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Abstract 

 

Large biobank samples provide an opportunity to integrate broad phenotyping, familial records, 

and molecular genetics data to study complex traits and diseases.  We introduce Pearson-Aitken Family 

Genetic Risk Scores (PA-FGRS), a new method for estimating disease liability from patterns of diagnoses 

in extended, age-censored genealogical records.  We then apply the method to study a paradigmatic 

complex disorder, Major Depressive Disorder (MDD), using the iPSYCH2015 case-cohort study of 30,949 

MDD cases, 39,655 random population controls, and more than 2 million relatives.  We show that 

combining PA-FGRS liabilities estimated from family records with molecular genotypes of probands 

improves the three lines of inquiry.  Incorporating PA-FGRS liabilities improves classification of MDD over 

and above polygenic scores, identifies robust genetic contributions to clinical heterogeneity in MDD 

associated with comorbidity, recurrence, and severity, and can improve the power of genome-wide 

association studies (GWAS). Our method is flexible and easy to use and our study approaches are 

generalizable to other data sets and other complex traits and diseases. 
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Introduction 

 

 The analysis of large biobanks (e.g., BioBank Japan1, deCODE genetics2 , iPSYCH3,4, UKBiobank5, 

etc.) is omnipresent in complex disorder genetics research. These resources provide opportunities to 

combine large samples, molecular data, diverse phenotypes, and familial phenotypes.  Leveraging familial 

phenotypes to estimate disease liability in large biobanks has applications for improving power of 

genome-wide association studies (GWAS)6,7, making classifications and predictions8–10, and offering better 

descriptions of underlying causes of disease and heterogeneity11,12.  Combining familial and molecular 

data for these questions may be especially relevant for paradigmatic complex disorders, such as Major 

Depressive Disorder (MDD), a leading cause of disability world-wide.  Such disorders are marked by 

complex, multifactorial, highly polygenic etiologies that limit the power of molecular genetic 

investigations13,14, meaning improved approaches are needed.  However, it is not clear how best to 

combine familial phenotypes and genotype data. Existing methods can not fully accommodate all 

biobanks, including the largest for psychiatric genetics, the iPSYCH2015 case-cohort study, due to 

complex, age-censored, extended genealogies. Previous applications have focused on one use-case (e.g., 

GWAS or prediction) limiting the picture of generalizability to other questions.  Here, we set out to develop 

a method that is applicable to any biobank and demonstrate, by studying the genetic basis of MDD, that 

it can improve multiple paradigms applied in molecular genetic studies of complex disorders. 

 Currently, methods that transform patterns of diagnoses in genealogies to continuous liability15,16 

scores in each relative are limited. LT-FH7 and LT-FH++17 use similar resampling approaches to estimate 

posterior mean liabilities of relatives, but only consider first degree relatives.  This excludes information 

from more distant relatives and could confound estimates more strongly with familial environment. Both 

were applied only in the context of improving GWAS. So et al.18 developed a method based on the 

Pearson-Aitken (PA) selection formula19, that is an analytical procedure for calculating liability from 

phenotypes in arbitrarily structured genealogies, but assume each relative has been followed for their 

entire life (i.e., is fully observed). A flexible, resampling-based extension of this model was proposed, but 

is computationally prohibitive at scale20. These approaches have had a focus on trait predictions. Family 

Genetic Risk Scores (FGRS)21 are kinship weighted sums of diagnoses of relatives with corrections for 

familial environment, censoring, and other covariates. FGRS accommodates extended genealogies and 

censored records, but is not based on a well-described model and does not account for kinship among 

relatives of probands. FGRS has been applied to describe genetic heterogeneity within and across 
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disorders. Current methods estimating individual liability from genealogies are limited and have been 

applied narrowly.  

 We introduce a new method, Pearson-Aitken Family Genetic Risk Scores (PA-FGRS), validate it 

under simulations, and apply it to study MDD in the iPSYCH2015 case-cohort study. We demonstrate that 

combining PA-FGRS with genotypes improves three lines of inquiry: 1) classification of MDD in the context 

of PGS, 2) identifying robust genetic contributions to clinical heterogeneity of MDD, and 3) improving 

power in large single cohort GWAS of MDD. Our applications confirm, add context to, and extend recent 

methodological advances and their applications in similar data. The PA-FGRS framework is extensible, 

powerful and well-calibrated and could be applied to large biobanks or smaller family studies to pursue 

similar aims with other complex disorders. 

 

 Results 

 

The iPSYCH 2015 MDD case-cohort genealogies are complex and contain a wealth of information 

 

The iPSYCH 2015 case-cohort study ascertained 141,265 probands from the population born in 

Denmark between May 1st 1981 and Dec 31st 2008 (N=1,657,449) by cross-linking the Danish Civil 

Registration System22 (CPR) and The Danish Neonatal Screening Biobank23. The CPR includes all individuals 

who have legally resided in Denmark since its establishment in 1968 and each proband is associated with 

parental identifiers, where known. We use mother-father-proband connections24 to reconstruct extended 

genealogies (Online Methods) of 141,265 iPSYCH2015 probands, identifying 2,066,657 unique relatives 

spanning up to nine generations (birth years range: 1870s to 2016; Figure 1A, Supplementary Figure S1). 

Of 20,071,410 relative pairs identified, 24,773 pairs included two iPSYCH probands genotyped on the same 

array. Pedigree-inferred kinship was highly correlated with SNP-based kinship (r=0.969, Figure 1B), siblings 

sharing one recorded parent (with the other missing) tended to be half-siblings (Supplementary Figure 

S2), and approximately 45% of same-sex twins were monozygotic (Supplementary Figure S3). For 

genealogies of 141,265 probands included 99.5% of parents, 82.0% of grandparents, and 7% of great-

grandparents, with the number of relatives identified per proband varying considerably (Figure 1C). 

Clinical diagnoses are aggregated for all relatives during periods of legal residence within Denmark from 

1968 with in-patient psychiatric contacts recorded from 1969 to 1994 using ICD-8 and ICD-10 from 1994 

onwards, and since 1995 both in- and out-patient contacts recorded (Figure 1D,E). There is a wealth of 
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high-quality psychiatric familial phenotypes for each genotyped proband (Figure 1), but relatives are 

neither completely nor consistently observed.  

 

PA-FGRS is a flexible, powerful framework for estimating individual liability scores 

 

PA-FGRS estimates the expected genetic liability carried by a proband from an arbitrary set of 

relatives, assuming the outcome results from a thresholded latent Gaussian liability (Figure 2). As input 

PA-FGRS takes a kinship matrix, diagnostic status and age (at censoring, diagnosis, or end of follow-up) for 

each relative, disorder heritability, and individual morbid risks which may be estimated from lifetime sex 

by birth year-specific cumulative incidence. In a first step, each pedigree member is assigned an initial 

liability of 0 with variance 1. Then we consecutively condition on observations of other relatives, 1 , …, n, 

updating all expected liabilities based on each relative. We first update the expected liability of a selected 

relative, r(i), estimating their expected liability given their prior liability distribution, disease status, age 

and the lifetime incidence estimate. Then we update the liabilities of all remaining relatives, ri+1 , …, rn, 

according to the PA-selection formula19 and a modified kinship matrix (Supplementary Figure S4). An 

optional final step updates the proband liability on their own diagnostic status and age. PA-FGRS produces 

a continuous score that summarizes the genetic liability from the proband’s pedigree.  

Other methods have approached this problem, but with limitations critical to our intended use 

case. Prior implementations18,25 of the Pearson-Aitken (PA) selection formula19 assumed no age-censoring, 

which we address by modeling individuals as a mixture of truncated Gaussians, with mixture proportions 

reflecting individual morbid risks (Online Methods). FGRS21 followed this concept, but PA-FGRS takes a 

more formal approach that incorporates kinship relationships among relatives as well as between 

relatives and proband, producing better calibrated scores and estimates of conditional liability variance 

(Online Methods).  

 

Simulations demonstrate the advantages of PA-FGRS over other methods 

 

We simulated 6,750,000 four-generational pedigrees with an average of nine relatives per 

proband (range 0-18), generating phenotypes from a liability threshold model (Online Methods). We 

found five considered methods, PA-FGRS, FGRS21, PA18,  LT-PA7, and a fully specified Gibbs sampling-based 

approach20, gave estimates that were highly correlated (Figure 3A,B, r > 0.8), suggesting that they target 

similar latent constructs. Methods incorporating more similar information were more highly concordant, 
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e.g., extended relatives (Figure 3A,B, r > 0.89) or extended relatives and censoring  (Figure 3A, r > 0.95). 

The Gibbs sampling approach20 produced nearly identical estimates to PA-FGRS (r=0.999, Figure 3A,B), 

suggesting PA-FGRS behaves near optimally.  Although similar, PA-FGRS consistently produced the highest 

correlations with true liability across a range of simulated heritabilities and prevalences (Figure 3C,D). The 

largest relative gains were when heritability, prevalence, and censoring were high. PA-FGRS was also the 

only method that was well-calibrated in the presence of censored data (Figure 3E; without censoring: 

Supplementary Figure 5). Our implementation of the Gibbs-sampling approach is computationally 

intractable at scale, limiting applicability. (Supplementary Figure 6)  

One limitation of methods that consider only first-degree relatives7,17 is that estimated genetic 

liabilities may be unduly influenced by effects of familial environment. This may be desirable if the goal is 

to optimize prediction9,18, only, but less so if the goal is to make etiological inferences21. We repeated our 

simulations including a common environment component of variance shared among first degree relatives 

(Figure 3F, Supplementary Figure 7) - a typical quantitative genetics model26.  PA-FGRS (and all other 

approaches) produce liability estimates that are correlated with environmental liability (Figure 3F). With 

extended genealogies we can omit close relatives as a sensitivity test for undue influence. Liabilities 

estimated after excluding first degree relatives remained good estimators of genetic liability and were 

uncorrelated with environmental liability (Figure 3F). The flexibility of PA-FGRS can add important context 

to estimated liabilities that may be especially important when interpreting, e.g., profiles of liability 

scores21,27 or if shared environment is a concern. 

PA-FGRS requires external estimates of specific population parameters, namely, lifetime 

prevalence and heritability. Providing inaccurate estimates leads to miscalibrated liabilities, but has 

modest impact on the correlation between estimated and true liability in simulations (Supplementary 

Figure 8).  

 

PA-FGRS contribute to classification models of MDD over and above PGS 

 

Both family history and PGS are explain liability for MDD. Using a two-fold split of iPSYCH 

(Supplementary Figure 9), we trained a model to classify MDD from combinations of PA-FGRS and PGS in 

iPSYCH 2012 (or iPSYCH 2015i) and evaluated classification accuracy in the complement, iPSYCH 2015i (or 

iPSYCH 2012; Online Methods, Figure 4A,B, Supplementary Table S6). Both genetic instruments, fit alone, 

significantly classify MDD cases from controls, in both cohorts: iPSYCH2012 (AUCPGS=0.588 (0.583-0.594), 

p=	3.7	 × 10!""#; AUCPA-FGRS=0.598 (0.592-0.603), p=4.9	 × 10!$"%) and iPSYCH2015i (AUCPGS=0.573 
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(0.565-0.580), p=7.8	 × 10!#&; AUCPA-FGRS=0.576 (0.569-0.583), p=4.1	 × 10!'$(). When combined in a 

multivariate model, each genetic instrument contributes independent information to classification, with 

combined effects of PA-FGRS and PGS larger than individual effects (iPSYCH2012: AUCPGS+FGRS=0.630 

(0.625-0.638) and iPSYCH2015i: AUCPGS+FGRS=0.608 (0.601-0.615)). 

Including PGS for four other psychiatric disorders, schizophrenia (SCZ), bipolar disorder (BPD), 

autism spectrum disorder (ASD), and attention deficit/hyperactivity disorder (ADHD), improved the 

classification of MDD relative to models with MDD PGS only (iPSYCH2012: AUC5-PGS=0.599 (0.594-0.604); 

iPSYCH2015i: AUC5-PGS=0.589 (0.582-0.596); Figure 4C,D, Supplementary Table S6). Similarly, incorporating 

PA-FGRS for the four other psychiatric disorders improved the classification of MDD relative to models 

with MDD PA-FGRS only (iPSYCH2012: AUC5-PA-FGRS=0.620 (0.614-0.625); iPSYCH2015i: AUC5-PA-FGRS=0.596 

(0.589-0.603), Figure 4E,F). Combining all 10 predictors resulted in the best out of sample classification 

(iPSYCH2012: AUC5-PGS+5-PA-FGRS=0.648 (0.643-0.653); iPSYCH2015i: AUC5-PGS+5-PA-FGRS=0.626 (0.619-0.632), 

Figure 4G,H). These results demonstrate that combining genetic instruments that leverage different 

sources of genetic information improves classification of MDD.  

 

Composite genetic profiles identify robust signatures of genetic heterogeneity in MDD 

 

Individuals diagnosed with MDD demonstrate extensive clinical heterogeneity that may reflect 

etiologic heterogeneity. We used multinomial logistic regression to associate differences in clinical 

presentations of individuals diagnosed with MDD to genetic liability profiles (Online Methods, Figure 5). 

We leverage the complementarity of PGS and PA-FGRS, above, by defining composite genetic liability 

scores (e.g. BPD-score= βPGS*PGSBPD+ βPA-FGRS*PA-FGRSBPD, where βPGS and βPA-FGRS are the estimated effect 

of the PGS and PA-FGRS on their natural outcome in a case-control logistic regression). Each composite 

liability score was significantly larger in individuals diagnosed with MDD than in controls, across all 

subgroups (Figure 5; p<0.05). The liability scores for bipolar disorder (BPD), schizophrenia (SCZ), autism 

spectrum disorders (ASD) and attention deficit/hyperactivity disorder (ADHD) tended to have smaller 

effects on MDD subgroups than on their natural outcome (i.e., βMLR/βLR < 1; the colored bars below dashed 

line in Figure 5; Online Methods), except for BPD liability on conversion to a BPD diagnosis (βMLR/βLR =0.97 

(0.90-1.04), Figure 5A). 

Among 30,949 individuals diagnosed with MDD, those also diagnosed with BPD (N=1,477) had 

significantly (p < 1.4 ×	10-3, adjusting for 35 tests) higher genetic liability for MDD (𝑝 = 1.1 × 10!'"), BPD 

(𝑝 = 4.7 × 10!((), and SCZ (𝑝 = 2.5 × 10!(; Figure 5A). Among the 29,472 individuals diagnosed with 
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MDD (excluding BPD) the 7,205 also diagnosed with an anxiety disorder had higher genetic liability to 

MDD (𝑝 = 4.9 × 10!() and SCZ (𝑝 = 3.5 × 10!'"; Figure 5B). Individuals with recurrent depression 

(N=9,903) had higher liability to MDD (𝑝 = 3.2 × 10!'"; Figure 5C) than those with single episode 

depression (N=19,569). Individuals treated for MDD in-patient (NHospitalized=5,815) had higher liability to 

MDD (𝑝 = 6.2 × 10!)) and BPD (𝑝 = 8.1 × 10!&) than those treated out-patient (NOut-patient=12,432, 

Figure 5D). We did not observe any significant differences (𝑝 > 1.4 × 10!$) in the genetic liability score 

profiles of males vs females (NFemale=19,906, NMale=9566; Figure 5E), based on age-at-first-diagnosis (Figure 

5F), or based on diagnostic codes for severity (mild NMild=3,004, NModerate =8,742, NSevere= 2,391, 

NPsychotic=856; Figure 5G). 

Each analysis was repeated using PGS- or PA-FGRS-only profiles (Supplementary Figures S10-S11). 

PGS-only and PA-FGRS-only results were highly similar (r=0.95 (0.93-0.97); Figure 5H) and PA-FGRS or PGS 

scores, alone, were less powerful than composite scores (PA-FGRS-only mean log10(p)= 2.90; PGS-only 

mean log10(p)= 2.47; composite mean log10(p)= 4.24). PGS and PA-FGRS appear to capture similar 

constructs and by combining the two we can increase power to detect genetic heterogeneity. Finally, to 

test for large effects of the familial environment, we constructed PA-FGRS excluding nuclear family 

members (i.e., parents, siblings, half-siblings, and children). The overall trends were highly consistent with 

the full analysis (Figure 5I), albeit with reduced significance (Supplementary Figure 12). Genetic liability 

score profiles are associated with differences in the clinical presentation of MDD, involving contributions 

from non-MDD liability scores, with parallel trends in PGS or PA-FGRS alone, and do not seem strongly 

influenced by familial environment. 

 

GWAS on PA-FGRS liability values adds power to single cohort MDD GWAS 

 

Studying genetic liability of threshold trait is expected to boost power in GWAS (Supplementary 

Figure 13). We performed meta-analytic GWAS across the iPSYCH 2012 (Ncases=17,518, Nctrl=23,341) and 

2015i (Ncases=8,323, Nctrl=15,204, Supplementary Figure 9) cohorts and compare logistic regression GWAS 

of binary diagnoses to linear regression GWAS of PA-FGRS (Online Methods, Figure 6). GWAS of PA-FGRS 

identified 3 independent loci (Figure 6A; index SNPs: rs16827974,	𝛽=0.014, p=2.9 ×	10!%; rs1040574, 

𝛽=-0.011. p=3.3 ×	10!%; rs112585366, 𝛽=0.026, p=4.4 ×	10!%; Supplementary Table S7). These three 

variants and 24 of the 29 suggestive loci (false discovery rate <0.05) showed consistent sign in an 

independent MDD GWAS from Howard el al.28 (excluding iPSYCH, Supplementary Table S2-S3). GWAS of 

binary diagnoses identified two of these loci (Figure 6B; index SNPs: rs6780942, 8.5Kb from rs16827974 
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Beta=0.085, p=7.1 ×	10!#; rs3777421 36.3Kb from rs1040574, 𝛽=-0.073, p=4.6 ×	10!%, Supplementary 

Table S8). These two and 24 of the 35 suggestive loci (false discovery rate <0.05) showed consistent sign 

in Howard el al.28 (excluding iPSYCH, Supplementary Table S2-S3). The 28 independent, genome-wide 

significant index SNPs reported in Howard el al.28 (excluding iPSYCH) have slightly, but significantly, larger 

test statistics in the GWAS on PA-FGRS (PA-FGRS mean χ2= 4.55; case-control mean χ2= 3.80; paired t-test 

p=0.018; Figure 6C).  

Next, we trained polygenic scores in each subcohort (iPSYCH2012 or iPSYCH2015i) using GWAS 

performed in the other (iPSYCH2015i or iPSYCH2012). In both cohorts, PGS trained with PA-FGRS GWAS 

were modestly, but significantly, better at classifying MDD versus controls (2012: AUCcase-control PGS =0.537 

(0.531-0.542), AUCPA-FGRS PGS =0.544 (0.538-0.550), test of differences: p=3.9 ×	10!); 2015i: AUCcase-control 

PGS =0.556 (0.548-0.563), AUCPA-FGRS,PGS=0.548 (0.540-0.556), test of differences: p=2.1 ×	10!*; Figure 6D). 

Observed scale SNP-h2 was larger in the PA-FGRS GWAS, but this difference was not significant (h2
obs,PA-

FGRS-h2
obs,PA-case/ctrl=0.015 (-0.013-0.043); Figure 6E), and genetic correlations with external studies of MDD 

and other psychiatric disorders were similar (Figure 6F).  

 

Discussion 

 

We have developed a new method for estimating genetic liability, PA-FGRS, that is more 

generalizable across data sets and research questions and outperforming existing methods in complex 

genealogical data. We show that PA-FGRS complements genotype-based inferences into MDD in three 

ways: 1) PA-FGRS liabilities improve classification models when fit together with state-of-the-field PGS, 2) 

combing PA-FGRS and PGS better describes the etiology underlying clinical heterogeneity associated with 

comorbidity, recurrence, and severity in MDD, 3) GWAS performed on PA-FGRS scores have more power 

than GWAS on case-control status. Our method is flexible, easy to use, and could be applied to ask similar 

questions of other complex diseases. Our data-first approach - describing the unique characteristics of a 

powerful resource and tailoring a novel method to accommodate its peculiarities - allows us to leverage, 

rather than discard or censor inconvenient data. This is a complementary approach to lowest common 

denominator cross-cohort studies, and may be especially relevant as newer, larger, deeper, and 

necessarily more peculiar, data emerge. 

PA-FGRS is unique in that it is model based, incorporates distant relatives, and handles age-

censored phenotypes of relatives.   Incorporating distant relatives allows us to manipulate our liability 

calculation to exclude close relatives as a sensitivity test for undue impact of familial environment.  This, 
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and using morbid risk to define a mixture model, makes PA-FGRS most similar in concept to FGRS21, but 

the formal model underlying PA-FGRS (PA-selection theory) gains efficiency, and improves calibration of 

estimated liabilities.  The way we model censoring also makes the underlying etiological model assumed 

by PA-FGRS qualitatively different from, e.g., LT-FH++17 or ADuLT29.  PA-FGRS assigns the same liability to 

rare cases as random cases (i.e., uses one population threshold), using covariate stratified cumulative 

incidence to define mixture proportions for controls.  LT-FH++ and ADuLT assign increasingly larger genetic 

liability to increasingly rarer cases observed in empircal cumulative incidence curves (i.e., uses per 

individual thresholds).  For example, in our MDD data, males diagnosed at a young age, many decades 

back (a rare event in empirical cumulative incidence) would make much larger contributions to liability 

estimates in the LT-FH++/ADuLT model than in the PA-FGRS framework.  The underlying model of PA-

FGRS is amenable to analysis and extension, representing an advantage for future work that could extend 

the model to include non-additive covariance, multiple traits, or more complicated etiological models of 

heterogeneity and comorbidity.  

Combining family based liabilities and genotype-based PGS from multiple disorders significantly 

improved classification accuracy. In cancer30 or coronary artery disease31, risk models incorporate multiple 

measures - health states, health traits, family history, and PGS. In psychiatry, this has been pursued in 

more limited contexts, (e.g.,8). Previous studies have found that combining parental history information 

and PGS improves the prediction accuracy8, however, these studies only considered risk associated with 

parental MDD and did not leverage diagnoses in other relatives.  Integrative models that combine multiple 

sources of genetic information, such as family history, estimated liability, and PGS along with exposure 

data have the potential to advance the clinical utility of risk assessment in psychiatry but will require large 

population data and integrative models. 

Our novel composite profile analysis replicates, extends, and adds context to previous work 

considering genetic heterogeneity in MDD.  First, we replicate previous results in similar data showing 

statistically significant associations of genetic liability to MDD with recurrence and MDD and BPD with 

treatment location3233.  Our models calibrate effect sizes differently to accommodate noisy instruments, 

such as PGS, leading to different framing of effect sizes, which may be moderate to substantial, rather 

than minimal.  We also replicate associations between BPD and SCZ liability and conversion from MDD to 

BPD34, but interpret BPD genetic liability to be significantly more important than SCZ genetic liability for 

conversion. Second, studies in Swedish registers have shown differences in family genetic risk scores 

(FGRS) associated with progression to BPD21, comorbid anxiety27, recurrence21, treatment setting35, and 

age-at-onset21 of MDD. We confirm higher genetic liability to MDD among cases with recurrent depression 
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using composite, PGSs-only, and PA-FGRS-only liability scores. We also replicate a higher liability to MDD 

and SCZ among MDD cases with comorbid anxiety using our composite and PGS-only scores, and saw the 

same trend of higher liability to MDD and BPD among hospitalized cases using our composite and PGS-

only scores. Findings of higher BPD liability in male MDD cases35 was nominally significant in our study. 

We did not observe associations to age at onset, however, iPSYCH has a reduced range for onset (15 to 

35 vs. <22 to >69) and includes secondary care treated (i.e., more severe) MDD.  Our study replicates and 

extends previous results by providing more interpretable effect sizes, using an alternative model-based 

approach for family liability scores, and by showing consistency between familial and molecular scores.   

We observed a small, significant improvement in power when performing GWAS for MDD on PA-

FGRS liabilities.  A previous study incorporating family history in GWAS of MDD using iPSYCH did not 

observe gains17, but only considered first degree relatives and weighted them differently.  Consistent with 

simulations, the relative increase in power observed in highly ascertained case-control data is smaller than 

what has been reported for population-based studies7,17.  In population studies, especially for rarer 

disorders, most of the variance in liability is hidden within controls, whereas for highly ascertained data, 

most of the variance in liability remains between cases and controls. In this latter context, little is gained 

by moving from binary to continuous measures.  Although we observe small gains in power for GWAS, 

consistent with other studies, the most impactful applications of PA-FGRS may lie in classification and 

descriptions of etiology. 

 Our study should be interpreted in light of a few important limitations. Certain modeling choices 

could affect the reliability of PA-FGRS. First, pedigree size varies substantially among individuals.  

Probands with few relatives have scores regressed more towards the mean liability which can introduce 

bias. Second, modeling the censoring process requires external information about age-of-onset curves for 

disease of interest - as do the other methods - and these may change in calendar time cohorts. While 

reliable age-of-onset curves are available for the present register coverage, estimating age of onset curves 

for past decades, with different diagnostic systems and different register coverage is challenging. Third, 

our model assumes that the true liability of cases with different age and calendar year of onset is the 

same, while others have proposed true liability should vary according to these covariates17,29. Both 

approaches are based on heuristics and could be better compared, integrated, and optimized to improve 

performance.  

Here, we have taken a data-first approach to studying the genetic architecture of MDD by tailoring 

both our study aims and method development to the particular strengths and challenges of a unique data 

resource. Doing so resulted in a methodological increment with broad applicability and highlights the 
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utility of integrating multiple sources of genetic data when considering trait predictions, etiological 

descriptions, and gene mapping.  
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Online Methods 

 

iPSYCH 2015 case-cohort study  

 

The Lundbeck Foundation initiative for Integrative Psychiatric Research (iPSYCH)3,4 is a case-

cohort study of all singleton births between 1981 and 2008 to mothers legally residing in Denmark and 

who were alive and residing in Denmark on their first birthday (N=1,657,449).  The iPSYCH 2015 case-

cohort comprises two enrollments from this base population. The iPSYCH 2012 case-cohort enrolled 

86,189 individuals (30,000 random population controls; 57,377 psychiatric cases)3. The iPSYCH 2015i case-

cohort expanded enrollment by an additional 56,233 individuals (19,982 random population controls; 

36,741 psychiatric cases)3,4.  DNA was extracted from dried blood spots stored in the Danish Neonatal 

Screening Biobank23 and genotyping was performed on the Infinium PsychChip v1.0 array (2012) or the 

Global Screening Array v2 (2015i). Psychiatric diagnoses were obtained from the Danish Psychiatric 

Central Research Register (PCR)36 and the Danish National Patient Register (DNPR)37.  Diagnoses in these 

registers are made by licensed psychiatrists during in- or out- patient specialty care but diagnoses or 

treatments assigned in primary care are not included.  Linkage across population registers, to parents 

where known, and to the neonatal biobank is possible via unique citizen identifiers of the Danish Civil 

Registration System22.  The use of this data follows standards of the Danish Scientific Ethics Committee, 

the Danish Health Data Authority, the Danish Data Protection Agency, and the Danish Neonatal Screening 

Biobank Steering Committee. Data access was via secure portals in accordance with Danish data 

protection guidelines set by the Danish Data Protection Agency, the Danish Health Data Authority, and 

Statistics Denmark. 

   

Genotyping and quality control 

 

 Genotype phasing, imputation, and quality control were performed in parallel in the 2012 and 

2015i cohorts according to custom, mirrored protocols.  Briefly, phasing and imputation were conducted 

using BEAGLEv5.138,39, both steps including reference haplotypes from the Haplotype Reference 

Consortium v1.1 (HRC)40.  Quality control was applied prior to and following imputation to correct for 

missing data across SNPs and individuals, SNPs showing deviations from Hardy-Weinberg equilibrium in 

cases or controls, abnormal heterozygosity of SNPs and samples, genotype-phenotype sex discordance, 

minor allele frequency (MAF), batch artifacts, and imputation quality.  Kinship was detected within and 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2023. ; https://doi.org/10.1101/2023.06.23.23291611doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.23.23291611
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

14 

14 

across 2012 and 2015i cohorts using KING41, censoring to ensure no second degree or high relatives 

remained.  Ancestry was examined using the smartpca module of EIGENSOFT42, and multivariate PCA 

outliers from the set of iPSYCH individuals with both parents and four grandparents born in Denmark were 

excluded.  In total, 7,649,999 imputed allele dosages were retained for analysis. 

 

iPSYCH 2015 case-cohort genealogies 

 

All recorded relatives of probands in this iPSYCH 2015 case-cohort were obtained from the Danish 

Civil Registry22 using mother-father-offspring linkages.  From the 141,26543 probands, we identified 

2,066,657  unique relatives, assembling all relationships into a population graph using the kinship244 and 

FamAgg43 packages where edges denoted membership in a recorded trio.  The relatedness coefficient for 

each pair was calculated as a weighted sum of unique ancestral paths through the population graph (i.e. 

not including the same individual, except for the common ancestor). Each path in the sum was weighted 

by (0.5)^(number of edges in the path)45.  The Danish Civil Registry does not contain information on 

zygosity for same-sex twins, but following analysis of the SNP-kinship of children of same-sex twins 

(Supplementary Figure S3) we assigned same-sex twins a relatedness coefficient of 0.75.  Similarly, guided 

by analysis of siblings with missing paternal records (Supplementary Figure S2), we assigned maternal 

siblings with missing paternal records a relatedness coefficient of 0.25. 24,773 pairs of relatives from the 

population genealogy included two probands genotyped on the same genotype array.  We used Pearson’s 

correlation of the graph-inferred kinship and SNP-inferred kinship using KING41 as an estimate of 

concordance and quality of inferred relationships.   

 

Pearson-Aitken Family Genetic Risk Scores (PA-FGRS) 

 

PA-FGRS estimates a liability for disease carried by a proband from the observed disease status in 

a pedigree and under the assumption of a liability threshold model for the disease46.  The method first 

estimates an initial liability for each relative and then uses the Pearson-Aitken selection formula to 

sequentially update the expected liability in the proband conditional on each relative.46,47  

We begin by assuming a disease, Di = 1, arises when an individual, i, carries a latent liability, Li, 

that surpasses some threshold, t.  Liability, Li, can arise from additive effects (βj) of genetic factors (Xij), or 

environmental deviations (ei) and genetic contributions follow classic polygenic theory.46,47  We can write 

a generative model: 
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Where the threshold, t, is the standard normal quantile that corresponds to a cumulative probability of 

kpop, the lifetime prevalence of the disorder. Further we assume that the vector consisting of the genetic 

liability of the proband and the total liability of n genetic relatives 2𝐿', . . . , 𝐿+, 𝐺,6
-~𝑀𝑉𝑁([0, . . . ,0]- , 𝛴) 

with covariance matrix: 

 

 
 

Under this model the expected value of Li, conditional on the true value for Di is according to truncated 

normal distribution theory48: 

 

 
 

A critical assumption of this model is that each individual is fully observed (i.e., no age censoring), meaning 

there is an equivalence between their diagnostic and disorder status.  This assumption rarely holds in 

practice, but the variable follow-up of relatives by the Danish register system makes it extremely tenuous.  

We instead propose a model (Supplementary Information) where the disease status Yi in those who 

surpass the threshold is observed with a probability corresponding to the ratio between (possibly 

stratified) age-specific prevalence (Ki) and the life-time prevalence (Kpop), 
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To get the expected liabilities under this model we use a mixture of an upper and a lower truncated 

Gaussian both with mean and variance corresponding to their conditional expectations, and with the 

mixture proportion (𝜋.), corresponding to the conditional probability of being a case. Let 𝜓(𝜇, 𝜎2 , 𝑎, 𝑏) 

denote a truncated gaussian with mean 𝜇, variance 𝜎", lower truncation at 𝑎 and upper truncation at 𝑏. 

Then the distribution of 𝐿.  conditional observations 1 to 𝑖 is: 

 

𝐿!|𝑌", … , 𝑌! , 𝐾", …	𝐾! , 𝐾#$#, 𝛴	 ∼		

	(1 − 𝜋!)𝜓(𝜇!
(!&")∗, 𝛺!,!

(!&")∗, 𝑎 = −∞, 𝑏 = 𝑇) + 𝜋!𝜓(𝜇!
(!&")∗, 𝛺!,!

(!&")∗, 𝑎 = 𝑇, 𝑏 = ∞) 

 

with 𝜇0
.∗ = 𝐸(𝐿0|𝑌', . . . , 𝑌. , 𝐾', . . . , 𝐾. , 𝐾,2,, 𝛴) for 𝑖>0 and	𝜇03∗ = 0, while 𝛺*,+!∗ =

𝐶𝑜𝑣(𝐿* , 𝐿+|𝑌", . . . , 𝑌! , 𝐾", . . . , 𝐾! , 𝐾#$#, 𝛴) for 𝑖>0 and 𝛺,∗ = 𝛴, and 𝜋. = 1 if 𝑌. = 1 and	𝜋. = 𝙿(𝐷. =

1|𝑌', . . . , 𝑌. , 𝐾', . . . 𝐾. , 𝐾,2,, 𝛴) otherwise.  This we approximate as (See Supplementary Information): 

 

𝙿(𝐷. = 1|𝑌', . . . , 𝑌.!', 𝑌. = 0,𝐾', . . . , 𝐾. , 𝐾,2,, 𝛴) ≈ 

1 −

𝛷(𝑇− 𝜇.
(.!')∗

O𝛺.,.
(.!')∗

)

𝛷(𝑇− 𝜇.
(.!')∗

O𝛺.,.
(.!')∗

) +𝐾𝑝𝑜𝑝−𝐾𝑛𝐾𝑝𝑜𝑝
(1−𝛷(𝑇−𝜇.

(.!')∗

O𝛺.,.
(.!')∗

))
 

 

Following adaptations18,25 of the Pearson-Aitken selection formula49 the conditional mean and variance of 

expected liability for a proband is estimated given their pedigree, initial liabilities, and population 

parameters25. Let 𝜇.
.∗ − 𝜇.

(.!')∗ be the effect of conditioning on 𝑌.  and 𝐾. 	has on 𝜇.
(.!')∗ then the vector 

of conditional mean liabilities,𝜇.∗ , is: 
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𝜇.∗ = 𝜇(.!')∗ + 𝛺,.
(.!')∗ R𝛺.,.

(.!')∗S
!'
(𝜇..∗ − 𝜇.

(.!')∗)     Eq. 1 

 

Similarly, if conditioning changes 𝛺.,.
(.!')∗ to 𝛺.,..∗ , the conditional covariance matrix of liabilities, 𝛺.∗ , is 

estimated as: 

 

𝛺.∗ = 𝛺(.!')∗ − 𝛺,.
(.!')∗ TR𝛺.,.

(.!')∗S
!'
− R𝛺.,.

(.!')∗S
!'
𝛺.,..∗ R𝛺.,.

(.!')∗S
!'
U𝛺.,

(.!')∗ 

 

Previous work has found PA selection to be an efficient estimator of genetic liabilities of binary traits 

given family history.7,18,25 In practice, we start by setting the liability vector to a zero vector, we then 

iteratively condition on the observed disease status of each relative using the expected mean and a 

variance of a mixture of truncated gaussians in combination with the Pearson-Aitken selection formula to 

obtain the expected genetic liability of the index individual. 

 

Our PA-FGRS is available as R code: https://github.com/BioPsyk/PAFGRS . 

 

Simulations 

 

We simulated 500 proband pedigrees with varying numbers and kinds of relatives with variable age 

censoring. The heritability was set to 0.50 and prevalence to 0.4. We assessed the correlation between 

the estimated liabilities obtained from five different liability estimation methods: PA-FGRS, FGRS21, PA18, 

LT-PA7, and a Gibbs sampling-based approach20. Next, we repeated the simulations 4000 times with 

varying prevalence and 5000 times with varying heritability.   

 

To assess the impact of shared environment (c2), we considered a generative model with an additional 

factor that determined the similarity between parents, off-spring and siblings (Supplementary Figure S7).  

We estimated the correlation of FGRS and the true genetic and environmental liability. For FGRS21 we 

included consider to versions: a c2-adjusted FGRS and an unadjusted FGRS.  For PA-FGRS, we consider 

using all available relatives (PA-FGRS) or estimating liability without parents, siblings, and children  (PA-

FGRSnoFDR) as a correction for shared environment.  For each of the four (PA-)FGRS we computed the 

correlation between true and estimated liability in simulations.  
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Psychiatric phenotypes 

 

Our primary outcome, MDD, was defined as having a registration with a depressive episode (F32) 

or recurrent depression (F33) before Jan 1st 2017, according to the Danish Psychiatric Central Research 

Register (PCR)36. Diagnostic codes used for the construction of PA-FGRS scores are found in 

Supplementary Table S1. For relatives diagnosed between 1968 and 1994 records are limited to in-patient 

contacts and ICD-8 codes. 

 

Population parameters used for computing PA-FGRS in iPSYCH 

 

The sex-specific lifetime prevalence of each disorder (Supplementary Table S1) was obtained from 

published estimates based on Danish registers50 . Narrow-sense heritability was set to 0.8 for ADHD, ASD, 

BPD and SCZ, and 0.4 for MDD (Supplementary Table S1). We chose to estimate Ki using sex and birth-

year-specific cumulative incidence computed using all members of the iPSYCH2015 random sample 

genealogies (N=979,582; Supplementary Figure S14).  

Polygenic Scores  

 

PGS for MDD, SCZ and BP were computed based on published, external summary statistics 

(Supplementary Table S2) that had no overlap with iPSYCH.  PGS for ASD and ADHD were based on GWAS 

performed in the complementary half of the iPSYCH2015 case-cohort (i.e., iPSYCH2012 for iPSYCH2015i 

and vice versa, Supplementary Figure S9).  We used SBayesR51 to estimate allelic effects for SNPs in the 

intersection of all GWAS, iPSYCH, and the reference LD panel.  Palindromic SNPs (A/T, C/G), those not 

mapping uniquely to hg19 positions, and without a unique rsID in dbSNP v151 were excluded via our 

summary statistics QC pipeline (https://github.com/BioPsyk/cleansumstats). 

 

Classification analysis 

 

In the European subset of the iPSYCH2015 MDD case-cohort (Supplementary Figure S9), we used 

logistic regression with MDD as an outcome and each or varying combinations of PA-FGRS and PGS as 

predictors (Supplementary Table S1-S2). For this analysis, PA-FGRS were computed excluding proband 
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status. The classification accuracy was reported in an out-of-sample test.  We trained the logistic classifier 

in iPSYCH2012 (or iPSYCH2015i) and reporting the area under the receiver operating characteristic curve 

(AUC) achieved in the independent, complementary iPSYCH2015i (or iPSYCH2012).  

 

Comparing Polygenic profiles 

Putative subgroup-defining features were obtained from the PCR36 and the Danish Civil Registry22.  

We divided individuals diagnosed with MDD on the basis of a diagnosis of BPD (ICD10: F30-F31), comorbid 

anxiety (F40.0-40.2, F41.0-41.1, or F42), sex (as registered at birth), recurrence (ICD10: F32 or F33), 

severity (ICD10: F32/33.0, F32/33.1, F32/33.2, or F32/33.3), age at first recorded diagnosis, and mode of 

treatment (inpatient, casualty-ward or outpatient). We computed a composite estimate of genetic liability 

for each of the five mental disorders as a weighted sum of the PGS and PA-FGRS with weights 

corresponding to the betas from a logistic regression of their natural outcome in a calibration sample 

(Supplementary Figure S9). For each subgroup defining feature, multiple multinomial logistic regression 

was fitted to sequentially estimate the effects of each the composite genetic risk estimates with age, sex 

and 10 genetic PCs as covariates using the R package nnet52.  We report a normalized partial effect size 

for each PGS and PA-FGRS, βMLR/βLR. The effect is the ratio of the effect of the PA-FGRS on MDD outcomes 

(βMLR) over its effect on the natural outcomes (βLR; e.g., ASD for FGRS for ASD).Each βLR was estimated 

separately in outcome-specific case cohort samples (e.g. ASD case cohort, Supplementary Figure S9). This 

effect sizes can then be given context, for example, the effect of BPD genetic liability for being diagnosed 

BPD given a prior diagnosis of MDD is the same (βMLR/βLR ~ 1) as the effect of being diagnosed by BPD in 

the general population. These analyses were conducted separately for iPSYCH2012 and iPSYCH2015i 

samples and meta-analyzed. Subgroup-level effect estimates were meta-analyzed using inverse variance 

weighting, while heterogeneity test p–values were combined using Fisher’s method.  In total we report 

35 p-values declaring 0.05/35 = 0.0014 strictly significant. 

Genome-Wide Association Studies (GWAS) 

 

GWAS were performed within two proband groups, the iPSYCH2012 MDD case-cohort and the 

iPSYCH2015i MDD case-cohort, on imputed allelic dosage data using plink253.  For binary MDD diagnosis, 

logistic regression was applied, for continuous valued PA-FGRS, we used linear regression, both including 

sex and age and 10 principal components of genetic ancestry as covariates. Inverse-variance weighted 

meta-analysis of the two constituent samples was performed using METAL54. SNPs with association p-
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values less than 5x10-8 were declared significant, while variants with a false discovery rate of 0.05 were 

considered suggestive. Independent loci were defined as >1Mb apart. Observed-scale SNP-heritability 

(ℎ789,2:;" ) and genetic correlations to nine published GWAS (Supplementary Table S3) were estimated 

using LDscore regression55,56. Difference in ℎ789,2:;"  was computed as ℎ9<!=>?7" − ℎ@A;B/@DEF" , with std.err. 

≈ 	)𝑠. 𝑒. (ℎ𝑃𝐴−𝐹𝐺𝑅𝑆2 )
2
+ 𝑠. 𝑒. (ℎ𝑐𝑎𝑠𝑒/𝑐𝑡𝑟𝑙

2 )
2
. Genome-wide significant index SNPs were defined from a large 

external GWAS of MDD, modified to exclude 23andMe and iPSYCH, by clumping overlapping SNP lists. A 

paired t-test of the squared test statistic was used to assess significance of improvement. Polygenic scores 

for within iPSYCH classification were computed using SNPs with MAF>0.01 and INFO>0.8, clumped and 

thresholded with Plink 1.90b6.2753, using parameters --clump-kb 625 --clump-p1 0.1 --clump-p2 0.1 --

clump-r2 0.8. Improvements in predictions were assessed using the difference in AUC test in the pROC 

package.   
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Figure 1. The iPSYCH 2015 MDD case-cohort genealogies are complex and contain a wealth of 

information. 
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Figure 1. The iPSYCH 2015 MDD case-cohort genealogies are complex and contain a wealth of 

information. 

a) Each of the 141,265 probands (white box) in iPSYCH2015 can be connected to a number of different 

types of relatives, here reported as a total across all probands and average per proband. b) SNP-based 

relatedness is highly correlated with that inferred from genealogies. c) The number of relatives linked to 

each proband varies considerably. d) The proportion of total person-years of follow up is distributed 

differently across probands and their relatives, showing variability by relative type (y-axis), year of 

observation (x-axis), and register era (color). e) The proportion of total person-years of follow up for MDD 

cases similarly varies.  P, parents; S, siblings; Ch, children; 1GP, grandparents; Pib(lings), aunts and uncles; 

Nib(lings), nieces and nephews; iCjR ith cousin, jth removed; H-, half; Other, relative types not in the figure. 

MDD, Major Depressive Disorder. 
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Figure 2. PA-FGRS estimates a continuous liability score for a proband from diagnoses in relatives and 

specific population parameters.  

PA-FGRS estimates latent disease liability in a proband from patterns of diagnoses in arbitrarily structured 

pedigrees where relative phenotypes may be age-censored.  Input data for a proband can be a simple, 

fully-observed pedigree (i.e., no censoring; yellow proband), an extended pedigree with fully observed 

phenotypes (green proband), or an arbitrarily structured pedigree where many relative phenotypes may 

be age-censored (blue proband).  PA-FGRS combines (1) an assumed form for covariance in liabilities 

among relatives with (2) estimates of individual morbid risk from, e.g., covariate stratified cumulative 

incidence curves, in (3) a novel extension of the Pearson-Aitken selection formulas that models age-

censored controls as a mixture of cases and controls.  Estimated genetic liabilities are assigned to each 

proband and determined by the unique configuration of their pedigree, population parameters, and the 

morbid risk of each relative. Proband liabilities (colored) are shown against the population distribution of 

genetic liability (gray) with E(G|case) and E(G|ctrl) indicating the expected population (i.e., 

unconditioned) mean liability of a case and control, respectively. 
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Figure 3. Simulations demonstrate the advantages of PA-FGRS over other methods 

 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2023. ; https://doi.org/10.1101/2023.06.23.23291611doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.23.23291611
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

25 

25 

Figure 3. Simulations demonstrate the advantages of PA-FGRS over other methods 

PA-FGRS liabilities are correlated with those from other methods in simulations (a) when all relatives are 

fully observed or b) when younger relatives are age-censored.  In simulations, PA-FGRS shows the largest 

correlation with true genetic liability in simulations where age-censoring is present across c) varying trait 

prevalence and d) varying trait heritability. e) Linear regression of estimated liability on true liability shows 

PA-FGRS estimates are, uniquely, calibrated in the presence of age-censored records. f) The presence of 

shared environmental effects in generative models of familial resemblance creates correlation between 

PA-FGRS and this environmental component of liability.  This can be reduced at the cost of power (i.e. 

reduced correlation with genetic components) by excluding confounded (i.e., first-degree) relatives. 

Panels c-e show mean and 95%-confidence interval across simulations, while f shows median, range and 

interquartile range across simulations.     
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Figure 4. PA-FGRS contribute to classification models of MDD over and above PGS  
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Figure 4. PA-FGRS contribute to classification models of MDD over and above PGS  

Combining PA-PGRS-MDD and PGS-MDD improves classification of MDD (a) the iPSYCH-2012 (Ncases=20,632, 

Nctrl=23,870) and (b) iPSYCH-2015i (Ncases=10,317, Nctrl=15,785) case-cohorts. Using PGSs for five disorders 

improves prediction of MDD over only PGS-MDD in (c) iPSYCH-2012 and (d) iPSYCH-2015i. Using PA-FGRS 

for five disorders improves prediction of MDD over only PA-FGRS-MDD in (e) iPSYCH-2012 and (f) iPSYCH-

2015i. Combining PA-FGRS for five disorders with PGSs for five disorders improves prediction of MDD over 

only PA-FGRS-MDD and PGS-MDD in (g) iPSYCH-2012 and (h) iPSYCH-2015i . AUC area under the receiver 

operating characteristic curve with 95%-confidence interval. 
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Figure 5. Composite genetic profiles identify robust signatures of genetic heterogeneity in MDD 
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Figure 5. Composite genetic profiles identify robust signatures of genetic heterogeneity in MDD 

We predicted MDD subgroup membership from composite genetic liability scores that integrates PGS and PA-FGRS, together, in multinomial 

logistic regression with controls as a reference group.  (a) Higher MDD, SCZ, and BPD genetic liability were associated with conversion from MDD 

to BPD. (b) Higher MDD and SCZ genetic liability were associated with a comorbid anxiety diagnosis. (c) Higher MDD genetic liability was associated 

with recurrent MDD (d) lower MDD and BPD genetic liability were associated with out-patient treatment. No differences were observed 

(e)   between females and males diagnosed with MDD, (f) first MDD diagnosis before/after age 23, or (g) mild, moderate, severe, or psychotic 

depression.  PGS-only and PA-FGRS-only effects are highly consistent both, when (h) using all relatives and (i) when excluding first degree 

relatives.  (a-g) Effect sizes are presented on a calibrated scale, where the regression coefficient describing the effect of a genetic liability score on 

the subgroup is divided by the coefficient of the same score when predicting its natural outcome (i.e., BPD score predicting BPD) in a simple logistic 

regression.  This places the magnitude of subgroup effects on a scale that is relative to the effect of the score in its distinguishing natural outcome 

from controls, which can account for differences in the sensitivity of the individual scores.  (a-f) models are meta-analyzed across iPSYCH2012 ( 

Ncases≤20,632, Nctrl≤23,870) and iPSYCH2015i (Ncases≤10,317, Nctrl≤15,785), (g) is only available in iPSYCH2012. Significance is depicted in bold, at p < 0.05 

/ 35. Detailed sample sizes for the individual analyses are provided in Table S3. Error-bars indicate 95% confidence intervals. MDD major depressive 

disorder; SCZ schizophrenia; BPD bipolar disorder; ASD autism spectrum disorders; ADHD attention-deficit/ hyperactivity disorder; p, p-value.
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Figure 6. PA-FGRS liabilities improve power for GWAS of MDD 

Genome wide association studies (GWAS) of 25,841 cases and 38,545 controls using (a) PA-FGRS liability 

finds three independent genome-wide significant loci, while (b) logistic regression (case/control) finds 

two.  c) PA-FGRS GWAS test statistics are more extreme (i.e., more significant) than case-control GWAS at 

index SNPs of 28 loci reported in a previous GWAS of MDD. PGS trained using PA-FGRS GWAS achieve 

higher classification accuracy that those trained on case-control GWAS in d) iPSYCH2012 and e) iPSYCH 

2015i, two independent evaluation cohorts. f) SNP-heritability estimated by LD-score regression analyses 

is slightly, but not significantly, larger for PA-FGRS GWAS, while estimated intercepts are equivalent. g) 

PA-FGRS and case-control GWAS show similar genetic correlations with external GWAS of MDD and 

related traits.  
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