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ABSTRACT 

Limited ancestral diversity has impaired our ability to detect risk variants more prevalent in non-

European ancestry groups in genome-wide association studies (GWAS). We constructed and 

analyzed a multi-ancestry GWAS dataset in the Alzheimer’s Disease (AD) Genetics Consortium 

(ADGC) to test for novel shared and ancestry-specific AD susceptibility loci and evaluate 

underlying genetic architecture in 37,382 non-Hispanic White (NHW), 6,728 African American, 

8,899 Hispanic (HIS), and 3,232 East Asian individuals, performing within-ancestry fixed-

effects meta-analysis followed by a cross-ancestry random-effects meta-analysis. We identified 

13 loci with cross-ancestry associations including known loci at/near CR1, BIN1, TREM2, 

CD2AP, PTK2B, CLU, SHARPIN, MS4A6A, PICALM, ABCA7, APOE and two novel loci not 

previously reported at 11p12 (LRRC4C) and 12q24.13 (LHX5-AS1). Reflecting the power of 

diverse ancestry in GWAS, we observed the SHARPIN locus using 7.1% the sample size of the 

original discovering single-ancestry GWAS (n=788,989). We additionally identified three GWS 

ancestry-specific loci at/near (PTPRK (P=2.4×10-8) and GRB14 (P=1.7×10-8) in HIS), and 

KIAA0825 (P=2.9×10-8 in NHW). Pathway analysis implicated multiple amyloid regulation 

pathways (strongest with Padjusted=1.6×10-4) and the classical complement pathway 

(Padjusted=1.3×10-3). Genes at/near our novel loci have known roles in neuronal development 

(LRRC4C, LHX5-AS1, and PTPRK) and insulin receptor activity regulation (GRB14). These 

findings provide compelling support for using traditionally-underrepresented populations for 

gene discovery, even with smaller sample sizes.   
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INTRODUCTION 

Alzheimer’s disease (AD) affects over a third of people aged 80 years or older1, with AD 

prevalence continuing to increase with the growth in the global population of elderly. Currently, 

there are approximately 50 million persons with AD worldwide, projected to increase to 135-200 

million by 20501. Coupled with the facts that there are limited therapeutic interventions for AD 

and that this disease affects individuals of all ancestries, the expanding burden of AD makes this 

disease an urgent global public health crisis. Genome-wide association studies (GWAS) have 

identified over 75 risk loci associated with risk of AD and related dementias2-5, providing critical 

insights into molecular mechanisms underlying disease development. These studies, however, 

have been conducted predominantly in populations of European ancestry, although it is clear that 

ethnobiological origin (i.e. genetic ancestry) impacts genotypic risk, with rare variants in 

particular usually being shared only between genetically closely-related populations. This has 

limited the ability to identify ancestry-specific variants and loci6-8, determine shared genetic risk 

and protective factors across ancestrally-diverse populations9, and to capitalize on differential 

linkage disequilibrium (LD) structures across varied ancestral genetic backgrounds to improve 

fine-mapping of causal loci10-13. Thus, progress towards genetic prediction and precision 

medicine is significantly hampered by lack of data from non-European populations14. 

Though concepts of race, ethnicity, and ancestry are often conflated15, our study focuses on 

genetic ancestry as shared genetic background through biological descent from common 

ancestors, where common ancestors may be defined over varying windows of generational time. 

For the purposes of this analysis, this may include individuals of more genetically homogeneous 

groups such as European (non-Hispanic whites (NHW)) and East Asian (EAS) ancestry groups, 

as well as groups with more recent admixture of previously ancestrally-divergent groups, such as 
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African Americans (AFA), whose genetic ancestries includes admixture from African and 

European ancestries, and Hispanics (HIS), whose genetic ancestries include highly variable 

levels of admixture predominantly between Amerindian, European, and African ancestries and 

with distinctly different admixture patterns geographically.   

To identify novel loci associated across ancestrally-diverse populations and explore 

differences in genetic association across these groups, the ADGC initiated the first large-scale 

multi-ancestry GWAS meta-analysis with direct genotyping and either clinical evaluation of, or 

pathological confirmation of, AD status on over 56,000 individuals of diverse ancestral 

backgrounds, including 6,728 AFA, 8,899 HIS, 3,232 EAS, and 37,382 NHW participants. We 

analyzed imputed genotypes derived from the multi-ancestry Trans-Omics for Precision 

Medicine (TOPMed) R5 haplotype reference panel (308,107,085 variants from 97,256 

sequenced individuals). We conducted a two-stage, cross-ancestry GWAS meta-analysis of AD 

followed by secondary analyses including ancestry-aware fine-mapping to understand genetic 

architecture underlying novel genetic loci and to identify shared and distinct differences of AD 

risk and protective loci in ancestrally-diverse populations. 

 

RESULTS 

The ADGC assembled the largest multi-ancestry collection of AD samples to date, 

containing 24,388 participants with AD and 31,853 cognitively unimpaired individuals passing 

quality control (QC) from 41 NHW, 12 AFA, eight HIS, and five EAS datasets (Supplementary 

Table 1). Notably, in contrast to several previously reported studies4,5, all samples utilized in 

these analyses were directly genotyped and either clinically assessed or pathologically evaluated, 

which significantly increased the precision of the analyses. Descriptions of recruitment and 
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diagnosis of AD for newly added and previously available datasets are reported in the 

Supplementary Note, and sample sizes and genome-wide single nucleotide polymorphism 

(SNP) array platforms for the 66 individual datasets are reported in Supplementary Table 2. We 

excluded individuals younger than age 65 years at the time of censoring (age-at-onset [AAO] of 

symptoms for AD cases or age-at-last-examination/ age-at-death [AAE] for cognitively-normal 

elders [CNEs]). Intact cognition among living CNEs was confirmed with cognitive evaluations 

and absence of AD pathology among deceased CNEs. 

Cross-Ancestry Genome-wide Association Meta-analysis  

We first conducted a genome-wide association study (GWAS) for AD separately in each 

dataset using the two covariate adjustment models (without and with adjustment for APOE �4 

dosage). Subsequently, within each model, we performed a fixed-effects meta-analysis to 

combine results across datasets within each ancestry (NHW, HIS, AFA, and EAS) 

(Supplementary Tables 3-6, Supplementary Figures 1a-d and 2a-d). Q-Q plots for ancestry-

specific GWAS results (Supplementary Figures 3a-d and 4a-d) for both models in HIS, AFA, 

and EAS showed no genomic inflation (λ=0.96-1.00), while those in NHW in the APOE �4-

unadjusted model showed moderate genomic inflation (λ=1.09; after APOE � 4 adjustment, 

λ=1.06) (Supplementary Figure 3a). After cross-ancestry meta-analysis without (Figure 1) and 

with APOE �4 adjustment (Supplementary Figure 5, Supplementary Table 7) allowing for 

between-ancestry heterogeneity, we observed modest genomic deflation for either model 

(λ=0.94-0.95) (Supplementary Figure 6). 

APOE �4-Unadjusted Model 

In cross-ancestry meta-analysis under the APOE �4-unadjusted model, two novel genome-

wide significant (GWS; P≤5×10−8) variants were detected near the genes LRRC4C on 
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chromosome 11 (rs12576934: odds ratio [OR]=1.12, 95% confidence interval [95% CI]=1.08-

1.16, P=5.4×10−9) and LHX5-AS1 on chromosome 12 (rs111486601; OR=0.63, 95% CI=0.32-

1.23, P=1.1×10−8) (Figures 1-2 and Table 1). We observed the association signal in the 

LRRC4C locus across multiple ancestries including NHW (P=1.8×10−6), HIS (P=7.6×10−3), and 

EAS (P=0.06) (Figure 3 and Table 1) with the minor allele C (range of minor allele frequencies 

[MAFs]=0.17-0.33) increasing risk in all ancestries (ORs from 1.11 to 1.14; Table 1). In 

contrast, ancestry-specific evaluation of rs111486601 in the LHX5-AS1 region revealed the 

association signal to be driven predominantly by HIS (MAF=0.04, OR=0.44, 95% CI=0.34-0.57, 

P=4.8×10−10) (Figure 4 and Table 1).  

In addition to these two novel loci, 11 known AD loci were genome-wide significant in 

cross-ancestry meta-analysis (Table 1). Among these, the association signals from BIN1, 

CD2AP, PTK2B, CLU, SHARPIN, MS4A6A, PICALM, ABCA7, and APOE were supported by 

contributions from at least two ancestry groups with P<0.05 (Supplementary Figures 7-15). 

In the APOE �4-unadjusted model, of the genome-wide significant SNPs at the 13 loci, two 

(15%) were GWS and seven (54%) were nominally significant (P<0.05) in HIS; one (7.7%) was 

GWS and three (23%) were nominally significant in EAS; one (7.7%) each were GWS and 

nominally significant in AFA; and seven (54%) were at least nominally significant in both NHW 

and HIS indicating the strongest contribution to the signals by NHW (NHW>HIS>EAS>AFA) 

(Figure 2, Supplementary Figures 7-15). While sample sizes differed between ancestry groups, 

marker allele frequencies also varied widely, though directions of association were largely 

consistent across ancestry groups for most reported loci.  

Following up other previously-reported loci reaching genome-wide significance in cross-

ancestry analyses (Supplementary Table 8), we observe strong associations near but not 
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attaining GWS at several loci including SORL1 (rs117618017, P=9.6×10−8), ECHDC3 

(rs7920721, P=1.1×10−7), and ABCA7 (rs115882880, P=1.0×10−7). Within ancestries, the 

PALM2AKAP2, previously observed in a GWAS of Japanese subjects that is a subset of our EAS 

sample, was observed only among EAS participants (rs913360, P=2.7×10−8), and the noted 

association at ABCA7 was driven almost exclusively by association in AFA individuals 

(rs117618017, P=9.6×10−8) which included subjects from the dataset that originally identified 

ABCA7 in AFA. Notably, a variant in the APOE region of chromosome 19 near APOC1, 

rs157591, demonstrated GWS associations in AFA (P=3.3×10−17) and HIS participants 

(P=1.7×10−20), but only nominal significance in NHW (P=6.3×10−3); further adjustment for 

APOE �4 modestly reduced strength of association in AFA (P=4.0×10−14), with no association 

in HIS (P=0.573) or NHW (P=0.237), suggesting an ancestry-specific association independent of 

APOE �4 in AFA. 

APOE �4-Adjusted Model 

In cross-ancestry meta-analysis adjusting for APOE �4, (Supplementary Figure 3 and 

Table 2), rs111486601 near LHX5-AS1 remained genome-wide significant (P=1.47×10-9) while 

rs12576934 near LRRC4C showed reduced genome-wide significance (P=7.13×10-6 (Table 2). 

Besides the APOE ε2 SNP, six known AD loci, including CR1, BIN1, TREM2, MS4A6A, 

PICALM, and ABCA7, remained genome-wide significant when adjusting for the APOE �4 

dosage. In addition, in this model a locus within WNT3 (rs430685; P=7.4×10-8) near MAPT 

emerged with near genome-wide significance (Table 2). 

Novel ancestry-specific loci 

In the APOE ε4-unadjusted model, ancestry-specific meta-analysis identified one novel 

genome-wide significant SNP for AD in NHW near KIAA0825 (rs141408991; OR=0.50, 
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CI=0.39-0.64, P=2.9×10−8) (Table 3). Under the APOE ε4-adjusted model, ancestry-specific 

meta-analyses revealed two novel loci in HIS, one near GRB14 (rs73978419; OR=0.0.44, 95% 

CI=0.33-0.59, P=1.3×10−8) and one near PTPRK (rs67714619; OR=1.34, 95% CI=1.21-1.48, 

P=2.4×10−8) (Table 3).  

Functional Annotation of Significantly-Associated Multi-Ancestry Loci 

The lead variant of the LRRC4C locus (rs12576934) lies in the intergenic region 254,788 

basepairs upstream from the LRRC4C (closest protein-coding gene; negative strand) transcription 

start site (TSS) and overlaps enhancers in cultured neurons suggesting a potential role in 

enhancer regulation in tissues/cell types related to AD pathogenesis (Supplementary Figure 

16). Notably, rs12576934 is a significant splicing quantitative trait locus (sQTL) for LRRC4C in 

brain frontal cortex (P=5.89×10-4) from the Genotype-Tissue Expression (GTEx) Consortium16. 

However, rs12576934 does not show a significant association with LRRC4C expression in any 

brain-tissue related expression QTL (eQTL) data, including GTEx, Metabrain17, the Microglia 

Genome Atlas (MiGA)18, and Accelerating Medicine Partnerships-Alzheimer’s Disease (AMP-

AD)19 resources. 

For the LHX5-AS1 locus, the lead variant (rs111486601) is located 170,842 base pairs 

upstream of the LHX5 TSS (closest protein-coding gene; negative strand). Multiple variants in 

linkage disequilibrium (LD; estimated using 1000 Genomes NHW populations20-22) with 

rs111486601 overlap ROADMAP23 ChromHMM24 brain enhancers in neuronal culture cells, 

hippocampus middle region dorsolateral prefrontal cortex, as well as blood enhancers in primary 

B and NK cells, suggesting potential regulatory roles in immune cell types and brain regions that 

are known to be related to AD. The variant rs111486601 overlaps and potentially disrupts 

multiple transcription factor binding sites (TFBS) as predicted by Hypergeometric Optimization 
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of Motif Enrichment (HOMER25). Given that rs111486601 is rare in NHW (MAF=0.0006), it is 

not presently observed in any QTL database (GTEx, Metabrain, MiGA, or AMP-AD), as these 

databases have been generated using common European ancestry variants.  

Differential Expression Analysis of Significantly Associated Loci  

Of eight genes flanking intergenic SNPs or containing GWS SNPs from the five novel loci, 

LRRC4C and KIAA0825 were differentially expressed between autopsy-confirmed AD brains 

and brains of cognitively-intact decedents with P<0.05 in secondary analysis of previously-

reported26 differential expression analyses using autopsied Framingham Heart Study (FHS, 

Supplementary Table 9) brains (strongest association at LRRC4C: log2FC=-0.01, P=8.8×10-4), 

while only expression of LRRC4C was significantly associated with Braak stage in FHS in 

autopsied AD brains (best association at LRRC4C: β=-0.11, P=4.7×10-3).  

Pathway analyses 

We performed pathway enrichment analyses including genes containing or flanking 

suggestively associated SNPs (P<10-6) from the cross-ancestry meta-analysis. We selected 86 

and 60 genes for APOE �4-unadjusted and -adjusted models, respectively. For both models, 

amyloid-beta related pathways were the top-ranked pathway, indicating that the relevance of this 

pathway in cross-ancestry meta-analysis was unaffected by APOE �4 adjustment. In the APOE 

�4-unadjusted model, lipid transport, endocytosis, and classical complement pathways were in 

addition significantly associated (Padjusted<0.05) (Supplementary Table 10a). Examining the 

APOE �4-adjusted model, classical complement and phospholipid efflux pathways were now 

more significantly associated and ranked higher than chylomicron remnant clearance, 

cholesterol, and endocytosis pathways with lower significance (Supplementary Table 10b).    
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Employing the ancestry-specific GWAS results from the two models, we determined 

pathways shared across ancestry groups (Supplementary Table 11). Among the significant 

pathways in each ancestry (Padjusted<0.05) from the APOE �4-unadjusted model, seven pathways 

were shared across all four ancestries related to lipid metabolism pathways (Supplementary 

Figure 17a). In the APOE �4-adjusted model no pathways with Padjusted<0.05 were shared across 

ancestries (Supplementary Figure 17b).  

 

DISCUSSION 

 In the largest cross-ancestry GWAS meta-analysis in AD to date, we identified two novel 

genome-wide cross-ancestry associations near LRRC4C and LHX5-AS1, and three ancestry-

specific genome-wide significant loci near KIAA0825 (NHW), and GRB14 and PTPRK (HIS).  

Functional annotation follow-up revealed the LRRC4C variant’s potential regulatory role in 

enhancer regulation in tissues and cell types related to AD pathogenesis, and the involvement of 

the LHX5-AS1 variant in regulatory roles in immune cell types and brain regions. In silico 

differential expression analyses across brain tissues suggested differential expressions of 

LRRC4C and KIAA0825 between AD and control brains and association of LRRC4C expression 

with Braak stage. Pathway analyses implicated pathways associated with amyloid metabolism, 

cholesterol transport, and inflammation, consistent with previous pathway-based findings in AD.  

While the available AD GWAS data from non-European ancestry groups continue to be 

dwarfed by the sample sizes of AD GWAS in European ancestry subjects, our analyses 

demonstrate the power of multi-ancestry datasets. Of particular interest is the significant 

association at the SHARPIN locus in our study. The SHARPIN locus was first observed in a study 

of 111,326 clinically-diagnosed and ‘proxy’ AD cases and 677,663 controls individuals of 

European ancestry (rs34173062, MAF=0.081, OR=1.13, P=1.7×10-6) and later confirmed in 
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much larger sample sizes4,27,28. While NHW participants in this study had similar MAF (0.086 

here vs. 0.081) and similar effect size (OR=1.19 here vs. 1.13), the much larger effect size in HIS 

participants (ORHIS=1.37; MAFHIS=0.057) ensured sufficient power to detect a GWS cross-

ancestry association in just 56,241 subjects, only 7.1% the sample size of Bellenguez et al., an 

astonishing reflection on the unique power leveraging diverse ancestries can provide.  

 Among the novel loci identified in cross-ancestry analyses, both LRRC4C and LHX5-AS1 

are potential biological candidates for roles in AD. LRRC4C encodes leucin-rich repeat (LRR) 

containing adhesion molecules, which are key organizers of inhibitory and excitatory synapses. 

Mutations within the gene have been implicated in neurodevelopmental disorders, such as 

autism29 and intellectual disability30. LRRC4C variants with suggestive associations with CSF b-

site APP cleaving enzyme (BACE) have been previously discovered in ADNI31. Additionally, 

one study used LRRC4C knock-out mice in an experimental multiple sclerosis model and found a 

neuron-protective role for LRRC4C, concluding that the ectopic expression of LRRC4C protected 

neurons from immune damage32. Associated variants in the LRRC4C locus are significantly 

associated with sQTL for LRRC4C in GTEx brain frontal cortex, and fall in a regulatory region 

that are notably enhancers in neuron tissue33, with transcription factor (TF) Chromatin 

ImmunoPrecipitation Sequencing (ChIP-Seq) experiments showing the region overlapping our 

index variant as being a target of Srebf1 in exocrine gland, epithelium and mammary gland 

tissues. Srebf1 is a transcriptional activator required for lipid homeostasis and has been identified 

as a proneural transcription factor in radial glia34. Variants of SREBF1 influence AD risk by 

moderating the deleterious effect of the APOE ε4 allele35.  

LHX5-AS1 is an antisense RNA gene, which is complementary to the mRNA LHX5 with 

which it hybridizes and blocks its translation into protein. LHX5 encodes LIM homeobox 5, 
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which is essential for the regulation of precursor cell proliferation. This gene controls neuronal 

differentiation and migration during hippocampal development. LHX5 and LHX5-AS1 are 

similarly expressed in various regions of the adult central nervous system including 

hypothalamus, spinal cord, cerebellum, basal ganglia, and cerebellar hemisphere. Significantly 

associated variants for this locus fall in a regulatory region, for example, bivalent enhancers in 

hematopoietic multipotent progenitor cells and brain33. Our specific index variant is an enhancer 

in blood and a transcription variant in neural progenitor cells33. Variants in 12q24 have 

previously been associated with hippocampal volume36. This novel locus is ~360 kb away from 

the recently-reported locus at TPCN14.  

Notably, most of the novel loci identified in ancestry-specific analyses act in biologically 

plausible pathways. The protein encoded by Grb14 functions as a negative modulator of insulin 

receptor activity (IR) activity. Both insulin resistance and type 2 diabetes (T2D) and have been 

implicated in AD by a large body of epidemiological, neuropathological, and experimental 

studies37. Brain tissue from individuals with AD show major abnormalities in insulin signaling 

and increased presence of disease-specific pathological lesions, neurodegeneration, and neuronal 

vulnerability37,38. In structural and functional neuroimaging studies, T2D and insulin resistance 

are associated with white increased burden of white matter lesions, decreased hippocampal 

volume, regional cerebral blood flow and oxygenation39-43. PTPRK encodes a member of the 

protein tyrosine phosphatase (PTP) family regulating a variety of cellular processes including 

cell growth, differentiation, mitotic cycle, and oncogenic transformation. Variants in PTPRK 

were recently found to be associated with reaction time in a GWAS on cognitive function in 

300,486 individuals of European ancestry44. KIAA0825 encodes a protein of largely unknown 
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function; however, it is differentially expressed in AD vs. control in brain RNAseq data (see 

URL below). 

Leveraging GWAS on diverse ancestries, here we observed evidence for novel loci not seen 

in prior multi-ancestry or large NHW-only studies. Especially salient is the association at the 

SHARPIN locus, first observed as a dementia locus in a single-ancestry NHW GWAS almost 13 

times larger than the current study, and observed here with far fewer samples (rs34173062, 

P=1.81×10-9). 

While this study yielded several novel AD susceptibility loci, the fewer non-European 

ancestry samples relative to European ancestry samples (57.2% of participants) remains a 

limitation. This constrains the identification of rare variants and novel ancestry-specific loci in 

highly admixed groups including AFA and HIS, where heterogeneity in levels of European, 

African, and Amerindian admixture may strongly limit statistical power. Future work planned for 

these data includes global and local admixture analyses to provide detailed characterization of 

patterns of admixture and adjust for these positional and ancestry-specific background 

differences. While more non-European ancestry AD GWAS are valuable for cross-ancestry 

comparisons of AD genetic risk profiles, even modest amounts of diverse data tremendously 

boost our ability to detect novel AD susceptibility loci. 

 

METHODS 

Variant- and sample-level quality control (QC). We performed QC on individual ADGC 

datasets using a multi-step pipeline with key functions implemented in PLINK v1.945-47. All 

datasets included in analysis included only cases that met either NINCDS-ADRDA48 or NIA-

AA49 criteria for clinical diagnosis of AD and had an age-at-onset >60 years or had autopsy-
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confirmation of late-onset AD pathology; controls/non-cases (“cognitively-normal elders”, 

CNEs) were individuals with a mini-mental status examination (MMSE)>26 or modified mini-

mental status examination (3MS) score>87 at most recent exam and/or were reported to be 

cognitively intact at time of death (details in Supplementary Note 1). We identified and 

excluded low-quality variants and samples after re-estimating all quality metrics following an 

initial filter excluding variants with a genotype missingness rate of >10%. Variant-level QC 

filters implemented thereafter included exclusions of (a) SNPs with call rates below 98% for 

Illumina and 95% for Affymetrix panels; (b) SNPs with departure from Hardy-Weinberg 

Equilibrium (HWE) of P<10-6 among controls for variants of MAF>0.01; and (c) SNPs with 

informative missingness by case-CNE status of P<10-6. For sample-level QC, samples were 

excluded if (a) the individual genotyping call rate was <95%; (b) if X chromosome 

heterozygosity indicated inconsistency between predicted and reported sex; or (c) if population 

substructure analyses (described below) indicated the sample did not cluster with samples in its 

reported ancestry grouping when compared against multi-ancestry data from the 1000 Genomes 

(1kG) Phase 3 reference panel. For examples, reported NHW samples were expected to cluster 

with 1kG European ancestry sample groups while reported AFA samples being admixed were 

expected to cluster between and around 1kG European and African ancestry sample groups.  

Relatedness Checks.  Relatedness was assessed using the “--genome” function of PLINK 

v1.9. Using a common set of ~20,000 linkage disequilibrium (LD)-pruned SNPs sampled from 

among genotyped variants across ancestry groups, �� (the proportion of alleles shared IBD) was 

estimated across all pairs of participants across all ADGC datasets. Among pairs of participants 

with no known familial relationships, one sample was excluded among pairs with ��>0.95 if 

phenotype and covariate data were identical, otherwise both samples were excluded; among all 
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pairs with  ��>0.4 but less than 0.95, one sample was kept giving preference to cases over CNEs, 

age (earlier age-at-onset among case pairs, later age-at-exam among CNE pairs). Pairs of 

relatives were dropped from family datasets if �� differed substantially from expectation based on 

their reported relationships. 

Population substructure. To identify outlier samples within each dataset with ancestry group, 

we performed a principal components analysis (PCA) using ‘smartpca’ in EIGENSOFT50,51 on 

the subset of ~20,000 LD-pruned SNPs used for relatedness checks on genotypes from all 

samples within each individual dataset and from the 1kG Phase 3 reference panels. Individuals 

not clustering with their reported ancestry groups (or between reported ancestry groups for 

admixed subjects) were excluded from analysis when including 1kG groups. To account for the 

effects of population substructure in our analysis, a second PCA was performed using only the 

remaining individuals in each dataset. Principal components (PCs) 1-10 were examined for 

association with AD case-control status and eigenvector loading, and only PCs showing nominal 

association with AD (P<0.05) and eigenvector loadings >3 were used in covariate adjustment for 

populations substructure (average number of PCs used is 3; range: 2-4).  

TOPMed Imputation. For each dataset, SNPs not directly genotyped were imputed on the 

Trans-Omics for Precision Medicine (TOPMed) Imputation Server (TIS)52 using samples of all 

ancestries available on the release 5 (R5) reference panel53, which includes 308,107,085 SNPs 

observed on 194,512 haplotypes (from 97,256 participants), all with an estimated minor allele 

count (MAC) ≥5 and observed in samples from at least two separately-ascertained data sources. 

Phasing on the TIS was done with EAGLE54, while imputation was performed using 

Minimac455. Quality of imputation for all variants was assessed using R2 for imputation quality, 

although all variants were retained and not filtered prior to analysis. Following imputation and 
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analysis, SNPs of all frequency were filtered using a conservative quality threshold, R2
≥0.8, to 

assure high quality of rare variants with MAF≤0.01. Analysis of SNP imputation quality by bin 

of MAF revealed that more than 80% of variants of MAF>0.0005 had R2
≥0.8; among variants 

with MAF≤0.0005, approximately 50% of variants had R2
≥0.8 in most datasets with n>1,000 

participants. After association analyses at several cross-dataset and within-dataset filtering 

thresholds, reported analyses include only variants of R2
≥0.8 within each dataset for the purpose 

of noise reduction. Genotyped and imputed variants were all mapped to the GRCh138/hg38 

human genome build. 

Single-variant Association Analysis and Within-Ancestry Meta-analysis for Common 

Variants (MAF>0.01). Single variant-based association analysis on datasets of unrelated cases 

and CNEs were performed in SNPTEST56 using score-based logistic regression under an additive 

model with covariate adjustment for PCs, age (defined as age-at-onset for cases and age-at-last 

exam for CNEs), sex, and in certain datasets, additional adjustment for study-specific indicator 

variables (“APOE-unadjusted”; Model 1). A second model (“APOE-adjusted”; Model 2) 

included covariate adjustment for dosage of APOE ε4 (0/1/2 copies), which is commonly 

observed as an effect modifier. Family-based datasets were analyzed using GMMAT, an R 

package for performing association tests using generalized linear mixed models (GLMMs). 

These GLMMs allow for both a binary outcome and adjustment for relatedness via a genetic 

relationship matrix (GRM). Score tests were performed for each genetic variant assuming an 

additive model with fixed effect covariate adjustment for PCs, age (defined as age-at-onset for 

cases and age-at-last exam for CNEs), sex and random effect adjustment for the GRM 

(calculated using GEMMA) in the family-based datasets. After association analysis on imputed 

data, variants with regression coefficient of |β|>5 and any erroneous estimates (negative standard 
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errors or P-values equal to 0 or 1) were excluded from further analysis. Within-study association 

results for variants common (MAF>0.01) to at least one study were meta-analyzed using a fixed-

effects approach with inverse variance-weighting in METAL57. 

Single-variant Association Analysis and Within-Ancestry Meta-analysis for Rare Variants 

(MAF≤0.01).  Rare variant association and meta-analysis was performed for individual variants 

using the SeqMeta58 package in R59. SeqMeta performs a score-based logistic regression, 

estimating scores in individuals using ‘prepScores()’ and performing meta-analysis using 

‘singleSNPMeta()’. Family-based datasets were analyzed using GMMAT as described 

previously for common variants and no datasets with fewer than 100 cases and/or CNEs were 

analyzed. As in common variant analyses, models evaluated included covariate adjustment for 

PCs. As for common variants, any SNPs with a regression coefficient of |β|>5 and any erroneous 

estimates were excluded from further analysis after meta-analysis of imputed rare variants.  

Single-variant Cross-Ancestry Meta-Analysis. All cross-ancestry meta-analyses were 

performed using the Han-Eskin random-effects (REHE) model as implemented in METASOFT60, 

which is optimized for the detection of cross-ancestry associations in the presence of effect 

heterogeneity between ancestry groups. The REHE model has similar power to a fixed-effects 

model when effect heterogeneity between ancestry groups is modest. Cross-ancestry meta-

analyses incorporated within-ancestry genome-wide summary statistics from the single variant 

fixed-effects meta-analyses described above for NHW, AFA, HIS, and EAS ancestry groups 

(SNPTEST/GMMAT METAL for common variants [MAF≥0.01]; SeqMeta/GMMAT for rare 

variants [MAF<0.01]). In the primary cross-ancestry analyses, all variants with a within-ancestry 

MAF>0.01 in at least one dataset were incorporated into analyses.  
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Functional Annotation of Significantly Associated Loci. We used all annotations in 

Functional genomics repository (FILER)61 for our analyses. To reveal potential biological 

functions of the variants, experimental studies have shown that matching tissues/cell types to the 

phenotype of interest is one of the keys to success. Thus, we focused our analyses on the brain-

related tracks harmonized in FILER. These brain-related tracks originated from ROADMAP23 

(for enhancer and active histone marks), Encyclopedia of DNA Elements (ENCODE62; active 

histone marks) and HOMER25 (predicted TFBSs). We annotated the five-novel genome-wide 

significant signals (cross ancestry and ancestry-specific results) using brain-related tracks 

harmonized in FILER. By annotating variants with these various functional genomics data, we 

identified variants with converging functional evidence and determined which variants had a 

higher chance of being functional in the brain.  

Differential Expression Analysis of Significantly Associated Loci. We followed up SNPS 

with genome-wide significant associations (GWS; P<5×10-8). If the GWS SNP is intergenic, we 

selected closest genes of the SNP. If the GWS SNP resides in the gene, we selected the gene. 

The selected genes were assessed for differential expression between AD and control brains from 

prefrontal cortex tissue specimens of 208 participants (64 autopsy-confirmed AD cases and 129 

controls) of the Framingham Heart Study (FHS) and Boston University Alzheimer’s Disease 

Center (BUADC). Details of diagnosis, data cleaning, and analysis methods were previously 

reported26,63. In brief, differential gene expression between AD and control brains was performed 

using the LIMMA64,65 software. Expression of a gene was compared in AD and control brains 

using linear regression models including the log2-transformed normalized expression values and 

terms for age at death (AAD), sex, and RNA integrity number (RIN). We also evaluated 

associations of gene expression for Braak staging for neurofibrillary tangles and the Consortium 
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to Establish a Registry for Alzheimer Disease (CERAD) semi-quantitative criteria for neuritic 

plaques (CERAD Score)66. Values for each trait were adjusted for AAD and sex, and the 

residuals were rank-transformed as previously described67. Association of log2-transformed 

expression levels for each rank-transformed neuropathological trait was evaluated using linear 

regression models that adjusted for RIN in the FHS/BUADC dataset. 

Pathway Analysis. For pathway analysis, we selected flanking genes of suggestive SNPs with 

P<10-6 from cross-ancestry meta-analysis and each within-ancestry meta-analysis. We conducted 

pathway analysis using GO Biological Process in the EnrichR program68. For cross-ancestry 

signals, we compared significantly enriched pathways after FDR corrected P-value 

(Padjusted<0.05) between APOE-unadjusted and -adjusted models. For each analysis model, we 

created Venn diagrams of pathways with Padjusted<0.05 from each ancestry. We reported both 

unique and shared pathways across different ancestry populations. 
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Table 1. Summary statistics for identified loci reaching genome-wide statistical significance.in cross-ancestry meta-analyses of genome-wide associations estimated with covariate adjustment for age-at-onset (cases)/age-at-

last-exam (controls), sex, and PCs for population substructure.  

Variant Chr Basepair Nearest 
Gene 

Ref/ 
Eff Alleles 

Cross-Ancestry AFA EAS HIS NHW 
OR (95% 

CI) 
P EAF OR (95% 

CI) 
P EAF OR (95% 

CI) 
P EAF OR (95% 

CI) 
P EAF 

OR (95% 
CI) 

P 

Previous genome-wide-significant loci still reaching significance 

rs679515 1 207577223 CR1 T/C 
1.14 

(1.10-1.19) 
5.76E-12 0.043 

1.11 
(0.89-1.38) 

0.356 0.059 
1.66 

(0.70-3.93) 
0.245 0.121 

1.07 
(0.96-1.2) 

0.232 0.203 
1.16 

(1.11-1.20) 
6.92E-12 

rs6733839 2 127135234 BIN1 C/T 
1.12 

(1.05-1.2) 
7.18E-26 0.398 

1.13 
(1.04-1.23) 

0.00315 0.348 
0.99 

(0.83-1.18) 
0.940 0.407 

1.08 
(1.00-1.16) 

0.0422 0.402 
1.20 

(1.16-1.24) 
4.86E-25 

rs75932628 6 41161514 TREM2 C/T 
1.44 

(0.47-4.4) 
1.66E-12 0.001 

0.66 
(0.18-2.43) 

0.532 NA NA NA NA NA NA 0.007 
2.18 

(1.77-2.69) 
2.39E-13 

rs1385742 6 47627419 CD2AP A/T 
1.10 

(1.06-1.14) 
7.59E-10 0.422 

1.07 
(0.98-1.16) 

0.133 0.339 
1.80 

(1.02-3.18) 
0.0433 0.363 

1.10 
(1.02-1.19) 

0.0175 0.369 
1.10 

(1.06-1.14) 
3.75E-8 

rs2741342 8 27472579 PTK2B C/T 
0.92 

(0.86-0.98) 
1.22E-8 0.319 

0.97 
(0.89-1.05) 

0.423 0.387 
0.79 

(0.66-0.95) 
0.0109 0.22 

0.98 
(0.90-1.07) 

0.634 0.225 
0.89 

(0.86-0.93) 
8.18E-9 

rs1532278 8 27608798 CLU T/C 
0.92 

(0.89-0.95) 
3.70E-8 0.199 

0.92 
(0.83-1.02) 

0.0979 0.276 
1.00 

(0.84-1.20) 
0.977 0.29 

0.88 
(0.81-0.96) 

0.00220 0.382 
0.92 

(0.89-0.96) 
5.18E-6 

rs34173062 8 144103704 SHARPIN G/A 
1.20 

(1.04-1.39) 
1.81E-9 0.019 

0.91 
(0.66-1.28) 

0.601 NA NA NA 0.057 
1.37 

(1.16-1.61) 
1.88E-4 0.086 

1.19 
(1.12-1.27) 

1.38E-7 

rs1582763 11 60254475 MS4A6A G/A 
0.92 

(0.86-0.98) 
6.76E-14 0.104 

1.04 
(0.91-1.19) 

0.603 0.175 
0.96 

(0.83-1.12) 
0.602 0.306 

0.90 
(0.83-0.98) 

0.0142 0.366 
0.88 

(0.85-0.91) 
3.75E-14 

rs1898895 11 86126627 PICALM T/C 
0.89 

(0.86-0.91) 
1.11E-14 0.13 

0.89 
(0.78-1.00) 

0.0515 0.391 
0.87 

(0.77-0.97) 
0.0128 0.258 

0.92 
(0.85-1.01) 

0.0696 0.313 
0.88 

(0.85-0.91) 
2.97E-12 

rs12151021 19 1050875 ABCA7 A/G 
1.10 

(1.06-1.13) 
1.59E-8 0.404 

1.04 
(0.95-1.13) 

0.382 0.434 
1.17 

(0.74-1.84) 
0.505 0.327 

1.10 
(1.02-1.19) 

0.0177 0.338 
1.11 

(1.07-1.15) 
1.33E-7 

rs429358 19 44908684 APOE ε4 C/T 
3.10 

(2.75-3.49) 
<1E-320 0.241 

2.66 
(2.41-2.94) 

1.31E-85 0.167 
4.94 

(4.56-5.36) 
1.81E-85 0.203 

2.26 
(2.06-2.47) 

1.49E-71 0.259 
3.20 

(3.08-3.33) 
8.9E-734 

rs7412 19 44908822 APOE ε2 C/T 
0.54 

(0.50-0.60) 
3.79E-106 0.104 

0.59 
(0.52-0.68) 

5.65E-14 0.04 
0.44 

(0.37-0.52) 
8.89E-7 0.056 

0.67 
(0.57-0.78) 

7.86E-7 0.058 
0.48 

(0.45-0.52) 
4.35E-86 

Novel genome-wide-significant loci 

rs12576934 11 41714561 LRRC4C C/A 
1.12 

(1.08-1.16) 
5.37E-9 0.127 

1.09 
(0.96-1.23) 

0.194 0.335 
1.14 

(0.99-1.30) 
0.0597 0.206 

1.13 
(1.03-1.24) 

0.00761 0.168 
1.11 

(1.06-1.16) 
1.81E-6 

rs111486601 12 113643122 LHX5-AS1 C/T 
0.63 

(0.32-0.81) 
1.06E-8 0.018 

1.00 
(0.74-1.35) 

0.992 NA NA NA 0.039 
0.44 

(0.34-0.57) 
4.77E-10 0.001 

0.50 
(0.16-1.60) 

0.245 
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Table 2. Summary statistics for identified loci reaching genome-wide statistical significance in cross-ancestry meta-analyses of genome-wide associations estimated with covariate adjustment for age-at-onset (cases)/age-at-

last-exam (controls), sex, dosage of APOE ε4 alleles, and PCs for population substructure. 

Variant Chr Basepair Nearest 
Gene 

Ref/ 
Eff Alleles 

Cross-Ancestry AFA EAS HIS NHW 
OR (95% 

CI) 
P EAF OR (95% 

CI) 
P EAF OR (95% 

CI) 
P EAF OR (95% 

CI) 
P EAF 

OR (95% 
CI) 

P 

Previous genome-wide-significant loci still reaching significance 

rs679515 1 207577223 CR1 T/C 
1.14  

(1.04-1.24) 
2.24E-11 0.042 

1.15  
(0.91-1.46) 

0.235 0.059 
1.56  

(0.64-3.82) 
0.327 0.122 

1.03  
(0.92-1.16) 

0.572 0.203 
1.18  

(1.13-1.24) 
4.54E-12 

rs6733839 2 127135234 BIN1 C/T 
1.15  

(1.10-1.21) 
1.84E-20 0.398 

1.16  
(1.06-1.27) 

9.15E-4 0.347 
1.01  

(0.84-1.22) 
0.890 0.407 

1.11  
(1.03-1.20) 

0.00791 0.402 
1.19  

(1.14-1.24) 
6.20E-18 

rs75932628 6 41161514 TREM2 C/T 
1.10  

(0.21-5.66) 
2.08E-11 0.001 

0.41  
(0.11-1.56) 

0.193 -- -- -- -- -- -- 0.007 
2.25  

(1.80-2.81) 
1.36E-12 

rs10792263 11 60312178 MS4A6A C/T 
1.09  

(1.03-1.14) 
1.12E-8 0.622 

1.02  
(0.94-1.12) 

0.587 0.716 
1  

(0.88-1.14) 
0.998 0.59 

1.13  
(1.04-1.22) 

0.00235 0.627 
1.12  

(1.07-1.16) 
6.44E-8 

rs543293 11 86109035 PICALM A/G 
0.89  

(0.86-0.92) 
1.88E-10 0.136 

0.92  
(0.81-1.04) 

0.181 0.392 
0.88  

(0.78-0.99) 
0.0326 0.263 

0.91  
(0.84-1.00) 

0.0429 0.32 
0.89  

(0.85-0.93) 
1.78E-8 

rs430685 17 46781782 WNT3 T/C 
0.89  

(0.85-0.93) 
7.42E-8 0.137 

0.92  
(0.81-1.05) 

0.229 -- -- -- 0.185 
0.87  

(0.79-0.97) 
0.00902 0.223 

0.89  
(0.85-0.94) 

3.14E-6 

rs115882880 19 1001778 GRIN3B C/A 
1.23  

(0.94-1.59) 
1.45E-9 0.101 

1.50  
(1.32-1.70) 

2.45E-10 -- -- -- 0.042 
1.21  

(1.00-1.47) 
0.0556 0.003 

0.82  
(0.53-1.28) 

0.392 

rs7412 19 44908822 APOE ε2 C/T 
0.70  

(0.62-0.79) 
2.00E-30 0.103 

0.73  
(0.63-0.85) 

4.59E-5 0.04 
0.79  

(0.49-1.27) 
0.331 0.056 

0.77  
(0.65-0.91) 

0.00251 0.059 
0.63  

(0.58-0.69) 
3.67E-26 

Novel genome-wide-significant loci 

rs111486601 12 113643122 LHX5-AS1 C/T 
0.57  

(0.28-1.17) 
1.47E-9 0.017 

0.96  
(0.71-1.28) 

0.767 NA NA (NA) NA 0.037 
0.40  

(0.30-0.52) 
9.13E-11 0.001 

0.42  
(0.14-1.27) 

0.124 
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Table 3. Summary statistics for identified loci reaching genome-wide statistical significance in within-ancestry meta-analyses estimated under minimum covariate adjustment (age-at-onset (cases)/age-at-last-exam (controls), 

sex, and PCs for population substructure) and extended covariate adjustment models (age-at-onset (cases)/age-at-last-exam (controls), sex, dosage of APOE ε4 alleles, and PCs for population substructure) for identified loci 

reaching genome-wide significance. 

Variant Chr Basepair 
Nearest 

Gene 
Ref/ 

Eff Alleles 

Cross-Ancestry AFA EAS HIS NHW 
Ancestry 

with Signal Model OR (95% 
CI) 

P EAF OR (95% 
CI) 

P EAF OR (95% 
CI) 

P EAF OR (95% 
CI) 

P EAF OR (95% 
CI) 

P 

rs141408991 5 94163462 KIAA0825 G/A 
0.69 

(0.28-1.09) 
1.23E-7 0.002 

0.95  
(0.26-1.86) 

0.945 -- -- -- -- -- -- 0.006 
0.50  

(0.39-0.57) 
2.91E-8 NHW 

APOE ε4-
unadjusted 

rs73978419 2 164244154 GRB14 A/G 
0.71 

(0.46-0.89) 
1.21) 

6.74E-7 0.025 
0.87  

(0.67-1.00) 
0.307 -- -- -- 0.036 

0.44  
(0.33-0.51) 

1.33E-8 0.402 
1.04  

(0.83-1.16) 
0.750 HIS 

APOE ε4-
adjusted 

6:128041848 6 128041848 PTPRK T/TTAA 
1.04 

(0.91-1.11) 
6.30E-4 0.613 

0.99  
(0.91-1.04) 

0.894 0.939 
0.90  

(0.71-1.02) 
0.406 0.760 

1.34  
(1.21-1.41) 

2.35E-8 0.837 
0.97  

(0.93-1.00) 
0.241 HIS 

APOE ε4-
adjusted 
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Figure 1. Manhattan plot of cross-ancestry meta-analyses of genome-wide associations 

estimated with covariate adjustment for age-at-onset (cases)/age-at-last-exam (controls), sex, and 

PCs for population substructure.  
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Figure 2. Ancestry comparison plot of the multi-ancestry GWAS associations. The plot 

displays results for 18 loci associated with AD risk within and across multiple ancestries. Circle 

size corresponds to the significance level, -log10(P-value), and circle color represents the 

significance threshold: red, P<5×10-8; orange, 0.05>P>5×10-8; and blue, P>0.05. Arrows 

represent the direction of effect of the risk allele, with “up” indicating increased risk and down 

decreased risk. Asterisks (“*”) indicate the association was found in APOE ε4-adjusted models. 
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Figure 3. (a) Regional association plots and (b) Forest plot for the novel LRRC4C locus cross-

ancestry and within-ancestry associations with AD depicting all associations within ±500�kb of 

the 

inter

geni

c 

lead 

varia

nt, 

rs12

5769

34. 
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Figure 4. (a) Regional association plots and (b) Forest plot for the novel LHX5-AS1 locus cross-

ancestry and within-ancestry associations with AD depicting all associations within ±500�kb of 

the intergenic lead variant, rs111486601. 

(a)  
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Figure 4. Manhattan plot of cross-ancestry meta-analyses of genome-wide associations estimated with covariate adjustment for age-

at-onset (cases)/age-at-last-exam (controls), sex, dosage of the APOE ε4 allele, and PCs for population substructure.  
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