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Abstract 

Epigenetic clocks can measure aging and predict the incidence of diseases and mortality. Higher 

levels of physical fitness are associated with a slower aging process and a healthier lifespan. 

Microbiome alterations occur in various diseases and during the aging process, yet their relation 

to epigenetic clocks is not explored. To fill this gap, we collected metagenomic, epigenetic and 

exercise-related data from physically fit individuals and applying epigenetic clocks, we 

examined the relationship between gut flora, epigenetic age acceleration and physical fitness. 

We revealed that an increased entropy in the gut microbiome is associated with accelerated 

epigenetic aging, lower fitness or impaired health status. We also observed that, in general, 

accelerated epigenetic aging can be linked to the abundance of pro-inflammatory and other 

pathogenic bacteria and decelerated epigenetic aging or high fitness level can be linked to the 

abundance of anti-inflammatory bacteria. Overall our data suggest that alterations in the 

microbiome can be associated with epigenetic age acceleration and physical fitness.  
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Introduction 

Currently, there are very limited options for increasing the maximum lifespan in humans. On 

the other hand, a substantial body of evidence, from several studies1,2, has consistently shown 

that a healthy lifestyle can increase the expected lifespan and reduce the incidence of lifestyle-

related diseases. DNA methylation-based aging clocks (shortly epigenetic clocks) are 

developed to measure biological age that may be largely influenced by lifestyle among other 

environmental and genetic factors3,4. The first-generation epigenetic clocks (such as Horvath's 

pan-tissue clock, the blood-based Hannum clock and the Skin and Blood clock) can predict age 

accurately and exhibit associations with clinical biomarkers and mortality risk5–7. Second-

generation epigenetic clocks, such as PhenoAge, GrimAge and DunedinPACE show even 

stronger associations with mortality risk and some age-related conditions8–10. Very recently we 

developed DNAmFitAge which is based on genes that are related to physical fitness11. It was 

shown that physically fit people have a younger DNAmFitAge and experience better age-

related outcomes: lower mortality risk, coronary heart disease risk, and increased disease-free 

status. DNA methylation-based aging clocks are plastic and readily respond to lifestyle 

modifications and stress12,13. Another very plastic system in the human body is the microbiome, 

which is characterized by rapid change in childhood, followed by relatively long lifestyle-

associated stability, and finally age-associated modification14. The results of a recent study 

using the microbiome profile of 9000 subjects revealed that with aging the microbiome flora is 

getting more and more unique, which is associated with immune regulation, inflammation, and 

longevity, moreover, over 85 years the high relative abundance of Bacteroides and having a 

low gut microbiome uniqueness measure were both associated with significantly decreased 

survival in the course of 4-year follow-up14. The microbiota of the gut is crucial for breaking 

down dietary nutrients, regulating intestinal and systemic immune responses, producing small 

molecules critical for intestinal metabolism, and generating several gasses that can modulate 

cellular function. Due to the complex function of the gut microbiome, the diversity of microbes 

can be defined as the range of different kinds of unicellular organisms, bacteria, archaea, 

protists, and fungi15. However, the possible role or connection of the microbiome to epigenetic 

aging and physical fitness is still unknown. Recently attempts were made to create a pipeline to 

study the association of the architecture of microbiome and host diseases16 or developing aging 

clocks based on taxonomic and functional profiling17,18. Moreover, it appears that the well-

known difference in the mean lifespan of females and males could be associated with 
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measurable differences in the microbiome and this sexual dimorphism in the microbiome (i.e. 

microgenderome) has high relevance to disease susceptibility19. These approaches suggest the 

great potential of metagenomic investigations on human health, diseases, and aging. Here we 

examine associations between microbiome flora, DNA methylation-based aging, and the level 

of physical fitness.  

 

Results 

Characterisation of the gut microbiome of physically fit males and females. We collected 

metagenomic, epigenetic and exercise-related data from 80 master athletes with ages between 

38 and 84 years and applying epigenetic clocks, we examined the relationship among the 

microbiome, epigenetic age acceleration and physical fitness (Fig. 1A). Females and older 

individuals are slightly overrepresented in our volunteer cohort (Fig. 1B). First, we 

characterised the gut microbiome of physically fit males and females in the phylum level. 

Firmicutes was the highest abundant taxa overall (mean: 0.556, std: 0.223) followed by 

Bacteriodetes (mean: 0.172, std: 0.223).  We observed a remarkable difference in phylum and 

species distribution by gender (Fig. 1C, Extended Data Fig 1., respectively). Firmicutes had a 

significantly lower relative abundance in females compared to males, while the relative 

abundance of Proteobacteria was significantly higher in females (Fig. 1D). As males and 

females of our cohort express remarkable differences regarding the number of samples, 

microbiome composition, epigenetic age acceleration and exercise-related parameters, we 

conduct data analysis separated by gender.  

 

Associations of the microbiome and epigenetic aging clocks. We investigated the 

relationships between epigenetic aging clocks and the results of shotgun sequencing of the 

microbiome (Fig. 2, Extended Data Fig. S2).  We calculated the diversity of the microbiome 

(measured by Shannon entropy of the relative abundances) at the seven taxonomic levels. We 

found significant positive correlations between age acceleration (i.e. the advanced biological 

age of an individual) and microbiome diversity for some epigenetic clocks at some taxonomic 

levels (four cases for males and one case for females) (Fig. 2AB). In general, our data suggests 

that an increased entropy in the gut microbiome may be associated with accelerated epigenetic 

aging.  
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For males, at the phylum level, the relative abundance of Actinobacteria and 

Proteobacteria both positively correlated with the age acceleration calculated by two-two 

epigenetic clocks (Horvath’s pan-tissue DNAm age and the Hannum clock as well as 

DNAmFitAge and GrimAge, respectively) (Fig. 2C).  For females, at the phylum level, the 

relative abundance of Bacteroidetes positively correlated with the age acceleration by three 

epigenetic clocks (DNAmFitAge, GrimAge, and DunedinPACE) (Fig. 2D).  

To refine the above results at the species level, we investigated the relationship between 

epigenetic clocks and the relative abundance of the abundant species. We considered only 

strong associations (agreed by at least two epigenetic clocks and/or p-value smaller than 0.01). 

In males, the positive association of Actinobacteria and age acceleration seems to be driven by 

Bifidobacterium adolescentis, Collinsella aerofaciens, while the positive association of 

Proteobacteria can be linked to Escherichia coli (Fig. 2E). Other remarkable positive 

associations with age acceleration or pace of aging were observed in the case of Enterococcus 

faecium. Interestingly, strong negative associations with age acceleration also were found in 

the case of three species: Bacteroides stercoris, Coprococcus comes and Anaerostipes hadrus. 

In females, the positive association of Bacteroidetes phylum and age acceleration is clearly 

linked to two species, Bacteroides uniformis, and Bacteroides vulgatus  (Fig. 2F). However, 

other remarkable positive associations with age acceleration were observed in two Firmicutes 

species: Faecalibacterium prausnitzii and Dorea longicatena.  

We also examined the relationship between bacterial pathways of the microbiome and 

epigenetic clocks. CDP-diacylglycerol biosynthesis and flavin biosynthesis showed negative 

correlations with age acceleration and pace of aging in males (Fig. 2G). Interestingly, the same 

pathways showed positive correlations with age acceleration and pace of aging in females (Fig. 

2H).  

 

Associations of the microbiome and exercise-related parameters. We also investigated the 

relationship between exercise-related measurements, relative abundance, and bacterial species-

catalyzed pathways (Fig. 3, Extended Data Fig. 4). In males, we found significant negative 

correlations between microbial diversity and the parameters VO2max, JumpMax, and Redox 

Balance and positive correlations with trygliceride levels (Fig. 3A). In females we found 

significant negative correlations between microbial diversity and BMI and cognitive test 

performance (Fig. 3B). Overall, our data suggest that an increased entropy in the gut 

microbiome may be associated with low fitness or impaired health status.  
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In males, at the phylum level, our statistical analysis revealed a positive relationship 

between Euryarchaeota and triglyceride levels, as well as, Bacteroidetes and redox balance,  

while negative associations were observed between Euryarchaeota and redox balance, as well 

as, Proteobacteria and VO2max (Fig. 3C). In females, Firmicutes were negatively associated 

with BMI and triglyceride levels and positively associated with HDL levels (Fig. 3D). 

Furtheremore, the greater relative abundance of Verrucomicrobiota was associated with lower 

levels of cholesterol.  

We refined the above analysis at the species level and focused on the highly significant 

associations (p-value smaller than 0.01) or the cases when consistency of multiple associations 

appeared. In males, VO2max showed a remarkable high positive correlation with the abundance 

of Fusicatenibacter saccharivorans (Fig. 3E). Faecalibacterium prausnitzii showed a high 

positive correlation with redox balance and HDL, and at the same time, low correlations with 

LDL and triglyceride level. Coprococcus comes relative abundance expressed a positive 

association with HDL levels, while Blautia obeum showed a positive association with BMI.  

The genus Eubacterium, which consists of Gram-positive bacteria, exhibited a negative 

relationship with GripMax and JumpMax.  

In females, the abundance of Roseburia faecis showed a negative relationship to irisin, 

LDL, triglyceride, and cholesterol levels (Fig. 3F). The genus Eubacterium exhibited a negative 

relationship with GripMax and JumpMax, similarly to males.  

We examined the relationship between physical fitness-related biomarkers and the 

molecular pathways that are catalyzed by bacterial species in the microbiome (Fig. 2E). Redox 

balance showed a positive association with dTDP-L-rhamnose biosynthesis and pyruvate 

fermentation to isobutanol in males as well as with adenine and adenosine salvage pathway in 

females. Another remarkable observation is that, in females, irisin levels showed a low 

correlation to cdp-diacylglycerol pathway.  

 

Discussion 

The microbiome is highly plastic to acute nutritional and exercise interventions, or health status 

and relatively stable because longitudinal studies suggest that the composition of intestinal 

microbiota does not drastically change in adults within the periods examined20. 

Males and females have differences in lifespan, sex hormones, muscle mass, VO2max 

and the power of the immune system19,21, therefore our observation on the difference of male 

and female microbiome could be expected. Early results of the Human Microbiome Project 
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revealed that the highest abundant phyla in the gut microbiome of the general healthy 

population are Firmicutes and Bacteriodetes22. Consistently, these two cohorts were the most 

abundant in our highly fit master athlete cohort, however, the proportion of the two phyla is the 

opposite in our master athlete cohort compared to the general healthy population.  

The Proteobacteria phylum contains a number of pathogens such as Brucella, 

Rickettsia, Shigella, Salmonella,  Yersinia, Helicobacter and Escherichia. Therefore it was 

suggested that the increased prevalence of Proteobacteria is a potential diagnostic signature of 

dysbiosis and risk of disease23. We found a positive correlation between Proteobacteria and 

age acceleration in males with a species level dominance of Eschericia coli.  Therefore it is 

possible that the infections of some pathogen Eschericia coli strain accelerate epigenetic aging.  

This would be consistent with previous findings where accelerated epigenetic aging was 

reported in the case of other pathogen infection such as HIV and SARS-CoV-213,24,25.  

A correlation between Bifidobacterium adolescentis and mental disorders such as 

depression and anxiety was reported26. Collinsella aerofaciens is identified as pro-

inflammatory bacteria in rheumatoid arthritis, psoriasis, Crohn’s disease, inflammatory bowel 

disease, atherosclerosis, non-alcoholic steatohepatitis, type 2 diabetes, and COVID-1927. Both 

of these species are associated with accelerated epigenetic aging in males according to our 

findings.  

We observed a negative correlation between epigenetic age acceleration and the relative 

abundance of Anaerostipes hadrus, which has been identified as an anti-inflammatory, 

butyrate-producing species, and butyrate has been suggested to beneficially affect gut health28.  

In summary, our findings consistently show accelerated aging linked to pro-inflammatory and 

pathogenic bacteria and decelerated aging linked to anti-inflammatory bacteria.  

 Bacteria relative abundaces that strongly correlated with age accelerations did not show 

significant correlations with choronological age. This suggest that age acceleration (i.e 

advanced age) does not cause an increase in the abundance of pro-inflammatory bacteria but 

rather an increase in the abundance of pro-inflammatory bacteria cause age acceleration.  

With the same argument, anti-intaflammatory bacteria may cause age deceleration.  

In females, we also observed a remarkable positive correlation with age acceleration for 

the relative abundance of Dorea longicatena,  which is linked to metabolic risk markers in 

obesity29, and its level is higher in over-weight subjects30. Epigenetic age acceleration was 

linked to obesity in previous studies3,8.  In females, we also observed a positive association 

between Bacteroidetes pyhlum and age acceleration that was clearly linked to two species: 
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Bacteroides uniformis, and Bacteroides vulgatus. A gut microbiome analysis linked 

Bacteroides vulgatus with ulcerative colitis severity31.  

Fusicatenibacter saccharivorans highly correlated with VO2max in males, and this 

gram-stain-positive bacteria reportedly reduced inflammation32 and contribute to the production 

of short-chain fatty acids (SCFA)33, which are crucial to the regulation of tight junction proteins 

involved in the permeability of the epithelial barrier in the colon that are associated with obesity 

and insulin resistance34. Through receptor activation, gut-derived SCFA is an active player in 

signaling and metabolic organ-to-organ communication. However, it is not known why 

Fusicatenibacter saccharivorans level is positively linked to cardiovascular fitness. One 

possible mechanism could be that Fusicatenibacter produces butyrate which supplementation 

can activate peroxisome proliferator-activated receptor-gamma coactivator-1alpha levels and 

the activities of AMP kinase and p38 in skeletal muscle of mice35. Higher mitochondrial content 

can readily lead to increased VO2max, however, it is not known whether a similar mechanism 

could happen in humans. 

The genus Eubacterium sp. CAG 180 exhibited a negative relationship with GripMax 

and JumpMax in both genders, but there are no associations for other abundant Eubacteria 

species (Eubacterium rectale and Eubacterium hallii). While the greater abundance of some 

Eubacteria species suggested having health benefits (Eubacterium ventriosum, Eubacterium 

ventriosum)37 there is no report for Eubacterium sp. CAG 180. 

 Redox balance showed a positive association with dTDP-L-rhamnose biosynthesis and 

pyruvate fermentation to isobutanol in males as well as with adenine and adenosine salvage 

pathway in females. This observation suggests that redox balance in a cell has a positive effect 

on the above-mentioned molecular pathways, potentially indicating a regulatory role of redox 

balance in various cellular and metabolic pathways. VO2max was correlated with L-arginine 

biosynthesis in males, which fits well with the result of the study which reported increased 

VO2max after L-arginine supplementation38. 

It was also observed that irisin levels negatively related to cdp-diacylglycerol pathway 

in females. The cdp-diacylglycerol pathway is involved in the synthesis of phosphatidylcholine, 

a major component of cell membranes. A negative correlation between irisin levels and this 

pathway suggests that higher levels of irisin may be associated with lower activity or expression 

of genes involved in the cdp-diacylglycerol pathway. These correlations indicate potential 

connections between cognitive performance, hormone levels, and specific metabolic pathways. 
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Methods  

Study Population and Physiology Tests.  

This study was approved by the Institutional Ethical Review Board and National Science and 

Research Ethical Committee (https://ett.aeek.hu/tukeb/), Hungary in accordance with the 

Helsinki Declaration and the regulations applicable in Hungary (25167-6/2019/EUIG). 

Eighty volunteers were tested, and based on the results of Chester’s step, the maximal oxygen 

uptake was calculated and used as a measure of cardiovascular fitness. Maximum handgrip 

force is often used to measure the age-associated decline in overall muscle strength. The 

dynamic strength of the legs was assessed by measuring the maximum vertical jump using a 

linear encoder. Body mass index was determined using the body composition monitor BF214 

(Omron, Japan). 

 

Measurement of Irisin. Plasma irisin levels were quantified using commercially available 

ELISA kits (EK-067–29, Irisin Recombinant, Phoenix Pharmaceuticals, Inc, Burlingame, 

USA). All samples from each subject were analyzed using the same plate (intra-assay). The 

coefficients of variation for intra-assay and inter-assay were 4.1% and 15.2%, respectively. 

 

Assessment of Redox Balance. Redox balance was calculated as the ratio of biological 

antioxidant power (BAP) to derivatives of reactive oxygen metabolites (d-ROMs). BAP was 

measured by mixing ferric chloride with thiocyanate derivative in blood plasma samples. After 

incubation, the reduction of ferric ions was measured at 505 nm. BAP assays were performed 

using a FREE Carpe Diem analyzer. The total amount of organic hydroperoxides in blood was 

estimated using the d-ROMs test, as described previously39. 

 

Microbiome Assay. Stool samples were collected for analysis of gut microbiota. Participants 

were provided with instructions on proper methods for stool collection, and all necessary 

materials were included in a convenient specimen collection kit. The samples were stored at -

80 °C until further analysis. A frozen aliquot (200 mg) of each fecal sample was suspended in 

250 ml of guanidine thiocyanate, 0.1 M Tris, pH 7.5, and 40 ml of 10% N-lauroyl sarcosine. 

DNA extraction was then performed as previously described40, and the DNA concentration and 

molecular size were estimated using a nanodrop (Thermo Scientific) and agarose gel 

electrophoresis. 
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Illumina Sequencing. Fecal DNA was used as input for the Illumina Nextera® XT DNA 

Sample Preparation Kit to construct indexed paired-end DNA libraries, following the 

previously described method41. DNA library preparation followed the manufacturer's 

instructions (Illumina). The workflow indicated by the provider was used for cluster generation, 

template hybridization, isothermal amplification, linearization, blocking and denaturing, and 

hybridization of the sequencing primers. The base-calling pipeline (version IlluminaPipeline-

0.3) was used to process the raw fluorescent images and call sequences. One library (clone 

insert size 200 base pairs (bp)) was constructed for each of the first batch of 15 samples, two 

libraries with different clone insert sizes (135 and 400 bp) were constructed for each of the 

second batch of 70 samples, and one library (350 bp) was constructed for each of the third batch 

of 207 samples. 

 

Bioinformatics Analysis. The quality of raw and trimmed reads was assessed using FastQC 

and MultiQC. Low-quality sequences were filtered and trimmed using Trimmomatic, 

discarding sequences with a minimum length of 36 and low-quality base calls (phred score < 

30). Reads aligning to the human reference genome (GRCh38) were removed to eliminate host 

contamination (using bowtie2 v2.4.2). Taxonomic characterization was performed using 

MetaPhlAn3, and pathway abundance and other molecular function profiles (such as GO) were 

estimated using the HUMAnN3 pipeline. We discarded a taxon if its average abundance over 

the 80 samples is less than 1%.  

 

Measurement of DNA Methylation. Epigenome-wide DNA methylation was measured using 

the Infinium MethylationEPIC BeadChip (Illumina Inc., San Diego, CA) following the 

manufacturer's protocol. Briefly, 500 ng of genomic DNA was bisulfite-converted using the 

EZ-96 DNA Methylation MagPrep Kit (Zymo Research, Irvine, CA, USA) with the KingFisher 

Flex robot (Thermo Fisher Scientific, Breda, Netherlands). The samples were plated in a 

randomized order. Bisulfite conversion was performed according to the manufacturer's protocol 

with the following modifications: 15 µl MagBinding Beads were used for DNA binding, and 

the conversion reagent incubation was carried out in a cycle protocol of 16 cycles at 95°C for 

30 seconds followed by 50°C for 1 hour. After the cycle protocol, the DNA was incubated for 

ten minutes at 4°C. Next, DNA samples were hybridized on the Infinium MethylationEPIC 

BeadChip (Illumina Inc., San Diego, CA) using 8 µl of bisulfite-treated DNA as the starting 

material. 
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Quality Control of the DNA Methylation Data. Quality control of the DNA methylation data 

was performed using the minfi, Meffil, and ewastools packages in R version 4.0.0. Samples that 

failed technical controls, including extension, hybridization, and bisulfite conversion according 

to Illumina's criteria, were excluded. Samples with a call rate < 96% or with at least 4% of 

undetected probes were also excluded. Probes with a detection p-value > 0.01 in at least 10% 

of the samples were considered undetected and excluded. Probes with a bead number < 3 in at 

least 10% of the samples were also excluded. The "noob" normalization method in R was used 

to quantify methylation levels.  

 

DNA methylation (or epigenetic) aging clocks. Aging clocks were applied using Horvath's 

online age calculator (https://dnamage.genetics.ucla.edu/) and the DunedinPACE R package 

(https://github.com/danbelsky/DunedinPACE). We applied the Horvath pan-tissue clock5, the 

blood-based Hannum clock6, Skin and Blood clock7, PhenoAge clock8, GrimAge clock9, 

DNAmFitAge clock11 and the DunedinPACE clock10. We calculated age acceleration as the 

residual, per sample, after fitting predicted ages to chronological ages42 (i.e. age acceleration is 

the deviation from the trend) (Extended Data Fig. 2A-F). As expected, epigenetic clocks highly 

correlated with age and with each other in our cohort (Extended Data Fig. 2A-H) and  age 

accelerations were independent of age (Extended Data Fig. 2I). 

 

Statistical analysis. We used the Python packages for statistical analysis. Two-sided t-test was 

calculated for comparing two groups. If p values were indicated by an asterisk, we used the 

notations as follows: ns, p > 0.05; *, 0.01 < p ≤ 0.05; **, 0.001 < p ≤ 0.01; ***, p ≤ 0.001. 

Correlations were evaluated by Pearson correlation coefficient (r).  
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FIGURES AND TABLES 

 

Fig. 1. | Characterisation of the gut microbiome of physically fit males and females. (A) 

Overview of the study. We collected metagenomics, epigenetics and exercise-related data from 

80 physically fit individuals with age between 38 and 84 years, and applying epigenetic clocks, 

we examined the relationship of epigenetic age acceleration, gut flora and physical fitness. (B) 

Gender and age distribution of the study samples. (C) Phylum distributions for males and 

females, separately (only the abundant phyla are displayed). (D) Differences of mean relative 

abundances between males and females separated by phyla.  
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Fig. 2 | Associations of the gut microbiome and epigenetic aging clocks. (AB) Correlations 

between the diversity of the microbiome (measured by Shannon entropy of the relative 

abundances) at the level of species (s), genus (g), family (f), order (o), class (c), phylum (p) and 

kingdom (k) and chronological age, age accelerations as well as pace of aging. (CD) Similar 

correlation analysis for the relative abundance of phyla. (EF) Similar correlation analysis for 

the abundant species of the gut microbiome. Phyla are also displayed in parentheses abbreviated 

by the first four letters of the phylum. (GH) Similar correlation analysis for the most abundant 

bacterial pathways in the gut microbiome (spwy., superpathway; bios., biosynthesis). 
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Fig. 3 | Associations of the microbiome and exercise-related measurements. (AB) 

Correlations between the diversity of the microbiome (measured by Shannon entropy of the 

relative abundances) at the level of species (s), genus (g), family (f), order (o), class (c), phylum 

(p) and kingdom (k) and exercise-related parameters. (CD) Similar correlation analysis for the 

relative abundance of phyla. (EF) Similar correlation analysis for the abundant species of the 

gut microbiome. Phyla are also displayed in parentheses abbreviated by the first four letters of 

the phylum. (GH) Similar correlation analysis for the most abundant bacterial pathways in the 

gut microbiome (spwy., superpathway; bios., biosynthesis). 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2023. ; https://doi.org/10.1101/2023.07.05.23292191doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.05.23292191
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 

 

SUPPLEMENTARY FIGURES 

 

Extended Data Fig. 1. Species distributions of the gut microbiome of our cohort. (A)  males 

(B) females. Only the abudant species are displayed. This figure is related to Fig. 1C.  
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Extended Data Fig. 2 | Application of epigenetic clocks in our cohort. (A-G) Predicted age 

(i.e. epigenetic age) of the six epigenetic clocks as well as pace of aging by DunedinPACE. 

Number of samples (n), Pearson correlation coefficient (r) and mean absolute error (MAE) are 

indicated for each clocks. Linear regression line (solid blue lines) of the predicted ages is also 

shown. Age acceleration (i.e. the deviation from the trend) is illustrated by coloring. The dashed 

orange line is the diameter (x=y). (H) Pearson correlations among age and the predicted values 

of the epigenetic clocks. (I) Pearson correlations among age, age accelerations and pace of 

aging. The significance of correlations is not indicated.  
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Extended Data Fig. 3 | Strongest associations (**, p <= 0.01) between the gut microbiome 

and epigenetic clocks (associated to Fig. 2). (A) Phylum level for males. (B) Phylum level for 

females. (C) Species level for males. (D) Species level for females. (E) Pathway analysis for 

males. (F) Pathway analysis for females. Pearson correlation coefficient (r) the correspondent 

p-value (p), as well as, Spearman correlation coefficient (rho) are indicated.  The regression 

line (solid blue line) is also shown. Abbreviations are the same as for Fig 2.  
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Extended Data Fig. 4 | Strongest associations (**, p < 0.01) between the gut microbiome 

and exercise-related parameters (associated to Fig. 3). (A) Species level for males. (B) 

Pathway analysis for females. Pearson correlation coefficient (r), the correspondent p-value (p)  

as well as Spearman correlation coefficient (rho) are indicated.  Regression line (solid blue line) 

is also shown. Abbreviations is the same as in Fig 3.  
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