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Abstract 29 

Introduction: Welding fumes contain a mixture of metals and are an epitype for 30 
environmental metal-related neurotoxicity. Past studies of welders focused largely on basal ganglia 31 
regions and their association with parkinsonism. This study evaluated medial temporal lobe (MTL) 32 
structures that play a key role in Alzheimer's disease-like pathology. 33 

Methods: Exposure history and whole blood metal levels were obtained from subjects 34 
with/without a history of welding (42 welders; 31 controls). MTL regions of interest (ROI) 35 
(hippocampus, entorhinal and parahippocampal cortices) were assessed by morphologic (volume 36 
and cortical thickness) and diffusion tensor imaging [mean (MD), axial (AD), radial diffusivity 37 
(RD) and fractional anisotropy (FA)] metrics. Cognition was evaluated using standard 38 
neuropsychological tests.  39 

Results: Welders had higher blood levels of Cu, Fe, K, Mn, Pb, Se, and Zn (p’s<0.026) 40 
than controls. Welders had higher MD, AD, and RD in all MTL ROIs (p’s<0.040) and lower FA 41 
in the entorhinal and parahippocampal cortices (p’s<0.033) without significant morphologic 42 
differences. Welders also exhibited lower performance on processing/psychomotor speed, 43 
executive, and visuospatial function domains (p’s<0.046). Greater welding years predicted lower 44 
parahippocampal FA (p=0.011), where greater short-term welding intensity (E90) predicted worse 45 
Symbol coding digit scores (p=0.019). Blood Mn and Cu levels demonstrated robust relationships 46 
with entorhinal diffusivity (p’s<0.009) and story recall performance (p=0.003), respectively, 47 
throughout correlation, semi-parametric regression, and Bayesian kernel machine regression 48 
analyses.  49 

Discussion: Welding fumes and related metal exposures are associated with MTL features 50 
of early Alzheimer’s disease. Given the ubiquitous nature of metal exposure, future studies are 51 
warranted and may have public health implications. 52 

  53 
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Introduction  54 

There is significant concern about health consequences of environmental exposure to toxic 55 
metals found in ambient air pollution including vehicle emissions, contaminated land, and 56 
occupation-related activities.1-4 Essential metals can be neurotoxic in high dosages,5,6 whereas non-57 
essential metals can be neurotoxic even with low exposures.7 Welding fumes contain a variety of 58 
both essential (e.g., Cu, Fe, Mn) and non-essential (e.g., Pb) metals that can cross the blood-brain 59 
barrier, accumulate in specific brain regions, and affect cellular functions.7-9 Thus, welders have 60 
been an epitype human population for translational research of environmental metal exposure-61 
related neurotoxicity.  62 

Triggered by the early report of neurobehavioral disorders in Mn miners,10 welding-related 63 
neurotoxicity studies had focused largely on Mn accumulation in the basal ganglia and its 64 
association with parkinsonism.11,12 Thus, there has been a great deal of research into Mn 65 
neurotoxicity using cellular and animal models.13-23 The clinical syndrome called manganism 66 
consists initially of reduced response speed, irritability, intellectual deficits, mood changes, and 67 
compulsive behaviors that progresses into more prominent, irreversible neurological dysfunction 68 
upon protracted exposure.24-28 Because of some similarities to Parkinson’s disease, these 69 
syndromes have been termed Mn-induced parkinsonism, although they are distinct clinically from 70 
sporadic Parkinson’s disease.29-32 71 

Alzheimer’s disease is the most common age-related neurodegenerative disorder, 72 
comprising about 50-70% of dementia cases.33 It is characterized pathologically by accumulations 73 
of β-amyloid plaques and tau tangles in the brain, with the most prominent neuronal damage noted 74 
in the hippocampus.34,35 Although the major and early disease-related behavioral deficits entail 75 
learning/memory problems,36 the disease also affects executive, attentional, and language 76 
functions37 and progresses relentlessly. The clinical diagnosis of dementia is based on a substantial 77 
reduction from previous performance levels in more than one cognitive domain that sufficiently 78 
interferes with independent daily living.38 At the time of clinical diagnosis of Alzheimer’s disease, 79 
hippocampal atrophy (representing significant neuronal loss) is apparent.39 The recent approval of 80 
drugs like lecanemab may somewhat slow progression,40,41 but they do not mitigate the widely 81 
recognized need to identify addressable causes of dementia.  82 

Preclinical animal studies have shown that metal exposure (e.g., Cu, Mn, and Fe) in brain 83 
can lead to Alzheimer’s disease-like Aβ production and cognitive impairment.42-47 84 
Epidemiological studies also reported higher plasma metal levels (e.g., Al, Cd, Cu, Fe, Hg, Pb, 85 
and Se) in Alzheimer’s disease and related disorder (ADRD) populations.48-53 Despite the basic 86 
science and epidemiological data, linking chronic life-long metal exposure to age-related 87 
neurodegenerative diseases in humans, individually or in subgroups, is challenging. This is due to 88 
the difficulty of ascertaining exposure accurately (both distant or cumulative), the long-latency of 89 
the diseases, and the fact that many early disease-related changes may be subtle and resemble 90 
normal aging.  91 

These challenges motivated research that used brain MRI to gauge Alzheimer’s disease-92 
related early changes. For example, T1-weighted MR imaging has been utilized to estimate cortical 93 
thinning or volume loss that may reflect neuronal death.54,55 Recent studies suggested distributed 94 
brain structures (e.g., fornix, cingulum, entorhinal and parahippocampal cortices, posterior 95 
cingulate, and precuneus) may exhibit changes early in the Alzheimer’s disease process.56-58 96 
Among these brain regions, medial temporal lobe (MTL) memory areas that include the 97 
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hippocampus and entorhinal and parahippocampal cortices may play a key role in Alzheimer’s 98 
disease-related cognitive processes, particularly learning/memory.59,60 Previous MRI studies 99 
reported MTL morphometric (e.g., atrophy, shape) and diffusivity (reflecting microstructural 100 
integrity) changes in early-stage Alzheimer’s disease or at-risk populations (e.g., MCI; mild 101 
cognitive impairment) who subsequently converted to Alzheimer’s disease.61-63 Some reported 102 
entorhinal, rather than hippocampal, areas may better predict future Alzheimer’s disease 103 
conversion.63,64  104 

Previously, we and others have reported hippocampal differences in metabolite ratios, 105 
water molecule diffusivity, and volume65-68 and learning/memory performance-decline in welders 106 
or other subjects with metal exposures.69-72 We sought to understand better how welding fume 107 
exposure affects MTL structural metrics and cognition. Our overall hypothesis was that welding 108 
fume exposure is associated with MTL structural and cognitive changes as seen in early 109 
Alzheimer’s disease. We tested three specific hypotheses: H1) Welders will have higher medial 110 
(MD), axial (AD), radial (RD) diffusivity, and lower fractional anisotropy (FA) values in MTL 111 
structures than controls; H2) Welders will have lower performance on processing/psychomotor 112 
speed, executive, and learning/memory tasks than controls; and H3) In welders, MTL diffusion 113 
features will link welding fume exposure to neurobehavioral measures. We also explored the 114 
effects of mixed-metal exposures in welding fumes on MTL structural and cognitive metrics using 115 
whole blood metal levels as surrogate markers.  116 

Methods 117 

Study subjects 118 

Eighty subjects were recruited from central Pennsylvania (USA). Welders were defined as 119 
subjects who had welded at any point in their lifetime, whereas controls had no such history. 120 
Enrollment occurred between 2011-2013 and overlapped such that participants were recruited 121 
equally over this timeframe. All subjects answered negatively for past Parkinson’s disease 122 
diagnosis or other neurological disorders and had Movement Disorder Society Unified Parkinson’s 123 
disease Rating Scale73 motor exam sub scores (UPDRS-III) < 15. Global cognition was measured 124 
by the Montreal Cognitive Assessment battery (MoCA). All subjects were male with a Mini-125 
Mental Status Examination (MMSE) scores >24 or MoCA >19. Age and years of education also 126 
were acquired. Forty-two welders and 31 controls completed the MRI acquisition with good 127 
quality images (five welders and two controls were excluded). Written informed consent was 128 
obtained in accordance with the Declaration of Helsinki and approved by the Penn State Hershey 129 
Internal Review Board.  130 

Ascertainment of welding fume exposure and metal blood levels  131 

We utilized established exposure questions65 to estimate the following metrics: 1) recent 132 
exposure in the 90 days prior to the study visit including hours welding [HrsW90 = (weeks worked) 133 
* (h/week) * (fraction of time worked related directly to welding) and E90 (an estimate of the 134 
cumulative exposure to welding fumes)], and 2) lifetime exposure including welding years 135 
[(YrsW=years spent welding during the subjects’ life) and ELT (an estimate of cumulative 136 
exposure to welding fumes over the individual’s life)].65  137 

We obtained whole blood the morning of the study (ca. 0800 h), the same day that cognitive 138 
tests and brain MRI were obtained. After digestion, the samples were analyzed for trace minerals 139 
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including Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Pb, Se, Sr, and Zn using the Thermo (Bremen, Germany) 140 
Element 2 SF-ICP-MS equipped with a concentric glass nebulizer and Peltier-cooled glass 141 
cyclonic spray chamber. Bulk mineral concentrations were determined by ICP-OES (Optical 142 
Emission Spectrometry) analysis on the Thermo iCAP equipped with a polypropylene cyclonic 143 
spray chamber at the University of North Carolina, Chapel Hill, NC, USA.65  144 

Neuropsychological tests (NPTs) and scores 145 

Six neurobehavioral domains were examined: (1) processing/psychomotor speed; (2) 146 
executive function; (3) language; (4) learning/memory; (5) visuospatial processing; and (6) 147 
attention/working memory. Subtests from the Repeatable Battery for the Assessment of 148 
Neuropsychological Status (RBANS)74 were used to assess language, visuospatial processing, and 149 
learning and memory. Processing/psychomotor speed, executive function, and attention/working 150 
memory domains were evaluated using subtests from the Wechsler Adult Intelligence Scale- Third 151 
Edition (WAIS-III),75 Trail Making Tests (A and B),76 Stroop Test,77 Delis-Kaplan Executive 152 
Function System (D-KEFS),78 and Wechsler Memory Scale- Third Edition (WMS-III).79 Tests were 153 
administered by an experienced examiner. Specific domains and tests follow. 154 

Processing/psychomotor speed: During the Symbol Search subtest, subjects were 155 
presented with a set of symbols and asked to report whether the provided set contained a particular 156 
symbol. In the Stroop-Word test,80 color words (e.g., “RED,” “GREEN,” and “BLUE”) were 157 
presented randomly in black ink. Subjects were asked to read the words as quickly as possible. In 158 
the Stroop-Color test,80 each item was written as “XXXX” printed either in red, green, or blue ink. 159 
Subjects were asked to name the colors as quickly as possible. During the Trail Making-A test, 160 
subjects were required to connect numbers from 1 to 25 consecutively on a worksheet as quickly 161 
as possible. 162 

Executive function: In the Symbol-Digit Coding subtest, subjects performed a timed task 163 
to match symbols to designated numbers. During the Stroop-Color-Word subtest, the words “RED,” 164 
“GREEN,” and “BLUE” were printed in non-corresponding colors (e.g., the word “RED” printed 165 
in green ink). Subjects were asked to name the ink color of the printed words. In the Trail Making-166 
B, subjects were required to connect numbers (from 1 to 13) and letters (from A to L) consecutively 167 
in an alternating sequence (e.g., 1-A-2-B etc.). During the Phonemic Fluency subtest from D-KEFS, 168 
subjects generated words beginning with a particular letter (e.g., “F”) within one minute.  169 

Language: In the Picture Naming test, subjects were asked to name 10 familiar objects. 170 
During the Semantic Fluency test, subjects generated as many words within a restricted category 171 
(fruits/vegetables or zoo animals) as possible within one minute. 172 

Learning/memory: In the List Learning test, a non-organized list of 10 words was 173 
presented orally and subjects immediately recalled the word list. Four learning trials were 174 
performed where subjects were encouraged to recall the words in any order. During the Delayed 175 
List Recall test, subjects recalled the same word list after ca. 20-min delay. For the Immediate 176 
Story Recall test, subjects were presented with a short prose passage and immediately reproduced 177 
the story they heard. In the Delayed Story Recall test, subjects recalled the story after ca. 20-min 178 
delay. For the Delayed Figure Recall test, subjects reproduced a figure after a ca. 20-min delay. 179 

Visuospatial processing: This was evaluated with Line Orientation and Figure Copy 180 
subtests from the RBANS. In the Line Orientation test, subjects were presented with a pair of angled 181 
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lines and asked to match them to two numbered lines on the display. During the Figure Copy 182 
subtest, subjects copied a complex figure. 183 

Attention/working memory: In the Digit Span test, subjects orally were presented with a 184 
series of increasing digits, and asked to recite the digits in the presented or reversed order. In the 185 
Spatial Span test, a three-dimensional board with ten blocks was used and a series of increasing 186 
blocks were presented in a specific, predetermined pattern. Subjects were asked to reproduce the 187 
same pattern by pointing to the blocks in forward or reverse order. In the Letter-Number 188 
Sequencing test, subjects orally were presented with mixed sequences of digits and letters and 189 
asked to reproduce the digits in ascending order, followed by the letters in alphabetical order.  190 

Individual raw neuropsychological test scores were converted to age-adjusted norm scores 191 
(e.g., T-scores or scaled scores). In order to unify these scores, the normative scores then were 192 
converted to z-scores [(individual norm-based scores – mean norm score) / (standard deviation of 193 
the norm score)]. Z-scores for the Stroop (Stroop-Word, Stroop-Color, and Stroop-Color-Word), 194 
Trail Making- A and -B, Phonemic Fluency, Digit Span tests were calculated based on age- and 195 
education-adjusted normed scores.76,80-83 Phonemic Fluency subtest scores additionally were 196 
adjusted for race.82  197 

MRI acquisition and processing 198 

All MR images were acquired using a Siemens 3 T scanner (Magnetom Trio, Erlangen, 199 
Germany) with an 8-channel head coil. First, high-resolution T1-weighted (T1W) and T2-weighted 200 
(T2W) images were acquired for anatomical segmentation. For T1W images, MPRAGE sequences 201 
with Repetition Time (TR)/Echo Time (TE)=1540/2.3 ms, FoV/matrix=256x256/256x256 mm, 202 
slice thickness=1 mm, slice number=176 (with no gap), and voxel spacing 1x1x1 mm were used. 203 
T2W images were obtained using fast-spin-echo sequences with TR/TE=2500/316 ms and the 204 
same spatial resolution as the T1W images. For R1, TR/TE=15/1.45 ms, flip angles=4/25°, 205 
FoV/matrix=250x250/160x160 mm, slice thickness=1 mm, slice number=192, and voxel 206 
spacing=1.56x1.56x1 mm were used. R2* images were acquired using five TEs ranging from 8-207 
40 ms with an interval of 8 ms, TR=51 ms, flip angle=15°, FoV/matrix=230×230/256×256 mm, 208 
slice thickness=1.6 mm, and slice number=88 were used. For DTI, TR/TE=8300/82 ms, b 209 
value=1000 s/mm2, diffusion gradient directions=42 and 7 b=0 scans, 210 
FoV/matrix=256×256/128×128 mm, slice thickness=2 mm, and slice number=65 were used.  211 

Regions of Interest: Medial temporal brain regions that previously had reported Alzheimer 212 
disease-related early changes (hippocampus, and entorhinal and parahippocampal cortices; Figure 213 
1) were selected as regions-of-interest (ROIs). ROIs were defined for each subject using 214 
Freesurfer.84 Segmentation quality then was confirmed visually by a reviewer blinded to group 215 
assignment.  216 

Morphologic Metrics: Hippocampal volume segmentation and cortical parcellation for 217 
thickness calculation were performed with the Freesurfer image analysis suite 218 
(http://surfer.nmr.mgh.harvard.edu/). Processing included motion correction, removal of non-219 
brain tissue using a hybrid watershed/surface deformation procedure 85, and automated Talairach 220 
transformation. Deep gray matter volumetric structures including the hippocampus then were 221 
segmented and cortical gay matter structures including entorhinal and parahippocampal cortices 222 
were parcellated.86,87 223 
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Diffusion Metrics: DTI quality control and tensor reconstruction were performed using 224 
DTIPrep88 that first checks diffusion images for appropriate quality by calculating the inter-slice 225 
and inter-image intra-class correlation, and then corrects for the distortions induced by eddy 226 
currents and head motion. DTI maps then were estimated via weighted least squares. The DTI 227 
maps were co-registered onto T1/T2W images using ANTS, and the transformation matrix was 228 
applied inversely to bring the hippocampal region to the DTI maps. Four DTI indices [fractional 229 
anisotropy (FA), AD (axial diffusivity), RD (radial diffusivity), and MD (mean diffusivity)] were 230 
calculated out of three diffusivity eigenvalues (λ1, λ2, λ3).89 FA is a weighted average of pairwise 231 
differences of the three eigenvalues and may represent the degree of diffusion anisotropy. AD is 232 
the largest eigenvalue (λ1) and RD is an average of the remaining two eigenvalues, both of which 233 
may indicate the orientation of the diffusion. MD is an average of the three eigenvalues, providing 234 
the overall diffusion magnitude 89. 235 

Statistical analysis 236 

Group comparisons of demographic data were conducted using one-way analysis of 237 
variance (ANOVA). For group comparisons of exposure metrics and whole blood metal levels, 238 
multivariate analysis of variance (MANOVA) was used to control intercorrelations among 239 
dependent variables. Whole blood metal levels were log-transformed to attenuate the impact of 240 
potential extreme values. Group comparisons of neuropsychological and neuroimaging metrics 241 
were conducted using multivariate analysis of covariance (MANCOVA). Adjusted 242 
neuropsychological z-scores were used for the group analyses, with adjustment for education level 243 
if it was not adjusted individually. For cortical thickness and DTI measures, analyses included 244 
adjustment for age and education level. When comparing hippocampal volume, total intracranial 245 
volume (TIV) also was used as a covariate.  246 

Multiple statistical analyses were conducted to understand the relationship between 247 
exposure (welding fumes and related metals), MRI, and cognitive metrics. First, Spearman partial 248 
correlation analyses were used with adjustment for potential confounders. For the associations of 249 
neuropsychological/MRI metrics with exposure metrics, age and education level were used as 250 
covariates. For the associations of neurobehavioral/MRI metrics with individual blood metal levels, 251 
we adjusted for other blood metal levels in addition to age and education level. For the associations 252 
between neurobehavioral and MRI metrics, age and education level were used as covariates. 253 
Second, semi-parametric regression analyses were conducted using generalized additive models 254 
that utilized both linear and spline terms.90 For these analyses, neuropsychological and MRI 255 
metrics were treated as outcome variables, whereas exposure metrics and blood metal levels were 256 
treated as predictors with adjustment for age and education level. The linear or spline relationship 257 
between dose (exposure)-response (MRI/cognition) variables was determined based on loess plots. 258 
For neuropsychological scores, semi-parametric regression analyses additionally were conducted 259 
while treating MRI metrics as predictors with adjustments of age and education level. Third, 260 
Bayesian kernel machine regression (BKMR) analyses91 were conducted that flexibly model non-261 
linear and non-additive associations between predictors (multiple metals) and outcome variables 262 
(MRI/cognition) using a Markov Chain Monte Carlo (MCMC) algorithm while treating covariates-263 
MRI/cognition relationships as linear. These analyses allow testing of potential metal mixture 264 
effects and interactions among blood metal variables and identifying a certain metal exposure 265 
responsible for any significant exposure effect. Lastly, causal mediation analyses92-95 were 266 
conducted to test whether neurobehavioral metrics were linked to metal exposure measurements 267 
1) directly or 2) indirectly via medial temporal structural metrics, with age and education level 268 
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included as covariates (Figure 2). To test mediation effects of blood metal levels on 269 
neurobehavioral metrics, other blood metal levels additionally were used as covariates.  270 

A statistical significance level of α=0.05 was used. Correlation analyses of 271 
neuropsychological and MRI structural metrics with metal exposure measures were corrected for 272 
multiple comparisons using the Stepdown Bonferroni method96 to control the familywise error rate 273 
(FWER) at p=0.05. We report uncorrected raw p-values but indicate significant results with FWER-274 
correction. SAS 9.4 or R was used for statistical analyses. We conducted all association analyses 275 
in controls and welders separately since the range of some metal exposure metrics may differ 276 
substantially between controls and welders. Thus, associations of pooled data may be influenced 277 
by the control/welder difference rather than the exposure effect. We report the results from welders 278 
in the main text and included results from controls in the supplementary material. 279 

Results  280 

Demographics and exposure features of study participants 281 

Welders were older (p=0.048) and had lower education years (p<0.001) than controls. 282 
There was no significant group difference in UPDRS-III or MoCA scores (p=0.326 and p=0.797, 283 
respectively; Table 1a). Welders displayed significantly higher composite metrics of welding fume 284 
exposure (p’s<0.001) and whole blood metal levels of Cu, Fe, K, Mn, Pb, Se, and Zn (p’s<0.026; 285 
Table 1b).  286 

Group comparison of medial temporal MRI and neurobehavioral metrics 287 

There were no significant group differences in morphological metrics including 288 
hippocampal volume and cortical thickness in entorhinal and parahippocampal cortices with age 289 
and education level included as covariates (p’s> 0.117; Figure 3a-b). Welders displayed higher 290 
diffusivity (MD, AD, and RD) values in all ROIs (p’s<0.040; Figure 4a-c). FA values were 291 
significantly lower in entorhinal and parahippocampal cortices (p’s <0.033), but not in the 292 
hippocampus (p=0.501; Figure 4d).  293 

Welders showed overall lower cognitive performance than controls, but this did not reach 294 
statistical significance (p=0.063; Table 2). In domain-wise analyses, welders performed worse in 295 
processing/psychomotor speed, executive function, and visuospatial processing than controls (p’s 296 
<0.046), but similarly on language (p=0.487) and attention/working memory (p=0.126) tests. 297 
Welders also performed poorer on learning and memory tasks, but the difference did not reach 298 
statistical significance (p=0.055). For individual subtests, welders performed worse on Stroop-299 
Color and Stroop-Word processing/psychomotor speed and Symbol-Digit Coding, Phonemic 300 
Fluency, and Trail Making-B executive function tasks than controls. They also had lower scores 301 
on Complex Figure-Copy visuospatial processing and Delayed Story Recall learning/memory tasks 302 
(p’s <0.049). There were no significant group differences in the remaining individual subtests (p’s 303 
≥0.131).  304 

The relationship of MRI metrics and neuropsychological scores with exposures in welders 305 

Welding history as exposure of interest 306 

Diffusion MRI metrics: Spearman correlation analyses showed that lower 307 
parahippocampal FA correlated with greater YrsW (R=-0.347, p=0.026). DTI in other ROIs did 308 
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not correlate with any exposure metrics (p’s >0.134; Supplementary Table S1b). Subsequent semi-309 
parametric regression analysis confirmed that YrsW was a significant linear predictor of lower 310 
parahippocampal FA (ß=-0.0011, t=-2.69, p=0.011; Figure 5a). Higher ELT was a significant 311 
linear predictor of higher hippocampal MD and RD (ß’s>0.0227, t’s>2.08, p’s <0.045). 312 

Neuropsychological test scores: Spearman correlation analyses revealed that lower 313 
Symbol-Digit Coding scores correlated with higher E90 (R=-0.371, p=0.018; Supplementary Table 314 
2b), whereas lower Picture Naming scores were associated with lower HrsW (R=0.327, p=0.039). 315 
In addition, lower Judgement of Line Orientation scores were associated with higher YrsW (R=-316 
0.347, p=0.028). The remaining neuropsychological scores did not correlate with any other 317 
exposure metrics (p’s >0.057). Semi-parametric regression analysis (Table 3) revealed that higher 318 
E90 was a significant linear predictor of lower Symbol-Digit Coding scores (ß=-0.1605, t=-2.46, 319 
p=0.019; Figure 5b).  320 

Welding-related blood metal levels as exposures of interest 321 

Diffusion MRI metrics: Spearman correlation analyses showed that higher values of all 322 
entorhinal diffusivity metrics correlated with higher Mn (R’s >0.372, p’s <0.030, Supplementary 323 
Table S1b). Higher entorhinal FA correlated with higher Pb and Zn (R=0.369, p=0.029 for Pb and 324 
R=0.434, p=0.009 for Zn). None of the DTI metrics in other ROIs correlated with any blood metal 325 
levels (p’s>0.054). Subsequent semi-parametric regression analysis (Table 3b) revealed that higher 326 
Mn values were significant linear predictors of higher entorhinal diffusivity (ß’s>0.2230, t’s>3.01, 327 
p’s <0.009). Higher Pb significantly predicted higher hippocampal diffusivity (MD, AD, RD, 328 
ß’s>0.0374, t’s>2.43, p’s <0.035), whereas Fe level predicted lower hippocampal AD (ß=-0.3707, 329 
t=-2.51, p=0.031).  330 

Neuropsychological test scores: Spearman analyses revealed that lower Stroop-Word 331 
scores were associated with lower Zn (R=0.400, p=0.021, Supplementary Table S2b). Moreover, 332 
lower Symbol-Digit Coding scores correlated with lower Pb but higher Cu (R=0.436, p=0.011 for 333 
Pb and R=-0.430, p=0.013 for Cu). The lower Symbol-Digit Coding-blood Pb association remained 334 
significant after FWER correction. Lower List Learning scores correlated with lower Fe but higher 335 
Mn (R=0.387, p=0.026 for Fe and R=-0.347, p=0.048 for Mn). In addition, lower Immediate and 336 
Delayed Story Recall scores correlated with higher Cu (R’s <-0.366, p’s<0.036). Lower Delayed 337 
Figure Recall scores correlated with lower Fe (R=0.444, p=0.010) but higher Mn and Zn (R’s<-338 
0.386, p’s<0.026). The Delayed Figure Recall-blood Mn association remained significant after 339 
FWER correction. The remaining neuropsychological test scores did not correlate with any other 340 
blood metal levels (p’s >0.055). Semi-parametric regression analyses (Table 3b) revealed that 341 
higher Cu levels were a significant linear predictor of lower Symbol-Digit Coding scores (ß=-342 
3.1322, t=-2.66, p=0.017). Lower blood Fe and higher Mn were significant predictors of lower 343 
List Learning and Delayed List Recall scores (ß’s>6.5299, t’s>2.95, p’s<0.008 for Fe and ß’s<-344 
1.0018, t’s<-2.54, p’s<0.025 for Mn). Higher Cu was a significant linear predictor of lower 345 
Immediate and Delayed Story Recall scores (ß’s<-3.7790, t’s<-2.29, p’s<0.039; Figure 6d). Higher 346 
Mn levels were a significant predictor of lower Delayed Figure Recall scores (ß=-3.1825, t=-4.50, 347 
p<0.001).  348 

BKMR analyses of mixed metal effects: Higher Mn levels were significant predictors of 349 
higher entorhinal AD, MD, and RD values (p’s <0.05; Figure 6a-c). Higher Fe levels were a 350 
significant predictor of higher List Learning scores (p<0.05; Figure 6d). Higher Cu levels were a 351 
significant predictor of lower Delayed Story Recall scores (p<0.05; Figure 6e). None of the blood 352 
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metal levels were significant predictors of hippocampal DTI metrics. There were also neither 353 
significant metal mixture nor interaction effects among multiple blood metals on DTI and 354 
neurobehavioral metrics. 355 

The relationship between MTL diffusivity and neuropsychological test scores in welders 356 

Spearman correlation analyses: Higher entorhinal diffusivity correlated with lower 357 
Delayed List Recall scores (R’s<-0.383, p’s<0.018, Supplementary Table S3b). The entorhinal 358 
MD-Delayed List Recall association remained significant after FWER correction. Higher 359 
parahippocampal diffusivity correlated with lower Immediate Story Recall scores (R’s<-0.354, 360 
p’s<0.025), with the parahippocampal RD-Immediate Story Recall association remaining 361 
significant after FWER correction. Lower parahippocampal FA correlated with lower Symbol 362 
Search and Trail Making-A scores (R’s>0.429, p’s<0.006) that remained significant after FWER 363 
correction. Lower parahippocampal FA also correlated with lower Spatial Span (R=0.354, 364 
p=0.025). Higher hippocampal MD and RD correlated with lower Trail Making-A scores (R’s<-365 
0.305, p’s<0.025). Other DTI metrics did not correlate with any neurobehavioral scores 366 
(p’s>0.054).  367 

Semi-parametric regression analyses: Higher entorhinal diffusivities were significant 368 
linear predictors of Delayed List Recall scores (ß’s<-3.7692, t’s<-2.87, p’s <0.007; Figure 7a and 369 
Table 4b). Higher parahippocampal diffusivity metrics were significant linear predictors of 370 
Immediate Story Recall scores (ß’s<-5.7229, t’s<-2.64, p’s <0.012; 7b). Lower parahippocampal 371 
FA was a significant linear predictor of lower Symbol Search and Trail Making-A scores 372 
(ß=14.2616, t=-2.67, p=0.012 and ß=15.7459, t=2.31, p=0.027, respectively; Figure 7c-d). Higher 373 
hippocampal AD was a significant linear predictor of lower List Learning scores (ß=-4.7280, t=-374 
2.18, p=0.035; Figure 7e). Higher hippocampal MD and RD were significant linear predictors of 375 
lower Trail Making-A scores (ß=-4.4631, t=-2.10, p=0.043 and ß=-4.9733, t=-2.16, p=0.038, 376 
respectively). 377 

Causal mediation analyses: from exposure to neurobehavioral scores via MTL MRI 378 
metrics in welders 379 

Welding history as exposure of interest 380 

There were significant indirect effects of higher YrsW on lower Symbol Search and Trail 381 
Making-A scores that were mediated by lower parahippocampal FA values (ß=-0.0252, z=-2.29, 382 
p=0.022 for Symbol Search and ß=-0.0282, z=-2.27, p=0.023 for Trail Making-A) but no 383 
significant direct or total effects (p’s>0.055). There were significant total and direct effects of 384 
higher E90 values on lower Symbol-Digit Coding scores (ß’s<-0.1531, z’s<-2.44, p’s<0.014) but 385 
no significant indirect effects (p’s>0.647). There were no significant direct or indirect effects of 386 
other exposure metrics on neurobehavioral scores (p’s>0.065). 387 

Welding related blood metal levels as exposures of interest 388 

There were significant indirect effects of higher blood Fe on higher List Learning and 389 
Recall scores via lower hippocampal AD (ß’s>7.5372, z’s>2.11, p’s<0.035), and significant total 390 
effects (ß’s>4.4794, z’s>2.16, p’s<0.031) without direct effects (p’s>0.726). There, however, were 391 
no significant indirect effects of other metal levels on neurobehavioral scores via MTL DTI metrics 392 
(p’s>0.109). Blood Cu, Mn, and Pb levels had significant total and direct effects without 393 
significant indirect effects: For Cu, these effects resulted in lower Symbol-Digit Coding and 394 
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Delayed Story Recall scores (ß’s<-3.1633, z’s<-1.97, p’s<0.049). For Mn, the effects were on 395 
lower List Learning, Delayed List, and Figure Recall scores (ß’s<-1.4742, z’s<-2.01, p’s<0.045). 396 
For Pb, the effects led to higher Symbol-Digit Coding scores (ß’s>0.4989, z’s>1.97, p’s<0.048).  397 

Discussion 398 

This is the first in-depth examination that used multimodal structural MRI to study multiple 399 
MTL regions in welders. Consistent with our hypothesis H1, we observed a reliable pattern across 400 
MTL areas of DTI features (higher AD, RD, MD, lower FA) that is consistent with findings in 401 
ADRD populations. The persistent MTL DTI features in the absence of morphometric differences 402 
(markers of significant macroscopic neuronal loss) suggest that these DTI metrics may serve as 403 
sensitive markers for gauging early disease processes probably representing microstructural 404 
integrity. Consistent with our hypothesis H2, we replicated prior findings that welders have lower 405 
performance in processing/psychomotor speed and executive function domains that are associated 406 
with welding history. In addition, we conducted a comprehensive analysis to understand the 407 
relationship of the MTL MRI metrics with welding-related metal exposure and neuropsychiatric 408 
changes and whether MTL MRI metrics may mediate metal-exposure to cognitive outcomes. We 409 
noted that greater welding years (YrsW) predicted lower parahippocampal FA, whereas greater 410 
short-term welding intensity (E90) predicted worse Symbol coding digit scores. MTL DTI metrics 411 
(microstructural changes) mediate, at least partially, the effects of welding fumes on cognitive 412 
performance, consistent with our hypothesis H3. Together, the results of the current study are 413 
consistent with our key scientific premise that welding fume exposures are associated with MTL 414 
microstructural features resembling early ADRD. 415 

The explorative analyses on associations of seven blood metal levels (higher in welders 416 
than in controls) with MRI metrics or neuropsychologic scores yielded mixed and inconsistent 417 
results. This may be, in part, due to low sample size with multiple metals of interest and that blood 418 
metals only represent recent, ongoing, and short-term (~3 m) exposure. In addition, different 419 
metals may have different exposure-effect curves (which potentially may be non-monotonic), 420 
depending on the dose level and the brain regions and cognitive metrics of interest. Nonetheless, 421 
higher blood Mn and Cu levels demonstrated the most robust relationships with higher entorhinal 422 
diffusivity values and lower Delayed Story Recall performance, respectively, analyzed using 423 
multiple statistical approaches including correlations, semi-parametric regression, and Bayesian 424 
kernel machine regression. Given the ubiquitous nature of low-level metal exposure and their 425 
broader public health impact, future studies are warranted.  426 

Welders’ medial temporal microstructural features are consistent with ADRD-at risk 427 
populations  428 

The hippocampus and entorhinal/parahippocampal cortices are key structures for medial 429 
temporal memory tasks. The parahippocampal cortex receives inputs from widespread associative 430 
cortical areas including frontal, temporal, parietal, occipital, and cingulate cortices.97,98 It then 431 
passes information to the entorhinal cortex that, in turn, has reciprocal connections with the 432 
hippocampus. Thus, the entorhinal cortex serves as a major information relay station to and from 433 
the hippocampus, although the hippocampus also is connected with white matter (e.g., fornix) and 434 
diencephalic structures serving particularly long-term memory formation.60 The entorhinal outputs 435 
then are projected back to various cortical regions through the parahippocampal cortex.99,100  436 
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As noted in the Introduction, there have been substantial efforts towards finding reliable 437 
and early markers to predict future AD conversion. Consistent with its cardinal role in memory, 438 
MTL areas appear to be one of the first regions affected by AD-related pathological changes.56,101-439 
103 Decreased hippocampal and entorhinal volume and/or thickness have been reported as 440 
predictors for AD conversion.104,105 Recent studies suggested other imaging metrics such as shape, 441 
texture, functional networks, or water molecule diffusion in neuronal tissues may be even more 442 
sensitive in capturing early AD-related alterations.63,106-110 Our finding of welding fume exposure 443 
relating to altered DTI metrics in all MTL areas included in the current study is consistent with the 444 
concept that early ADRD-related changes are occurring without apparent volume reduction or 445 
cortical thinning in these areas.  446 

The exact neuropathological substrates underlying DTI metrics are unclear. It is speculated, 447 
however, that they reflect microstructural disorganization (e.g., cytoarchitectural degeneration or 448 
demyelination processes).111 Future studies with state-of-the-art MRI methods such as multi-shell 449 
diffusion imaging that utilizes multiple b-values to minimize motion or other artifacts and 450 
accurately model more detailed cellular features112,113 may help dissect these neural mechanisms. 451 

Neuropsychological features in welders may be consistent with ADRD-at-risk populations 452 

Our study is consistent with prior findings that welders performed worse on several 453 
neuropsychological tests.114-116 We note that our welders had lower performance on the Delayed 454 
Story Recall subtest but not learning/memory tests or List Learning/Recall and Figure Recall 455 
subtests that typically estimate episodic memory in laboratory settings.117 Episodic memory 456 
involves consciously retrieving information (e.g. events) that was acquired in a particular time and 457 
space.118 ADRD-related neurobehavioral deficits comprise various cognitive functions including 458 
executive, attentional, and language functions. In particular, difficulties with learning/memory 459 
tasks have a robust relationship to early ADRD.117,119 Our finding of lower Delayed Story Recall 460 
performance in our “asymptomatic” welders suggests ADRD-related early episodic memory 461 
decline may occur in a task-specific way. Therefore, the earliest decline may be detected more 462 
sensitively with a Story Recall task rather than other types of episodic memory tasks (e.g., word 463 
list or visuospatial figure recall). 464 

Our robust associations of higher entorhinal and parahippocampal diffusivity values with 465 
lower (worse) learning/memory performance is consistent with previous findings reporting MTL 466 
involvement in episodic memory.120 Although episodic memory is considered a crucial function 467 
of the hippocampus,121 the current association is not surprising since the parahippocampal and 468 
entorhinal cortices provide major inputs to the hippocampus.60 Consistent with our finding, 469 
previous studies reported that lower entorhinal cortex volume, but not hippocampal volume, was 470 
associated with lower Delayed List and Story Recall scores in Alzheimer’s patients.60,120 In 471 
addition, MTL DTI metrics have been associated with memory scores in both healthy elderly and 472 
Alzheimer’s patients.122,123 In these previous studies, DTI metrics were examined either in the 473 
hippocampus alone or in conjunction with MTL white matter. This study extended previous work 474 
to entorhinal and parahippocampal areas and demonstrated, for the first time to our knowledge, a 475 
robust association of entorhinal and parahippocampal diffusivity with episodic memory 476 
performance among welders.  477 

Interestingly, MTL regions seem to be involved not only in memory but also in 478 
processing/psychomotor speed performance. The underlying mechanism is not clear, but the 479 
results are consistent with previous reports of significant associations between parahippocampal 480 
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gyrus thickness and processing speed scores, particularly when performing visuospatial 481 
tasks.124,125 Speedy information processing may be crucial for various functional abilities including 482 
attention, encoding and retrieval of to-be-remembered information, reasoning, decision making, 483 
and visuospatial perceptions.126 Recent structural and functional neuroimaging studies also 484 
suggested that the hippocampus may be involved in various neuropsychological tasks such as 485 
working memory, executive function, spatial processing, and sensorimotor integration.111,127-130 486 
Given previous findings reporting associations between slowed psychomotor speed and risk for 487 
dementia development,131-133 the present results may provide potential neural correlates 488 
responsible for ADRD-related slowed psychomotor speed. Collectively, our findings are 489 
consistent with the concept that our welders display cognitive deficits/patterns reported in ADRD-490 
at-risk populations and support ADRD-related early changes in welders.107,117  491 

Understanding the path from metal exposure to MTL MRI and cognitive performance 492 

We employed multiple analytical steps and statistical methods to understand the complex 493 
relationship between welding fume-related metal exposure and MTL MRI and cognitive findings. 494 
First, we found that long-term exposure metrics (e.g., ELT and YrsW) were significant predictors 495 
of hippocampal and parahippocampal DTI metrics, validating that MTL microstructural features 496 
are indeed related to long-term welding exposure. In addition, mediation analyses suggested that 497 
YrsW indirectly impaired processing/psychomotor speed tasks (lower Symbol Search and Trail 498 
Making-A scores) via lower parahippocampal FA values. 499 

Second, we also noted a short-term exposure metric that takes exposure intensity into 500 
account (E90) predicted lower Symbol-Digit Coding scores, a task where subjects matched symbols 501 
to designated numbers under time pressure. This task can be demanding for adults, particularly 502 
elderly adults, because it requires executive function skills to some degree in addition to 503 
appropriate psychomotor speed. Our result suggests that even short-term metal exposure with 504 
higher intensity may interfere with proper performance on executive function tasks. The finding 505 
motivated the exploration of metal levels in blood, usually, depending on the metal, a surrogate 506 
marker for short-term metal exposure. We considered seven metals in our exploration because they 507 
are higher in welders, acknowledging that our statistical power was limited if we rely on 508 
significance after FWER-correction of multiple comparisons. Thus, we employed multiple 509 
approaches, and use the level of consistency in results to inform our conclusions.  510 

Blood Mn and Cu levels demonstrated robust relationships with entorhinal diffusivity and 511 
Delayed Story Recall performance, respectively. The association persisted throughout semi-512 
parametric regression, and BKMR analyses. The finding of blood Mn-entorhinal diffusivity 513 
association is not surprising, given that Mn has been the metal of focus on welding-related toxicity, 514 
as we reviewed in Introduction. Lower FA values in white matter regions (e.g., corpus callosum 515 
and frontal white matter areas) have been reported in both welders and controls.134 It is however, 516 
unclear whether the blood Mn represents the long-term occupational exposure or short-term 517 
intensity. However, the finding of the association between blood Cu and cognitive performance 518 
among welders is novel. Chronic Cu exposure has been associated with increased brain Cu 519 
accumulation in the basal ganglia and hippocampus46 and increased risk for Alzheimer’s 520 
disease.135 Cu in brain has a high affinity for β-amyloid plaques that may enhance inflammatory 521 
responses, reactive oxygen species (ROS) generation, and fibril formation leading to increased β-522 
amyloid aggregates that is a characteristic feature of ADRD.136 Future studies of welding fume 523 
exposure need to include Cu as an important factor worthy of consideration.  524 
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Our analyses also yield two serendipitous observations which were unexpected but 525 
intriguing. First, higher blood Fe levels in welders predicted a better List Learning/Recall score. 526 
Subsequent mediation analyses suggested that higher blood Fe is linked to higher List 527 
Learning/Recall scores via lower hippocampal AD values. These results imply that higher 528 
peripheral Fe may be a protective factor against microstructural changes and subsequent 529 
performance deficits. This finding appears contradictory to previously reported neurotoxic effects 530 
of Fe exposure,9,137 yet consistent with reports of complexed relationship between peripheral Fe 531 
levels and cognitive functions.138-140 It is also worth noting that higher brain Fe accumulation, 532 
which has a very different pathophysiological context than blood Fe, was reported in subjects with 533 
AD pathology or cognitive impairments 141,142 but this is not well established in asymptomatic 534 
populations.143,144 Second, we observed that blood Pb levels predicted higher hippocampal 535 
diffusivity (AD, RD, MD) and Entorhinal AD (p < 0.036) in semi-parametric regression analyses, 536 
yet directly linked to higher symbol-digit coding scores in causal medication analyses. The results 537 
of the two analyses may appear contradictory at first, but reasonable given the unique distribution 538 
and kinetics of Pb in the human body, as distinct from short-term levels of metals such as Fe in the 539 
blood. Greater than 90% of Pb deposits in bone with a half-life on the order of decades.145,146 In 540 
addition, Pb deposited in bone is itself a source of endogenous exposure as it gradually is mobilized 541 
into circulation, exposing critical organs to Pb even with no recent exposure.147 Thus, blood Pb 542 
levels may represent both long-term and short term exposure. Based on this, we speculated that as 543 
a long-term exposure metric, Pb may negative impact MLT structures, yet as a short-term exposure 544 
metric, Pb may competing with transport of other toxic metals (such as Cu) into the brain and 545 
preventing its negative impact on cognitive performance of our welders. Together, these findings 546 
suggest the importance that future studies need to consider the dynamics and reversibility of 547 
mixtures of welding-related metals, as well as separately analyzing each brain region and metric 548 
of cognitive outcomes, in both welders and controls.  549 

Limitations and conclusions 550 

This study has several limitations. First, the sample sizes were relatively small, and future 551 
validation research should, where possible, utilize larger cohorts. Second, we measured several 552 
blood metal levels, but it might be possible that the effects observed were due to an unmeasured 553 
metal or a co-occurring environmental factor. Additional studies assessing alternative metals may 554 
provide further insight into the actions of metal co-exposures, something of both scientific and 555 
public health relevance. Lastly, it is notable that our welder cohort, though many participants had 556 
long histories of welding work, had relatively lower welding fume exposure levels compared to 557 
many other prior studies (i.e., 11.0 vs. >14.2 μg/L for mean blood Mn; 22.7 vs. >30-50 μg/L for 558 
mean blood Pb).67,71,148-150 This suggests that other groups with relatively low but chronic exposure 559 
to the same metals in the welding-fume profile may suffer similar sequalae as a result of 560 
environmental exposure.   561 
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Tables 1112 

Table 1. Summary statistics for demographics (a) and overall exposure measures (b) for controls 1113 
and welders  1114 

 Controls 
(N=31) 

Welders  
(N=42) 

Raw  
p-values 

a. Demographics  

Age (y) 43.6 ± 11.4 48.9 ± 10.7 0.048 

Education (y) 16.2 ± 2.2 12.9 ± 1.6 < 0.001 

MoCA 26.2 ± 2.5 26.3 ± 2.1 0.797 

UPDRS-III 1.5 ± 2.1 2.0 ± 2.5 0.326 

b. Metal exposure measures 

Overall exposure metrics < 0.001 

HrsW90 (hours)  0 ± 0  241 ± 200 < 0.001 

E90 (mg-days/m3)  0.003 ± 0  2.3 ± 2.0 < 0.001 

YrsW (y)  0 ± 0  26.2 ± 10.9 < 0.001 

ELT (mg-y/m3)  0.001 ± 0.0003  1.1 ± 0.7 < 0.001 

Overall blood metal levels  < 0.001 

Ca (mg/L)  57.8 ± 8.75  58.4 ± 9.16 0.766 

Cr (μg/L)  7.91 ± 20.5  29.1 ± 148 0.102 

Cu (μg/L)  749 ± 133  894 ± 124 < 0.001 

Fe (mg/L)  498 ± 76  556 ± 53 0.002 

K (mg/L)  1765 ± 342  2085 ± 394 0.001 

Mg (mg/L)  35.7 ± 5.17  38.4 ± 6.48 0.070 

Mn (μg/L)  8.9 ± 2.5  11.0 ± 3.2 0.002 

Na (mg/L)  2037 ± 370  2191 ± 389 0.134 

Pb (μg/L)  8.5 ± 4.8  22.7 ± 18.5 < 0.001 

Se (μg/L)  149 ± 69.8  220 ± 105 0.001 

Sr (μg/L)  13.9 ± 5.17  14.0 ± 6.26 0.928 

Zn (μg/L)  5.62 ± 1.57  6.44 ± 1.47 0.026 

Data represent the mean ± SD for each measure. Groups were compared using one-way analysis 1115 
of variance (ANOVA). Metal exposure measures were compared using multivariate analysis of 1116 
variance (MANOVA). Abbreviations: y = years; MoCA =Montreal Cognitive Assessment; UPDRS 1117 
= Unified PD Rating Scale; HrsW90 =Hours welding, 90 days; E90 = Cumulative 90 day exposure 1118 
to Mn; YrsW =Years welding, lifetime; ELT = Cumulative exposure to Mn, lifetime;  1119 
 1120 
  1121 
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Table 2. Neuropsychological test results for controls and welders 1122 

Test 
Controls 
(n=31) 

Welders 
(n=42) P-value 

Overall Cognition ............................................................................................... 0.063 

Processing/Psychomotor speed .......................................................................... 0.046 
Stroop-Colorb -0.35 ± 1.16 -0.80 ± 1.03 0.034 
Stroop-Wordb -0.03 ± 1.05 -0.84 ± 1.19  0.004 
Symbol Searcha 0.88 ± 0.99 0.43 ± 0.67 0.011 
Trail Making-Ab 0.69 ± 0.79 0.50 ± 0.75 0.203 

Executive function <0.001 
Color-wordb  0.12 ± 0.58 0.06 ± 0.70 0.512 
Symbol-Digit Codinga 0.46 ± 1.06 -0.10 ± 0.78 0.010 
Phonemic Fluencyb 0.36 ± 0.87 -0.31 ± 0.73 <0.001 
Trail Making-Bb 0.51 ± 0.83 -0.35± 1.41 0.004 

Language ............................................................................................................. 0.487 
Picture Naminga 0.24 ± 1.13 0.59 ± 0.24 0.468 
Semantic Fluencya 0.04 ± 1.06 -0.23 ± 0.99 0.365 

Visuospatial Processing ...................................................................................... 0.045 
Judgement of Line Orientationa 0.69 ± 0.94 0.55 ± 0.82 0.858 
Complex Figure Copya -0.22 ± 0.86 -1.09 ± 1.35 0.013 

Learning/Memory .............................................................................................. 0.055 
List Learninga -0.64 ± 0.93 -0.76 ± 1.00 0.493 
Immediate Story Recalla 0.06 ± 0.93 -0.42 ± 1.04 0.151 
Delayed List Recalla -0.73 ± 0.98 -0.52 ± 1.01 0.192 
Delayed Story Recalla 0.13 ± 0.90 -0.46 ± 1.04 0.049 
Delayed Figure Recalla -0.13 ± 1.10 0.01 ± 1.16 0.261 

Attention/working memory ............................................................................... 0.126 
Letter Number Sequencinga 0.30 ± 1.00 0.03 ± 0.94 0.906 
Digit Spana 0.81 ± 1.11 0.09 ± 0.83 0.131 
Spatial Spana 0.34 ± 0.65 -0.10 ± 0.93 0.176 

Data represent the mean ± SD. Test scores were converted to z-scores based on age- (denoted as a) 1123 
or age- and education- (denoted as b) adjusted norm (t- or scaled) scores. Higher scores indicate 1124 
better performance. Multivariate analysis of covariance (MANCOVA) was conducted with Group 1125 
as the independent variable and individual subtests of each cognitive domain as the dependent 1126 
variables. Bold numbers indicate significant result at p<0.05. Education level was additionally 1127 
adjusted for the cognitive domains language, visuospatial processing, learning/memory, and 1128 
attention/working memory.  1129 
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Table 3. Semi-parametric regression analyses evaluating the influence of exposure measures 
on medial temporal MRI and neurobehavioral metrics for controls (a) and welders (b)  

Outcome variables Selected Predictors Linear ß T-value p-value 

a. Controls (N=31) 
Delayed List Recall 

 K -11.7869 -3.03 0.029 
 Se 3.1201 2.90 0.034 

b. Welders (N=42) 
Composite metrics of exposure metrics     

Parahippocampal FA YrsW -0.0011 -2.69 0.011 

Hippocampal MD ELT 0.0227 2.08 0.045 

Hippocampal RD ELT 0.0218 2.20 0.035 

Symbol-Digit Coding E90 -0.161 -2.46 0.019 

Blood Metal Levels     

Entorhinal MD Mn 0.238 3.04 0.008 

Entorhinal AD Mn 0.266 3.04 0.008 

Entorhinal RD Mn 0.223 3.01 0.009 

Hippocampal MD Pb 0.041 2.48 0.033 

Hippocampal AD Fe -0.371 -2.51 0.031 

 Pb 0.048 2.43 0.035 

Hippocampal RD Pb 0.037 2.44 0.035 

Symbol-Digit Coding Cu -3.13 -2.66 0.017 

List Learning Fe 7.58 5.15 <0.001 

 Mn -1.00 -2.54 0.025 

Delayed List Recall Fe 6.53 2.95 0.008 

 Mn -1.65 -2.79 0.012 

Immediate Story 
Recall 

Cu -3.78 -2.29 0.039 

Delayed Story Recall Cu -4.21 -3.50 0.003 

Delayed Figure Recall Mn -3.18 -4.50 <0.001 

Data represent parameter estimates and corresponding T- and p-values of exposure measurements 
to predict MTL MRI and neurobehavioral metrics. 
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Table 4. Semi-parametric regression analyses to determine medial temporal structural MRI 
predicting neurobehavioral metrics for controls (a) and welders (b)  

Outcome variables Selected Predictors Linear ß T-value p-value 

a. Controls (N=31) 
Stroop-Word Parahippocampal AD -4.80 -2.18 0.041 

Symbol Search Parahippocampal MD -4.75 -2.10 0.047 

 Parahippocampal AD  -4.76 -2.37 0.027 

Symbol-Digit Coding Parahippocampal AD  -4.64 -2.43 0.024 

Trail Making-B Parahippocampal AD  -3.92 -2.25 0.034 

Delayed List Recall Entorhinal MD -5.04  -2.11 0.046 

Delayed Story Recall Entorhinal MD -5.40 -2.77 0.011 

 Entorhinal AD -5.53 -2.76 0.012 

 Entorhinal RD -6.23 -3.10 0.005 

 Entorhinal FA  19.92 2.34 0.028  

 Parahippocampal MD  -4.78 -2.39 0.026 

 Parahippocampal AD -4.11 -2.13 0.045 

 Parahippocampal RD -4.85 -2.39 0.028 

Spatial Span Hippocampal AD -5.32 -2.58 0.017  

b. Welders (N=42) 

Symbol Search Parahippocampal FA 14.26 2.67 0.012 

Trail Making-A Parahippocampal FA 15.75 2.31 0.027 

 Hippocampal MD -4.46 -2.10 0.043 

 Hippocampal RD -4.97 -2.16 0.038 

Immediate Story Recall Parahippocampal MD -5.72 -2.64 0.012 

 Parahippocampal AD -5.54 -2.72 0.010 

 Parahippocampal RD -6.61 -3.14 0.004 

List Learning Hippocampal AD -4.73 -2.18 0.035 

Delayed List Recall Entorhinal MD -4.18 -3.09 0.004 

 Entorhinal AD  -3.54 -2.96 0.006 

 Entorhinal RD -3.77 -2.87 0.007 

Data represent parameter estimates and corresponding T- and p-values of MTL MRI metrics to 
predict neurobehavioral metrics. 
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Figures and legends 

 

Figure 1. Automatically segmented regions of interest [hippocampus, entorhinal and 
parahippocampal cortices] on T1-weighted MPRAGE images.  
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Figure 2. Mediation models to test effects of exposure (composite metrics of welding exposure; 
blood metal levels) on neurobehavioral metrics while medial temporal DTI metrics serve as 
mediators after controlling for potential confounders (age; education level; blood levels of other 
metals): 1) A indicates direct effects of exposure on neurobehavioral metrics that are not mediated 
by medial temporal DTI metrics; 2) B*C indicates mediation effects of exposure on 
neurobehavioral metrics that are mediated by medial temporal DTI metrics. 
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Figure 3. Morphologic MRI measures in welders and controls: a) hippocampal volume; b) cortical 
thickness in entorhinal and parahippocampal cortices. 
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Figure 4. Diffusion tensor imaging (DTI) a) mean (MD); b) axial (AD), c) radial (RD) diffusivity, 
and d) fractional anisotropy (FA) of medial temporal structures for welders and controls.  
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Figure 5. Scatter plots show a) adjusted parahippocampal FA values (y-axis) vs. YrsW (x-axis) in 
welders; b) adjusted Symbol-Digit Coding scores (y-axis) vs. E90 (x-axis). Adjusted values indicate 
values after controlling for age and education level. 
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Figure 6. BKMR (Bayesian kernel machine regression) univariate dose-response associations of 
metal mixture components with medial temporal DTI and neurobehavioral scores with 95% 
confidence interval band; a) estimate of entorhinal MD values (y-axis) vs. log-transformed blood 
Mn (x-axis) in welders; b) estimate of entorhinal AD values (y-axis) vs. log-transformed blood 
Mn (x-axis) in welders; c) estimate of entorhinal RD values (y-axis) vs. log-transformed blood Mn 
(x-axis) in welders; d) estimate of List Learning scores (y-axis) vs. log-transformed blood Fe (x-
axis) in welders; e) estimate of Delayed Story Recall scores (y-axis) vs. log-transformed blood Cu 
(x-axis) in welders. Age and education level were used as covariates. Other blood metal levels than 
the metal of interest in the analysis were fixed at the median on the y-axis. 
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Figure 7. Scatter plots show a) adjusted Delayed List Recall scores (y-axis) vs. adjusted entorhinal 
MD values (x-axis); b) adjusted Immediate Story Recall scores (y-axis) vs. adjusted 
parahippocampal RD values (x-axis); c) Symbol Search scores (y-axis) vs. adjusted 
parahippocampal FA values (x-axis); d) adjusted Trail Making-A scores (y-axis) vs. adjusted 
parahippocampal FA values (x-axis); e) adjusted List Learning scores (y-axis) vs. adjusted 
hippocampal AD values (x-axis) in both welders and controls. 
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