app also includes an interactive network for 141 

the 3,201 associations that can be manipulated to view multiple proteins and examine their associations 142 

with multiple incident morbidities. 143 

A sensitivity analysis was performed to explore the potential impact of medication use on individual 144 

Cox PH associations. A subset of the population with proteomics measures had medication information 145 

available (35,073 of 47,600 individuals). Ischaemic heart disease was chosen, as a range of blood-146 

pressure lowering medications are used to delay or prevent this disease and these medications were 147 

amongst the most commonly-reported in the population (14,074 of 35,073 individuals reported use of 148 

either statins, antihyperintensives, diuretics, beta blockers, calcium channel blockers 149 

or renin-angiotensin system actors at baseline (Supplementary Table 10). In the subset of 35,073 150 

individuals, 370 of the original 403 associations (adjusting for age, sex and six lifestyle factors) for 151 

ischaemic heart disease had P < 3.1x10-6 (Supplementary Table 11). With further adjustment for 152 

blood-pressure lowering medication use, 36 of these associations were attenuated, while 344 had P < 153 

3.1x10-6. None of the attenuated associations were present in the top 100 marker associations (ranked 154 

by P-value, or effect size). Adjustment for blood-pressure lowering medication tended to reduce the 155 
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magnitude of the effect estimate generally across the 370 associations (Supplementary Fig.2), but 156 

hazard ratios were nonetheless highly correlated (Pearson correlation r = 0.99).  157 
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Incident diagnosis 
Incident cases  

(N) 
Controls (N) 

Mean years to incident 

case diagnosis (sd) 

Schizophrenia 54 47449 6.5 (3.4) 

Brain/CNS cancer 82 47507 5.5 (2.8) 

Multiple sclerosis 96 47165 5.6 (3.2) 

Major depression 111 47229 4.2 (3.1) 

Systemic lupus erythematosus 134 47096 5.1 (2.6) 

Endometriosis a 157 24768 4.8 (3.3) 

Vascular dementia b 195 33907 8.1 (3) 

Gynaecological cancer a 256 25185 5 (3) 

Amyotrophic lateral sclerosis 264 47269 5.4 (2.7) 

Inflammatory bowel disease 275 46727 5.9 (3.3) 

Lung cancer 403 47158 5.9 (3.2) 

Liver disease 432 47104 7 (3.3) 

Alzheimer’s dementia b 446 33642 7.8 (2.8) 

Colorectal cancer 508 46890 5.8 (3.1) 

Cystitis a 531 24160 4.1 (3) 

Rheumatoid arthritis 593 46310 6.8 (3.2) 

Parkinson’s disease 659 46802 5.4 (3.2) 

Ischaemic stroke 765 46657 6.8 (3.4) 

Breast cancer a 772 24086 5.2 (3.1) 

Prostate cancer a 1001 20628 5.7 (3.1) 

Chronic obstructive pulmonary disease  1998 44948 6.3 (3.4) 

Type 2 diabetes 2822 43370 6 (3.3) 

Ischaemic heart disease 3338 41341 6.3 (3.4) 

Death 4445 43155 7.9 (3.5) 

 158 

Table 1. The 24 incident outcomes profiled over a maximum of 16 years of follow-up in the UK 159 

Biobank (N=47,600). Counts for incident cases and controls are provided, with mean years to 160 

diagnosis for incident cases. These data were used in individual Cox PH models to identify protein 161 

levels that were associated with incident outcomes. a Sex-stratified traits. b Alzheimer’s and vascular 162 

dementia were restricted to individuals aged 65 years or above at the time of diagnosis for cases, or at 163 

the time or censoring for controls. CNS: central nervous system.   164 
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 165 

166 
Figure 2. Individual protein associations with incident outcomes in the UK Biobank (N=47,600). 167 

a, Number of associations between protein analytes and time-to-onset for 20 outcomes that had P < 168 

3.1x10-6 (Bonferroni-adjusted threshold) in both basic and fully-adjusted Cox PH models. There were 169 

3,201 associations in total involving 961 protein analytes. b, Hazard ratios (HR) per a one SD increase 170 

in levels of the transformed protein analytes are plotted for the 54 protein analytes that were associated 171 

with eight or more outcomes in the individual Cox PH models. Each association is represented by a 172 

rectangle. Cox PH models were adjusted for age, sex and six lifestyle factors (BMI, alcohol 173 

consumption, social deprivation, educational attainment, smoking status and physical activity). Every 174 

association identified for these proteins had HR > 1 (red) and associations are shaded based on HR 175 

effect size (darkest colouration indicating larger magnitude of effect). The largest HR shown is for the 176 

association between GDF15 levels and liver disease (HR =3.67). COPD: chronic obstructive 177 

pulmonary disease.  178 

  179 
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ProteinScore development 180 

ProteinScores for 19 diseases that had a minimum of 150 incident cases available were trained using 181 

Cox PH elastic net regression with cross-validation in a training subset. Cumulative time-to-onset 182 

distributions for cases (Supplementary Figs. 3-4) indicated that amyotrophic lateral sclerosis, 183 

endometriosis and cystitis were better-suited to 5-year onset assessments (80% of cases for these traits 184 

were diagnosed by year 8 of follow-up). All remaining ProteinScores were tested in the context of 10-185 

year onset. Performance was quantified via incremental Cox PH models in the test subset, to obtain 186 

onset probabilities for calculation of AUC and Precision Recall AUC (PRAUC) estimates (see 187 

Methods). This approach was repeated with fifty randomly sampled train and test subset combinations 188 

for each outcome to assess stability of ProteinScore performance given varied combinations of 189 

individuals in train and test sets.  ProteinScores with the median difference in AUC beyond a 190 

minimally-adjusted model were selected for each outcome (Supplementary Table 12). Summaries of 191 

protein features selected for the 19 ProteinScores are available in Supplementary Tables 13-14, 192 

ranging from five features selected for endometriosis to 143 features selected for type 2 diabetes 193 

(Fig.3a). 194 

ProteinScore evaluation 195 

Selected ProteinScores were evaluated alongside various combinations of covariates to quantify the 196 

additional improvements in AUC and PRAUC achieved by each score beyond these factors (Fig.3b). 197 

Three increasingly complex sets of covariates were considered: 1) age and sex (where traits had not 198 

been sex-stratified), 2) further adjustment for a core set of six lifestyle and health covariates (BMI, 199 

alcohol consumption, social deprivation, educational attainment, smoking status and physical activity) 200 

and 3) further adjustment for an extended set of 18 biochemistry and physical attributes that are 201 

measurable in clinical settings. Performance when using only the ProteinScores was also considered, 202 

to ascertain whether protein information can streamline the signal offered by the set of 26 possible 203 
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covariates. As these covariates are sourced from a range of physical measures, clinically-used 204 

biomarker assays and self-reporting, they represent a labour and time intensive resource that is rarely 205 

collated for every individual in clinical practice. A tabular summary of both the AUC and PRAUC 206 

statistics for all covariate combinations tested, with ROC P value comparisons comparing models 207 

with/out the addition of the ProteinScore are available in Supplementary Table 15. Strikingly, the 208 

singular inclusion of the ProteinScores had either equal or higher performance (as measured by AUC 209 

and PRAUC) than the maximal set of 26 covariates in eight instances (type 2 diabetes, liver disease, 210 

COPD, amyotrophic lateral sclerosis, death, Alzheimer’s dementia, ischaemic heart disease and 211 

Parkinson’s disease). The difference in AUC resulting from the addition of the ProteinScores into the 212 

three models with increasingly complex sets of covariates are summarised in Fig.4a.  213 

In tests for significant differences between receiver operating characteristic (ROC) curves for the three 214 

models with increasingly complex sets of covariates with/out the ProteinScores, 10 of the 215 

ProteinScores (type 2 diabetes, liver disease, COPD, lung cancer, death, ischaemic stroke, Alzheimer’s 216 

and vascular dementias, ischaemic heart disease and Parkinson’s disease) had ROC P < 0.0026 (the 217 

Bonferroni-adjusted P-value threshold) beyond minimally-adjusted covariates. When adding 218 

ProteinScores to models that included both minimally-adjusted and lifestyle covariates, performance 219 

of lung cancer and vascular dementia ProteinScores was attenuated, leaving eight ProteinScores that 220 

had P < 0.0026 in ROC model comparison tests (type 2 diabetes, liver disease, COPD, death, ischaemic 221 

stroke, Alzheimer’s dementia, ischaemic heart disease and Parkinson’s disease). When assessing 222 

models that further adjusted for an additional 18 clinically-measurable covariates, six of the eight 223 

ProteinScores had P < 0.0026 in model comparisons with/out the ProteinScore, whereas liver disease 224 

and ischaemic stroke were attenuated by the extended covariate set. Fig.4b shows the breakdown of 225 

incremental model performance (by AUC) for each of these six ProteinScores: type 2 diabetes, COPD, 226 

death, Alzheimer’s dementia, ischaemic heart disease and Parkinson’s disease. Models that included 227 

only the ProteinScore are also presented with corresponding AUC performance. 228 

229 
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230 
Figure 3. Feature selection and covariate structure for ProteinScore assessment. a, The total 231 

number of contributing protein analyte features selected for each ProteinScore. Incident outcomes that 232 

were assessed for 5-year onset (light blue) and 10-year onset (dark blue) are delineated. b, The 233 

increasingly comprehensive sets of covariates that were modelled in incremental Cox PH models to 234 

evaluate the value added by the ProteinScores beyond these covariates. These included an additional 235 

six lifestyle factors and 18 clinically-relevant biochemistry and physical measures. When modelled 236 

alongside age and sex, 26 possible covariates were therefore used in maximally-adjusted models. 237 

 238 

 239 

 240 

  241 
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242 
Figure 4. Predictive value offered by ProteinScores for incident outcomes in the UK Biobank. a, 243 

Differences in AUC resulting from the addition of the 19 ProteinScores to models with increasingly 244 

extensive sets of covariates: 1) minimally-adjusted (age and sex where traits were not sex-stratified), 245 

2) minimally-adjusted with the addition of a core set of six lifestyle covariates and 3) further 246 

adjustment for an extended set of 18 covariates that are measured in clinical settings (physical and 247 

biochemical measures). AUC plots are ordered by increasing AUC differences in the minimally-248 

adjusted models. All ProteinScore performance statistics shown correspond to 10-year onset, except 249 

those for ALS, endometriosis and cystitis that were assessed for 5-year onset. b, A breakdown of the 250 

AUC values achieved by different combinations of risk factors with/out the ProteinScores are shown 251 

for the six incident outcomes whereby the ProteinScore contributed statistically significant beyond a 252 

model including all 24 minimal, lifestyle and extended set variables (ROC P < 0.0026, the Bonferroni-253 

adjusted threshold). All six of the best-performing ProteinScores shown were assessed for 10-year 254 

onset of disease. ALS: amyotrophic lateral sclerosis. COPD: chronic obstructive pulmonary disease.  255 

 256 

  257 
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Exploration of the type 2 diabetes ProteinScore 258 

To highlight the value that the best-performing ProteinScores may offer, type 2 diabetes was chosen 259 

as a case study for further exploration. Performance of the ProteinScore was assessed in the context of 260 

the current clinically-used biomarker for type 2 diabetes – glycated haemoglobin (HbA1c), in addition 261 

the predictive signals offered by other omics sources (genetic and metabolomic).  262 

Given that the ProteinScore for type 2 diabetes added value beyond the extended set of covariates that 263 

included the well-validated biomarker HbA1c, the performance of HbA1c and the ProteinScore was 264 

directly compared in the test sample. As polygenic risk scores are also widely used to quantify the 265 

genetic risk contribution to disease, a polygenic risk score (PRS) for type 2 diabetes was also evaluated. 266 

In the type 2 diabetes test set, 1,105 cases (with mean time to onset 5.4 years [SD 3.0]) and 3,264 267 

controls had all three measures available. HbA1c averages long-term glucose over two to three months 268 

and is widely employed clinically to monitor pre-clinical diabetes risk (42-47mmol/mol) and diagnose 269 

the disease (with two repeated measurements >48mmol/mol) 29,30.  The rank-base inverse normal 270 

transformed levels of the ProteinScore and HbA1c had Pearson r=0.50 and discriminated incident case 271 

and control distributions similarly (Fig. 5a). HbA1c levels increased across ProteinScore risk deciles, 272 

with individuals in the upper deciles of the ProteinScore falling within the clinical HbA1c screening 273 

threshold (42-47mmol/mol) for diabetes (Fig. 5b). In incremental Cox PH models for the 10-year onset 274 

of type 2 diabetes (Fig. 5c) the singular use of the ProteinScore (AUC = 0.89) outperformed both 275 

HbA1c (AUC = 0.85) and the PRS (AUC = 0.68). In ROC model comparisons between HbA1c alone 276 

and HbA1c with the ProteinScore added, a statistically significant improvement due to the 277 

ProteinScore was identified (ROC P < 0.0026). When the PRS was added to this model (including 278 

HbA1c and the ProteinScore), AUC remained unchanged (0.91), whereas PRAUC improved (from 279 

0.79 to 0.80) and a significant difference due to the addition of the PRS was identified (ROC P < 280 
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0.0026). Supplementary Table 16 summarises the results from these analyses, which are also 281 

presented in Fig.5c. 282 

In a preliminary assessment, we aimed to 1) directly compare scores generated with either 283 

metabolomics-only or protein-only features and 2) assess the value added through the consideration of 284 

proteomic and metabolomic features simultaneously. The original type 2 diabetes ProteinScore 285 

populations were subset to training and testing sets that had proteomic and metabolomic measures 286 

available (N casestrain = 377, N controlstrain = 1,002, N casestest = 309, N controlstest = 898). Performance 287 

of a MetaboScore (considering metabolite features), a ProteinScore (considering protein features) and 288 

a MetaboProteinScore (combining metabolomic proteomic features) is summarised for the restricted 289 

population in Fig. 5d. The ProteinScore (AUC = 0.87) outperformed the MetaboScore (AUC = 0.85) 290 

The MetaboProteinScore (that considered both omics measures as potential features) had an AUC of 291 

0.88, whereas modelling the independently-trained MetaboScore and ProteinScore together resulted 292 

in an AUC of 0.89. The maximal set of 26 possible covariates (see Fig.3b) had an AUC of 0.88, which 293 

rose to a maximal AUC of 0.90 upon the inclusion of the MetaboScore and ProteinScore. The selected 294 

features and weights for each score (MetaboScore = 19 features, ProteinScore = 52 features and 295 

MetaboProteinScore = 37 features) are available in Supplementary Table 17, with full AUC and 296 

PRAUC statistics available in Supplementary Table 18. 297 
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298 
Figure 5. Exploration of the type 2 diabetes ProteinScore. a, Case (red) and control (blue) 299 

discrimination for HbA1c and the type 2 diabetes ProteinScore in the test set (1,105 cases, 3,264 300 

controls, mean time to case onset 5.4 years [SD 3.0]). Both markers were rank-based inverse 301 

normalised and scaled to have a mean of 0 and standard deviation of 1. b, HbA1c (mmol/mol) per 302 

decile of the type 2 diabetes ProteinScore in the test set. The shaded rectangle indicates the type 2 303 

diabetes HbA1c screening threshold (42-47 mmol/mol). c, ROC curves for incremental 10-year onset 304 

models incorporating HbA1c, the type 2 diabetes ProteinScore and a polygenic risk score (PRS) for 305 

type 2 diabetes individually and concurrently. d, ROC curves for 10-year onset scores developed in 306 

the subsets of the type 2 diabetes train and test populations that had metabolomics and proteomics 307 

available (N casestrain = 377, N controlstrain = 1,002, N casestest = 309, N controlstest = 898). A 308 

Metabolomic score (MetaboScore), ProteinScore, and a joint omics score (MetaboProteinScore) are 309 

modelled individually and concurrently and benchmarked against 26 covariates (age, sex, six lifestyle 310 

factors and the extended set of 18 clinically-relevant covariates. 311 
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Discussion 312 

Identifying individuals at risk of a future disease event or death is a priority for prevention-based 313 

medicine during ageing 31. We report 3,201 associations between 961 circulating proteins and 21 314 

incident outcomes, identifying proteins indicative of multimorbidity. ProteinScores for incident type 315 

2 diabetes, COPD, ischaemic heart disease, Alzheimer’s dementia, Parkinson’s disease and death 316 

demonstrated value beyond a comprehensive set of 26 covariates, offering comparable performance 317 

and minimising the need for extensive recording of lifestyle factors, physical measures and biomarker 318 

assays. Exploration of the type 2 diabetes ProteinScore suggested that while protein information 319 

captures much of the predictive signal, augmenting traditional risk factors with proteomic, 320 

metabolomic and genetic data types may further hone risk classification.  321 

The breadth of electronic health data linkage and protein data available in UK Biobank provides a 322 

unique resource for profiling early molecular signatures of age-related disease. This study 323 

demonstrates that for certain diseases, subsets of relatively few circulating proteins can add predictive 324 

value, up to a decade prior to formal diagnoses. As available cases increase, it is likely that the 325 

performance of ProteinScores will be enhanced. Nonetheless, for the best-performing six 326 

ProteinScores, modelling the ProteinScore in isolation resulted in equal or higher AUCs than models 327 

with extensive covariate adjustments. This suggests that ProteinScores for such traits absorb a large 328 

proportion – if not all – of the signal and may offer a streamlined set of metrics to proxy for an 329 

individual’s health status. This often-enhanced predictive quality of the scores presents an exciting 330 

opportunity to reconsider how best to formulate (and maintain) modern clinical prediction models.  331 

This is an important consideration given that self-reported measures are known to be variable in 332 

accuracy and are often misreported 32. Additionally, while much interest is currently devoted to 333 

employing PRS for disease prediction, they neglect environmental components of disease risk and may 334 

therefore be limited in the context of complex age-related disease 33,34. Our ProteinScore for type 2 335 
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diabetes outperformed the PRS, which is likely due to proteins representing an interface that captures 336 

genetic, environmental and lifestyle contributions to disease risk. The improvement in AUC resulting 337 

from concurrent modelling of HbA1c and the type 2 diabetes ProteinScore suggests that the latter may 338 

provide additional predictive value. Similarly, in a subset of the population with metabolomics 339 

measures, the type 2 diabetes ProteinScore outperformed the MetaboScore, with an additive signal 340 

achieved by modelling both scores. While diabetes is typically considered to be a metabolic disease, 341 

the breadth of coverage (249 metabolites, versus 1,468 protein measures) may limit the metabolic score 342 

performance. ProteinScores for multiple diseases within the same individuals may facilitate an 343 

improved understanding of multimorbidity. For example, if an individual falls within the top 5% of 344 

the ProteinScore distributions for type 2 diabetes and Alzheimer’s dementia, this information may 345 

enhance personalised intervention plans. The ProteinScore performance for Alzheimer’s dementia was 346 

also largely unchanged upon addition of additional covariates. As therapeutic interventions for 347 

neurodegenerative diseases have greater efficacy when implemented earlier in the disease pathogenesis 348 

35–37, the ProteinScore for Alzheimer’s dementia may hone trial recruitment. 349 

The method for ProteinScore generation selects proteins that, in combination, are predictive of 350 

outcomes, but these do not necessarily represent the most probable drivers of disease. It is likely that 351 

a subset of the 3,201 individual protein-disease associations we report represent direct mediators of 352 

disease. The goal of this work was to identify early markers that associate with incident disease and 353 

the markers we identify are therefore useful for risk stratification purposes (even if they are indicative 354 

of underlying morbidities at baseline, or do not represent causal mediators). To delineate the markers 355 

that may be direct mediators of disease, we encourage further exploration of through techniques such 356 

as Mendelian randomisation and colocalisation. Similarly, further modelling that takes into account 357 

multimorbidity trajectories over the lifecourse would also aid in understanding the role of prevalent 358 

diseases and medication use on future disease risk. The largest number of associations and strongest 359 

effect sizes (by magnitude of the absolute log of the hazard ratio) were observed for liver disease in 360 
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individual Cox PH analyses. For neurological diseases and cancers, where fewer associations were 361 

identified, it is possible that the blood is less able to capture the full spectrum of disease pathogenesis, 362 

which may be localised to distal tissues. Similarly, the panel of proteins available may reflect certain 363 

diseases better than others. 364 

 All 54 proteins that were associated with eight or more morbidities had associations with hazard ratios 365 

greater than 1, indicating that elevated levels of these proteins may serve as early warning signatures 366 

of disease onset. Elevated growth differentiation factor 15 (GDF15), Interleukin-6 (IL6) and 367 

plasminogen activator urokinase receptor (PLAUR) had the largest number of associations with 368 

incident diseases. This result is in concordance with previous screening of the circulating proteome 369 

against multimorbidity and mortality, which identified GDF15 as the top marker of future 370 

multimorbidity from 1,301 plasma proteins tested 38,39. Further evidence supporting GDF15 as a 371 

marker of multiple outcomes including heart disease, type 2 diabetes, stroke, dementia and death has 372 

been reported 39–45. IL6 mediates chronic, low-grade inflammation, is a key biomarker of ageing 46 and 373 

anti-IL6 therapeutics have been developed for a range of inflammation-associated diseases 47,48. While 374 

less-extensive evidence exists supporting PLAUR as a biomarker of multiple morbidities, it was 375 

associated with incident cancer, cardiovascular disease, diabetes and mortality in previous Cox PH 376 

analyses 49. Similarly, increased levels of neurofilament light (NEFL) were associated with higher 377 

incidence of multiple neurological traits (Parkinson’s disease, Alzheimer’s dementia, multiple 378 

sclerosis, amyotrophic lateral sclerosis and ischaemic stroke). These diseases are hallmarked by neuron 379 

degradation and NEFL may therefore be a consequential marker that is released into the blood upon 380 

breakdown of synapses 50,51 . NEFL was also associated with liver disease, COPD and ischaemic heart 381 

disease, which may reflect the presence of underlying synaptic and neuronal dysfunction, or the 382 

presence of comorbidities in individuals with these diagnoses. 383 
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Across the 16-year window of follow-up in individual Cox PH models, a subset of associations 384 

violated the Cox PH assumption at the local (protein) level. Our Shiny app  385 

https://protein-disease-ukb.optima-health.technology [Username: ukb_diseases, Password: 386 

UKBshinyapp] provides visualisations for sensitivity analyses run across cases over successive years 387 

of case follow up, allowing for interrogation of the stability of individual protein-disease relationships. 388 

This information on near-term versus long-term case follow-up is often of importance to clinicians and 389 

patients for behaviour change and intervention strategies.  The Shiny app also visualises the 3,201 390 

fully-adjusted associations in a network view, allowing users to view overlapping signatures between 391 

multiple proteins and the onset of multiple diseases. 392 

This study has several limitations. First, a subset of 6,385 individuals in the UKB-PPP sample were 393 

selected by consortium members for enrichment of certain diagnoses and this non-random selection 394 

can introduce biases. Second, as UK Biobank currently represents the largest population with 395 

comprehensive Olink proteomics and electronic health data linkage, it was not possible to source an 396 

external test set for the ProteinScores. Third, variation in protein analyte levels across measurement 397 

technologies has been reported 52. Results should therefore be corroborated across panels in future. 398 

Fourth, the protein measured were recorded in relative scale, rather than absolute quantification. This 399 

limits direct translation of the ProteinScores for direct prediction in new populations. However, the 400 

early markers of incident disease that are identified may still replicate when datasets become available 401 

to facilitate replication analyses. Fifth, the UK Biobank population is largely comprised of individuals 402 

with European ancestry and a restricted age range (40-71 years, with a mean of 57 years); future studies 403 

in equally well-characterized cohorts will be needed to assess how well ProteinScores translate to other 404 

populations and ethnicities. Sixth, non-linear trajectories of blood-based protein signatures are known 405 

to exist across the life course in the context of ageing 53.  These factors should be considered in disease-406 

specific analyses in future. Seventh, death was treated as a censoring event; competing risks and multi-407 

state modelling approaches may be used for disease-protein associations in future to resolve the impact 408 
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of death as a competing risk for disease onset. Finally, although a comprehensive set of major age-409 

related morbidities were studied, many diseases were not included in this work. Continued linkage and 410 

proteomic sampling will expand the applications of ProteinScores to further diseases. 411 

In conclusion, this study quantified circulating proteome signatures that are reflective of multiple 412 

individual disease states across mid-to-later life. ProteinScores for the incidence of six incident 413 

outcomes significantly improved AUCs for 10-year onset beyond 26 demographic, lifestyle and 414 

clinically-relevant covariates. The type 2 diabetes ProteinScore offered additional value beyond 415 

HbA1c, a PRS and a metabolomic score. A total of 3,123 individual protein-disease associations were 416 

also profiled across the 16-year follow-up period, identifying candidate targets for multimorbidity 417 

prevention. These data suggest that proteomic features are powerful tools for honing risk stratification. 418 

Methods 419 

The UK Biobank sample population 420 

UK Biobank (UKB) is a population-based cohort of around 500,000 individuals aged between 40-69 421 

years that were recruited between 2006 and 2010. Genome-wide genotyping, exome sequencing, 422 

electronic health record linkage, whole-body magnetic resonance imaging, blood and urine biomarkers 423 

and physical and anthropometric measurements are available. More information regarding the full 424 

measurements can be found at: https://biobank.ndph.ox.ac.uk/showcase/. The UK Biobank Pharma 425 

Proteomics Project (UKB-PPP) is a precompetitive consortium of 13 biopharmaceutical companies 426 

funding the generation of blood-based proteomic data from UKB volunteer samples.  427 

Proteomics in the UK Biobank 428 

The UKB-PPP sample includes 54,306 UKB participants and 1,474 protein analytes measured across 429 

four Olink panels (Cardiometabolic, Inflammation, Neurology and Oncology: annotation information 430 

provided in Supplementary Table 1) 25. A randomised subset of 46,673 individuals were selected 431 
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from baseline UKB, with 6,385 individuals selected by the UKB-PPP consortium members and 1,268 432 

individuals included that participated in a COVID-19 study. The randomised samples have been shown 433 

to be highly representative of the wider UKB population, whereas the consortium-selected individuals 434 

were enriched for 122 diseases 25. Details on sample selection for UKB-PPP, in addition to processing 435 

and quality control information for the Olink assay are provided in Supplementary Information. Of 436 

54,309 individuals that had protein data measured, there were 52,744 that were available after quality 437 

control exclusions with 1,474 Olink protein analytes measured (annotations in Supplementary Table 438 

1) 25. The sample is predominantly white/European (93%), but also has individuals with black/black 439 

British, Asian/Asian British, Chinese, mixed, other and missing ethnic backgrounds (7%). 440 

Supplementary Fig. 1 summarises the processing steps applied to this dataset to derive a complete 441 

set of measurements for use. Briefly, of 107,161 related pairs of individuals (calculated through kinship 442 

coefficients > 0 across the full UKB cohort), 1,276 pairs were present in the 52,744 individuals. After 443 

exclusion of 104 individuals in multiple related pairs, in addition to one individual randomly selected 444 

from each of the remaining pairs, there were 51,562 individuals. A further 3,962 individuals were 445 

excluded due to having >10% missing protein measurements. Four proteins that had >10% missing 446 

measurements (CTSS.P25774.OID21056.v1 and NPM1.P06748.OID20961.v1 from the neurology 447 

panel, PCOLCE.Q15113.OID20384.v1 from the cardiometabolic panel and 448 

TACSTD2.P09758.OID21447.v1 from the oncology panel) were then excluded. The remaining 1% of 449 

missing protein measurements were imputed by K-nearest neighbour (k=10) imputation using the 450 

impute R package (Version 1.60.0) 54. The final dataset consisted of 47,600 individuals and 1,468 451 

protein analytes. Assessments of protein batch, study centre and genetic principal components 452 

suggested that these factors had minimal effects on protein levels (lowest correlation between protein 453 

levels and residuals of 0.94) (Supplementary Information). Therefore, protein levels were not 454 

adjusted for these factors. 455 
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Phenotypes in the UK Biobank  456 

Demographic and phenotypic information for the 47,600 individuals with complete protein data for 457 

1,468 analytes are available in Supplementary Table 2. Lifestyle covariates included: BMI (weight 458 

in kilograms divided by height in metres squared), alcohol intake frequency (1 = Daily or almost daily, 459 

2 = Three-Four times a week, 3 = Once or twice a week, 4 = One-Three times a month, 5 = Special 460 

occasions only, 6 = Never), the Townsend index of deprivation (higher score representing greater 461 

levels of deprivation) and smoking status (0 = Never, 1 = Previous, 2 = Current), physical activity (0 462 

= between 0-2 days/week of moderate physical activity, 1 = between 3-4 days/week of moderate 463 

physical activity, 2 = between 5-7 days/week of moderate physical activity) and education status (1 = 464 

college/university educated, 0 = all other education). Of the 47,600 individuals with complete protein 465 

data, there were 52, 52, 236, 56 and 59 missing entries for alcohol, smoking, BMI, physical activity 466 

and deprivation, respectively. No imputation of missing data was performed for the inclusion of these 467 

variables in individual Cox PH analyses. There were an additional 2,556, 188 and 59 individuals that 468 

answered ‘prefer not to answer’ and were excluded from physical activity, smoking and alcohol 469 

variables, respectively.  470 

Electronic health data linkage in the UK Biobank 471 

Electronic health linkage to NHS records was used to collate incident diagnoses. Death information 472 

was sourced from the death registry data available through the UK Biobank. Cancer outcomes were 473 

sourced from the cancer registry (ICD codes), whereas non-cancer diseases were sourced from first 474 

occurrence traits available in the UK Biobank. The first occurrence traits integrate GP (read2/3), ICD 475 

(9/10) with self-report and ICD codes present on the death registry to identify the earliest date of 476 

diagnoses. These data sources are linked to 3-digit ICD trait codes. A summary of codes used to extract 477 

each of the outcomes included in the present study are detailed in Supplementary Information. The 478 

following 23 diseases were included: liver disease, systemic lupus erythematosus, type 2 diabetes, 479 
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amyotrophic lateral sclerosis, Alzheimer’s dementia, endometriosis, chronic obstructive pulmonary 480 

disease (COPD), inflammatory bowel disease, rheumatoid arthritis, ischaemic stroke, Parkinson’s 481 

disease, vascular dementia, ischaemic heart disease, major depressive disorder, schizophrenia, 482 

multiple sclerosis, cystitis and lung, prostate, breast, gynaecological, brain/CNS and colorectal 483 

cancers. These represent a selection of leading age-related causes of morbidity, mortality and 484 

disability. In all analyses involving sex-specific diseases, the population was stratified to males or 485 

females and sex was not included as a covariate in incremental Cox PH assessments. Traits that were 486 

stratified included gynaecological cancer, breast cancer, endometriosis and cystitis (all female-487 

stratified) and prostate cancer (male-stratified).  488 

Incident disease calculation in the UK Biobank 489 

Dates of diagnoses for each disease were ascertained through electronic health linkage. Using the date 490 

of baseline appointment, time-to-first-onset for each diagnoses in years was calculated. Time-to-onset 491 

for controls was defined as the time from baseline to censoring date (Supplementary Information). 492 

Death was treated as a censoring event. Time-to-censor date was calculated for the controls that 493 

remained alive, whereas if a control individual had died during follow-up time-to-death was taken 494 

forward for Cox PH models.  Any cases that were prevalent at baseline were excluded. Alzheimer’s 495 

and vascular dementias were restricted to age at onset (or censoring) of 65 years or older in all analyses. 496 

Sex-specific traits were stratified across all analyses. 497 

Individual Cox proportional hazards analyses 498 

Cox proportional hazards models were run between each protein and each incident disease using the 499 

‘survival’ package (Version 3.4-0) 55 in R (Version 4.2.0) 56. Protein levels were rank-based inverse 500 

normalised and scaled to have a mean of 0 and standard deviation of 1 prior to analyses. Minimally-501 

adjusted Cox PH models for sex-stratified traits included age at baseline as a covariate, whereas the 502 

remaining models adjusted for age and sex. Lifestyle-adjusted models further controlled for education 503 
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status, BMI, smoking status, social deprivation rank, physical activity and alcohol intake frequency. A 504 

Bonferroni-adjusted P-value threshold for multiple testing based on the 678 components that explained 505 

90% of the cumulative variance in the 1,468 protein analyte levels (Supplementary Table 3) and 24 506 

outcomes tested was applied across all Cox PH models (P < 0.05/(678 x 24) = 3.1x10-6 used as the 507 

Bonferroni-adjusted P-value threshold). Proportional hazards assumptions were checked through 508 

examination of protein-level Schoenfeld residuals.  509 

A sensitivity analysis was performed for each of the 35,232 fully-adjusted associations tested, 510 

restricting cases to successive years of follow-up. These sensitivity analyses were visualised using the 511 

Shiny package (Version 1.7.3) 57 in R. The magnitude of change in hazard ratios for individual 512 

associations can be examined by year of case follow-up to assess consistency of effect sizes. Whether 513 

marker associations are stronger or weaker when restricting to cases occurring in the near-term (1-5 514 

years of follow-up) can also be examined. A network visualisation was also created within the Shiny 515 

interface to highlight the fully-adjusted associations that had P < 3.1x10-6 using networkD3 (Version 516 

3.0.4) 58 and igraph (Version 1.3.5) 59 R packages. To further verify the markers of multiple morbidities 517 

identified in individual Cox PH analyses, logistic regression models were also run between each of the 518 

1,468 protein analyte levels and multimorbidity status (defined as 1,454 individuals that received 3 or 519 

more of the 23 disease diagnoses over the 16-year follow-up period). A sensitivity analyses was also 520 

run for ischaemic heart disease associations with/out adjustment for blood-pressure lowering 521 

medication reported at baseline in a subset of individuals (35,073 of 47,600) that had medication 522 

information available. Supplementary Information provides details on the classification of 523 

medications as per the anatomical therapeutic chemical (ATC) classification categories. A total of 524 

14,074 individuals (of the 35,073) indicated they were taking one or more of the above blood-pressure 525 

lowering medications at baseline. This was treated as a binary variable and the comparison with/out 526 

adjustment for this variable was performed for ischaemic heart disease Cox PH associations in the 527 
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subset of 35,073 individuals. Adjustments for age, sex and six lifestyle factors were included in both 528 

sets of analyses, with 2,456 cases, 27,468 controls.  529 

ProteinScore development  530 

MethylPipeR 60 is an R package with accompanying user interface that we have previously developed 531 

for systematic and reproducible development of incident disease predictors. Using MethylPipeR, 532 

ProteinScores that considered 1,468 Olink protein levels were trained using Cox PH elastic net 533 

regression via the R package Glmnet (Version 4.1-4) 61. Penalised regression minimises overfitting by 534 

the use of a regularisation penalty and the best shrinkage parameter (λ) was chosen by cross-fold 535 

validation with alpha fixed to 0.5. Of the 24 outcomes featured in the individual Cox PH analyses, 19 536 

that had a minimum case count of 150 were selected for ProteinScore development. The chosen 537 

strategy for ProteinScore development included training ProteinScores for each trait across fifty 538 

randomised iterations (with each iteration including a different combination of cases and controls in 539 

train and test sets). This strategy quantifies the stability of the ProteinScore performance, which is 540 

critical given that unobserved confounders that may be enriched during random selection of individuals 541 

from the wider population. The ProteinScore training strategy is summarised in Supplementary Fig. 542 

5. Briefly, 50 iterations of each ProteinScore were performed that randomised sample selection by 50 543 

randomly sampled seeds (values between 1 and 5000). For each iteration, cases and controls were 544 

randomly split into 50% groups for training and testing. From the 50% training control population, a 545 

subset of controls were then randomly sampled to give a case:control ratio of 1:3 in order to balance 546 

the datasets. For traits with over 1000 cases in training samples 10 folds were used. For traits with 547 

between 500 and 1000 cases in training, five folds were used. Three folds were used when there were 548 

fewer than 500 cases in the training sample. Protein levels were rank-based inverse normalised and 549 

scaled to have a mean of 0 and standard deviation of 1 in the training set. The linear combination of 550 

weighting coefficients for selected protein features from cross-validation within the folds of the 551 
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training set were then used to generate a ProteinScore for each individual in the test samples. Of the 552 

50 training iterations tested, models that had no features selected were documented (Supplementary 553 

Table 12).  554 

Assessment of ProteinScore performance 555 

Cumulative time-to-onset distributions for cases (Supplementary Figs. 3-4) indicated that 556 

amyotrophic lateral sclerosis, endometriosis and cystitis were better-suited to 5-year onset assessments 557 

in the test sample (80% of cases were diagnosed at 8-years post-baseline). All remaining ProteinScores 558 

were tested in the context of 10-year onset (80% of cases were not diagnosed 8-years post-baseline). 559 

Across the 50 ProteinScore iterations for each trait, 50% of cases and controls that were not randomly 560 

selected for training were reserved for testing. For a visualisation of the test set sampling and 561 

assessment strategy, see Supplementary Fig. 5. In the test set, cases that had time-to-event up to or 562 

including the 5-year or 10-year thresholds used for onset prediction were selected, while cases beyond 563 

the threshold were placed with the control population, which was then randomly sampled in a 1:3 ratio. 564 

Weighting coefficients for features selected during ProteinScore training were used to project scores 565 

into the test sample. Incremental Cox PH models were run in the test sample to obtain cumulative 566 

baseline hazard and onset probabilities, which were used to derive AUC and PRAUC estimates. The 567 

test set sampling strategy ensured that while the majority of cases occurred up to the onset threshold, 568 

there were a small proportion (~3%) of cases included in Cox PH models with onset times after the 569 

10- or 5-year threshold, to simulate a real-world scenario for risk stratification. If cases fell beyond the 570 

5-year or 10-year threshold for onset, they were recoded as controls in the AUC calculation. 571 

Cumulative baseline hazard probabilities were calculated using the Breslow estimator available in the 572 

‘gbm’ R package (Version 2.1.8.1) 62. Survival probabilities were then generated through taking the 573 

exponential of the negative cumulative baseline hazard at 5 or 10 years to the power of the Cox PH 574 

prediction probabilities. ProteinScore onset probabilities were calculated as one minus these survival 575 
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probabilities. AUC, PRAUC and ROC statistics were extracted for the survival probabilities using the 576 

calibration function from the ‘caret’ R package (Version 6.0-94) 63 and the evalmod function from the 577 

‘MLmetrics’ R package (Version 1.1.1) 64.  578 

ProteinScores that yielded the median incremental difference to the AUC of a minimally-adjusted 579 

model (adjusting for age- or age- and sex) were selected from the fifty possible ProteinScores for each 580 

trait. If no features were selected during training, models were weighted as performance of 0 in the 581 

median model selection. In some instances, features were selected during training and incremental Cox 582 

PH models were run successfully, but the random sampling of the test set did not include a case with 583 

time-to-event at or after the 5-year or 10-year onset threshold. Therefore, these models were excluded 584 

as cumulative baseline hazard distributions did not reach the onset threshold and could not be extracted 585 

for AUC and PRAUC calculations. The number of models, with minimum and maximum performance 586 

was documented (Supplementary Table 12). Taking this approach mitigated against the presence of 587 

extreme case:control profiles driving ProteinScore performance and minimised the possibility of bias 588 

being introduced by selecting train and test samples based on matching for specific population 589 

characteristics. 590 

Selected ProteinScores for each trait were then evaluated to quantify the additional value (in terms of 591 

increases in AUC and PRAUC) that resulted from the addition of ProteinScores. Minimally-adjusted 592 

models included age and sex (if traits were not sex-stratified). Lifestyle-adjusted models then further 593 

accounted for common lifestyle covariates (education status, BMI, smoking status, social deprivation 594 

rank, physical activity and alcohol intake frequency). Finally, models included covariates from the 595 

minimally-adjusted, lifestyle-adjusted and an extended set of clinically-measured variables were then 596 

assessed (see Fig.3b). In each case, the difference in AUC and PRAUC resulting from the addition of 597 

the ProteinScore was reported. ROC P-value tests were used to ascertain whether the improvements 598 

offered by selected ProteinScores for each outcome were statistically significant, beyond each set of 599 
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increasingly saturated covariates. A Bonferroni-adjusted P-value threshold for ROC P tests was used 600 

based on the 19 ProteinScore traits (P < 0.05/19 = 0.0026). The ‘precrec’R  package (Version 0.12.9) 601 

65 was used to generate ROC and Precision-Recall curves for each ProteinScore. A series of models 602 

that included only the ProteinScore were also considered for each outcome, to quantify whether protein 603 

data alone could absorb much of the predictive performance achieved by the covariates. 604 

A set of 26 possible covariates used across the minimally-adjusted, lifestyle-adjusted and extended set 605 

analyses were assessed for missingness, imputed (where missingness was < 10%) and utilised in 606 

ProteinScore evaluation as a maximal, extended set of covariates. Further details of variable selection 607 

and preparation are supplied in Supplementary Information. Additional covariates (considered in 608 

addition to age, sex and six lifestyle traits that were used in individual Cox PH analyses) included: 609 

leukocyte counts (10^9 cells/Litre), erythrocyte counts (10^12 cells/Litre), haemoglobin concentration 610 

(grams/decilitre), mean corpuscular volume (femtolitres), platelet count (10^9 cells/Litre), cystatin C 611 

(mg/L), cholesterol (mmol/L), alanine aminotransferase (U/L), creatinine (umol/L), urea (mmol/L), 612 

triglycerides (mmol/L), LDL (mmol/L), CRP (mg/L), aspartate aminotransferase (U/L), glycated 613 

haemoglobin – HbA1c – (mmol/mol), albumin (g/L), glucose (mmol/L) and systolic blood pressure 614 

(mmHg). After covariate processing steps were complete, a population of 43,437 individuals was 615 

available with complete information for ProteinScore testing. Phenotypic summaries of the additional 616 

covariates for this population are sumamrised in Supplementary Table 2. 617 

Further assessment of the type 2 diabetes ProteinScore 618 

Glycated Haemoglobin (HbA1c) is a blood-based measure of chronic glycemia that is highly predictive 619 

of type 2 diabetes events and is recommended as a test of choice for the monitoring and diagnosis of 620 

type 2 diabetes 29,30. HbA1c (mmol/mol) measurements (fieldID 30750) and the type 2 diabetes 621 

polygenic risk score (PRS) available in UK Biobank (fieldID 26285) were extracted. A contour plot 622 

showing both variables grouped by those who went on to be diagnosed with type 2 diabetes over a 10-623 
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year period was created. HbA1c levels were also plotted against ProteinScore risk deciles. HbA1c and 624 

the ProteinScore levels were rank-based inverse normalised and assessed individually and concurrently 625 

in incremental models for 10-year onset of type 2 diabetes in the ProteinScore test set. A Pearson 626 

correlation coefficient (r) between the transformed HbA1c and ProteinScore levels was calculated. 627 

The 10-year incremental Cox PH models were used to derive onset probabilities for calculation of 628 

AUCs and PRAUCs after adding the ProteinScore to models adjusting for HbA1c and the type 2 629 

diabetes PRS. Model comparisons were used (test of the difference in ROC curves) to quantify the 630 

value added by the ProteinScore beyond the PRS and HbA1c. 631 

Metabolomics measures were available in 12,050 of the 47,600 individuals with proteomic data 632 

included in the study (see Supplementary Information for details on data preparation). Type 2 633 

diabetes was chosen as a case study for further exploration, as it is typically well-reflected by 634 

circulating levels of both protein and metabolomic markers and is considered as a metabolic disease. 635 

The train and test sets used to develop the main type 2 diabetes ProteinScore were subset to those with 636 

metabolomics available (N casestrain = 377, N controlstrain = 1,002, N casestest = 309, N controlstest = 637 

898). Scores that considered only metabolomic features (MetaboScore), only proteomic features 638 

(ProteinScore) and joint omics features (MetaboProteinScore) were trained and tested in these 639 

populations. There were 249 metabolite levels and 1,468 protein levels considered as potentially-640 

informative features. Performance was evaluated for 10-year onset of type 2 diabetes in the test sample, 641 

modelling the scores individually, concurrently and benchmarking them against the maximal set of 26 642 

possible covariates (see Fig.3). 643 
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Data availability 647 

Datasets generated in this study are made available in Supplementary Tables. Proteomics data is 648 

available in the UK Biobank under Category 1838 649 

at: https://biobank.ndph.ox.ac.uk/ukb/label.cgi?id=1838. 650 

Code availability 651 

Code is available with open access at the following Github repository:  652 

https://github.com/DanniGadd/Blood_protein_levels_and_incident_disease_UK_Biobank  653 
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