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ABSTRACT

We introduce the Weighted Contextual Interval Score (WCIS), a new method for evaluating the1

performance of short-term interval-form forecasts. The WCIS provides a pragmatic utility-based2

characterization of probabilistic predictions, developed in response to the challenge of evaluating3

forecast performances in the turbulent context of the COVID-19 pandemic. Current widely-used4

scoring techniques generally fall into two groups: those that generate an individually interpretable5

metric, and those that generate a comparable and aggregable metric. The WCIS harmonizes these6

attributes, resulting in a normalized score that is nevertheless intuitively representative of the in-7

situ quality of individual forecasts. This method is expressly intended to enable practitioners and8

policy-makers who may not have expertise in forecasting but are nevertheless essential partners in9

epidemic response to use and provide insightful analysis of predictions. In this paper, we detail the10

methodology of the WCIS and demonstrate its utility in the context of US state-level COVID-1911

predictions.12

Keywords COVID-19 · Epidemiology · Public health · Statistics13

1 Introduction14

1.1 Background15

The advent of the COVID-19 pandemic precipitated a massive public health response, including a significant modeling16

effort [1, 2]. In the United States, this quickly resulted in the formation of the COVID-19 Forecast Hub, a repository for17

short-term pandemic predictions. The Forecast Hub connects academic and industry forecasters to the United States18

Centers for Disease Control and Prevention (CDC), providing projections of COVID-19 related cases, deaths, and19

hospitalizations that the CDC uses for policy making and dissemination to the public [3]. Similar to prior collective20

forecasting efforts focused on seasonal influenza, dengue, and Ebola, the Forecast Hub solicited predictions from a21

large group of modelers using diverse techniques, synthesizing the submissions into ensemble forecasts that were22

judged to consistently outperform their component predictions [4, 5, 6, 7, 8, 9]. In this article, we use these ensemble23

forecasts as test cases for our new metric: the Weighted Contextual Interval Score (WCIS). While the WCIS could24

easily be applied to other types of forecasting, it was designed with efforts like the COVID-19 Forecast Hub in mind.25

As a collaboration between modelers, public health practitioners, and government officials, the Hub is representative26

of efforts that will remain vital given the danger posed by both extant and heretofore unknown epidemic threats [10].27

However, using forecasts for consistent real time decision making remains a challenge, a vital component which is28

translating forecast data into actionable insights [7, 11, 12, 13, 14]. In this light, we present the WCIS as a way to29

alleviate challenges in this space that arise from comparing, aggregating, and interpreting forecasts made across highly30

spatially and temporally variable prediction instances. It does so by encoding a simple question: how useful was the31

prediction where and when it was made?32
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Probabilistic predictions are increasingly preferred in many disciplines, including the epidemic forecasting community.33

Unlike single outcome "point" predictions, probabilistic forecasts convey the uncertainty of the underlying model [15].34

This is particularly important given the inherent difficulty of correctly interpreting a quickly-evolving pandemic [7].35

Additionally, reporting only point forecasts (thus neglecting to convey any uncertainty) runs the public health risk of36

disseminating potentially incorrect predictions with an apparently high degree of confidence [16]. In keeping with37

these currently accepted best practices, the Forecast Hub requires submissions to be reported in quantile form [3]. The38

Weighted Interval Score (WIS), an error metric for quantile/interval scores that approximates the Continuous Ranked39

Probability Score, is the primary method used to evaluate Forecast Hub submissions [15, 17]. Note that the mechanics40

of Weighted Interval Score are necessarily considered in more detail in a subsequent section of this paper, as it is a direct41

precursor to our new WCIS score. In brief, its functionality is elegantly summarized by Bracher et al.: "the (Weighted42

Interval) score can be interpreted heuristically as a measure of distance between the predictive distribution and the43

true observation, where the units are those of the absolute error" [15]. This conveys an important benefit, intuitive44

interpretability, to the WIS. In spite of its relatively complex formulation, it can easily be understood as a probabilistic45

analogue of the absolute error. Unfortunately, this means that the Weighted Interval Score also suffers from similar46

limitations to the absolute error. In particular, it is sensitive (especially for the purposes of comparison and aggregation)47

to differences in scale. This presents a significant problem when used in a context like the COVID-19 Forecast Hub,48

where target scale varies significantly in space and time.49

1.2 Motivation - Spatial and Temporal Instability50

Creation of the WCIS arose from attempts to retrospectively characterize and intuitively communicate the utility51

of short-term COVID-19 prediction efforts like the Forecast Hub. We found that standard metrics were not able to52

sufficiently and robustly capture the interaction of predictions with the spatially variable and temporally dynamic reality53

of the evolving pandemic. Meaningful analysis, given extant scoring methods, always required a substantial expenditure54

of effort characterizing the on-the-ground reality when and where forecasts were made. In this section, we provide55

motivating examples of this issue drawn from US state-level Forecast Hub predictions.56

From many perspectives, making and disseminating state-level forecasts is a reasonable strategy. States are the57

intuitive building blocks of the country, carrying their own governments and public health systems. Accurate state-level58

forecasts therefore have the potential for direct and meaningful application. However, states have enormously variable59

characteristics, which makes generalizing forecast performance problematic. Population difference in particular is a60

key factor. For example, California has the highest population of any state in the US (∼40 million), and Wyoming61

the lowest (∼0.6 million). For the second week of January 2022, California reported over 850,000 incident cases.62

During the same week, Wyoming reported just over 6,600 new cases [18]. Note that California reported over 1.463

times more new cases that week than the entire population of Wyoming. However, in terms of incidence percentages,64

California and Wyoming were actually much closer at that time, with approximately 2% and 1% of the population testing65

positive, respectively. Intuitively, this is an easy dynamic to recognize when examining individual states separately.66

Raw epidemic numbers carry different meanings depending on underlying demographic factors (i.e., population size).67

However, this is problematic for aggregate and comparative analysis of forecast performance. This becomes clear68

if we apply a standard metric like mean absolute error (MAE) to this scenario with California and Wyoming. (For69

simplicity we refer to point predictions instead of probabilistic forecasts in the motivating examples in this section,70

along with corresponding metrics such as the absolute and percent error. However, as indicated above, probabilistic71

evaluation is susceptible to the same issues [15].) For the week under consideration, predictions from the Forecast72

Hub’s baseline model yielded a MAE of 27,130 across all US states [19]. For California, a prediction that overshot the73

truth by this margin would incur a percent error of only about 3%, whereas for Wyoming, such a prediction would miss74

by over 400%. Admittedly, this is not by itself a particularly vexing problem (normalization by population, for example,75

would likely suffice in this case). Unfortunately, spatial inconsistency is not the only obstacle. Accounting for temporal76

context is equally vital and presents its own difficulties.77

When examining forecast performance for a single region over time, metrics must be interpreted as a function of78

time-variant data. This necessity is demonstrated trivially by comparing pandemic surges to times of relatively low79

epidemic activity. The same value of a non-normalized metric like the absolute error carries an entirely different80

meaning in each of these situations. Consider the Forecast Hub’s baseline model predictions for cases in Maryland.81

In mid-December 2020, this model missed its three-weeks-ahead target by about 2,000 cases. In mid-May 2021, the82

same model also missed by about 2,000 cases [19]. Without knowing the context of each prediction, (namely that the83

first was made during a massive surge and the second was made during a significant lull), one might be forgiven for84

assuming that the model performed similarly in both scenarios. However, the December forecast only just missed the85

mark, undershooting by 12% of the true value. Conversely, the May forecast missed by 213%. Note that in this case,86

percent error has interpretable utility because it normalizes by the true value, a time-varying data source that directly87

represents the prevailing condition of the pandemic. Unfortunately, percent error is not an ideal solution as it becomes88
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unstable when true values approach zero [15]. This is especially problematic when analyzing death forecasts (for all89

of 2020 through 2022, almost 15% of US states had less than ten weekly deaths, and over 8% had below five weekly90

deaths). In this situation, percent error is in fact too sensitive to the exact circumstances. It indicates a large deviation91

from the truth which, while technically correct, misses the reality of how forecasts are interpreted. Given the larger92

context of the pandemic, it is unreasonable to characterize a four-death forecast compared to a target value of one (300%93

error) as a worse prediction than a 400-death forecast compared to an 800-death reality (50% error). Like the spatial94

case, if context is not very carefully considered, the numerical value of an error metric can be inconsistent with reality.95

Consequently, we submit that any definition of forecast quality must arise from the context into which predictions96

are disseminated. In other words, a useful real-time forecast is capable of improving real-time decision-making. The97

reverse also holds: a forecast is not useful if it is incapable of (or if it provides information detrimental to) meaningfully98

informing a decision made using the forecast. This link between forecast utility and in situ decision-making is key. In99

fact, it is the basis for the core functionality of the WCIS. In essence, the WCIS normalizes forecast performance as a100

function of the ability of the forecast to be used in the specific environment in which it was made. This way, despite101

(potentially) occurring in radically different spatial and temporal scenarios, individual evaluations can be meaningfully102

compared to others.103

1.3 Review of the Weighted Interval Score104

As our choice of name is intended to suggest, the Weighted Contextual Interval Score (WCIS) builds directly from105

the Weighted Interval Score (WIS), a robust and widely-used evaluation metric for quantile forecasts. If the reader106

is unfamiliar with the WIS, Bracher et al. [15] provide an excellent explanation of the mechanics of the score and its107

applications in epidemiology. We encourage familiarity with their formulation and endeavor to use the same symbology108

in this paper whenever possible. For brevity, the entire WIS formulation is not reviewed here, but the key elements (that109

are also important pieces of our new WCIS score) are necessarily summarized here:110

ISα(F, y) = (u− l) +
2

α
(l − y)1 {y < l}+ 2

α
(y − u)1 {y > u} (1)

WISα{0:K}(F, y) =
1

K + 1
2

(
w0 · |y −m|+

K∑
k=1

{wk · ISαk
(F, y)}

)
(2)

• We assume a submission of K interval forecasts drawn from a predicted distribution F , a probabilistic111

representation of the target variable. Each of the K forecasts represents a (1− αk) prediction interval (PI).112

These intervals are delineated by their lower and upper bounds l and u, the α
2 and 1 − α

2 quantiles of the113

predicted distribution, respectively. For example, a 95% interval would be represented by an αk of 0.05, its114

lower and upper bounds defined by the 0.025 and 0.975 quantiles of F .115

• A predictive median m (point prediction) is submitted, and the true target value y is known.116

• For each interval k ∈ {1, 2, ...,K}, an individual Interval Score (IS) is calculated, penalizing both the117

width/sharpness of the interval: u− l, and (if necessary) the amount by which the interval missed the true value:118
2
α (l − y)1 {y < l}+ 2

α (y − u)1 {y > u} [20]. Note that the "miss" component is scaled by the inverse of119

α, thus narrower prediction intervals are penalized less for missing than are higher confidence submissions.120

• The WIS is a weighted average of each of the K Interval Scores and the absolute error of the predictive median,121

with the weights wk used for the average corresponding to α
2 for each interval.122

2 Methods123

2.1 Contextual Absolute Error (CAE)124

Although the WCIS (like the WIS) is an interval score, its logic is fundamentally rooted in a much simpler point score125

that we call the Contextual Absolute Error (CAE). In effect, the CAE is a function that maps the absolute error of a126

point forecast x to its contextual utility. This is achieved by specifying δ, a utility threshold parameter. (Note that δ is127

the only parameter in the WCIS formulation that does not already appear in the WIS score).128

CAE(x, y, δ) = min

{
|x− y|

δ
, 1

}
(3)

What is δ, and how is it chosen? In essence, it is the magnitude of the absolute error above which a forecast loses its129

ability to be useful. This requires the person applying the CAE (and the WCIS, as the CAE is the foundational part130
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of the WCIS) to identify some practical limit for how forecasts might be used. The CAE is so named because it is131

analogous to absolute error, but instead of mapping to the distance between a predicted value and its target, the CAE132

maps to an interval from 0 to 1. A result of 0 represents a perfect forecast, and a result of 1 represents a useless forecast133

(a forecast with an absolute error greater than δ). Thus, a decision made based on a forecast with an error beyond134

this margin might prompt an unrecoverable response, rendering such a forecast useless or misinformative. However,135

it is important to emphasize that selecting a specific δ creates a judgment of forecast value for a particular purpose.136

Again, we emphasize that forecasts in spatially and temporally heterogeneous scenarios should not be numerically137

compared unless context is taken into account; context that, in this methodology, is defined by the selection of δ. While138

the requirement of using a specific δ value might be seen as adding unnecessary complexity to a forecast evaluation139

metric, such an argument presupposes that a "simpler" score (like WIS or MAE) possesses broad functionality. As we140

have demonstrated, a score that is not robust to the dynamics of the forecasting landscape does not convey a largely141

consistent meaning, thus is not broadly functional. The CAE, conversely, conveys an intuitive forecast evaluation142

precisely because of the selection of an appropriate δ. See panel (a) of Figure 1 for a graphical representation of the143

CAE.144

2.2 Weighted Contextual Interval Score (WCIS)145

We first consider the case of a single prediction interval, just as the Interval Score (IS) is used as a single-interval146

constituent of the WIS. We define the single-interval Contextual Interval Score (CIS) as follows:147

CISα(F, y, δ) = min
{ α

2δ
(u− l) + CAE (l, y, δ)1 {y < l}+ CAE(u, y, δ)1 {y > u} , 1

}
(4)

Each term in the CIS is analogous to a term in the IS. We begin with the "width" term: α
2δ (u− l). This term is148

built upon the logic that because y − δ to y + δ represents the upper and lower limits of forecast utility, a prediction149

interval that spans this entire distance should incur an unweighted penalty of 1. In other words, if a point forecast at150

or past the "plateau" of the CAE curve incurs a penalty of 1, an unweighted interval forecast that spans this region151

should get the same score. However, the α-weight is included to distinguish between different prediction intervals. For152

example, let us compare two intervals that have identical bounds but different α values: 0.05 (95% prediction interval)153

and 0.9 (10% prediction interval). In this case, the 95% interval should be treated less harshly that the 10% interval,154

because we expect higher-confidence forecasts to span larger ranges. Next, we examine the "miss" term of the CIS:155

(CAE(l, y, δ))1 (y < l)+ (CAE(u, y, δ))1 (y > u). It is essentially performing the same function as the "miss" term156

of the IS, but instead of expressing the magnitude of the miss in terms of distance, the CIS term is expressed in terms of157

utility. This component of the score can be seen in panels (c) and (d) of Figure 1 as the vertical arrows. In sum, the158

CIS is a single-interval analogue of the point-forecast CAE. Regardless of interval width, if a probabilistic forecast is159

entirely outside the useful region, a value of 1 is returned (panel (d) in Figure 1). Additionally, like the IS, the CIS160

naturally collapses to only its "miss" term when applied to a point forecast.161

The WCIS is the simple average of the CIS across all α-intervals and the predictive median m:162

WCISα{0:K}(F, y, δ) =
1

K + 1

(
CAE(m, y, δ) +

K∑
k=1

CISαk
(F, y, δ)

)
(5)

Note that we still retain the descriptor "Weighted" in the WCIS title despite the fact that there are no weights directly163

included in its formulation, whereas each component of the WIS is multiplied by α
2 . However, in our formulation, the164

same weights are effectively applied directly to the individual constituent CIS scores. Instead of the "miss" components165

of the score being multiplied by 2
α , the "width" term is scaled by α

2 . Thus when the average is taken to create the WCIS166

the scaling effect is the same as the WIS, but the weights are applied in this way because it preserves the interpretability167

of the individual single-interval CIS components as described above. Another notable difference is the WCIS uses168

K + 1 for the denominator of the average (unlike K + 1
2 in the WIS) because like the single-interval components,169

the predictive median component of the score has a maximum penalty of 1. This, and the bound on each CIS term,170

means the WCIS also takes values only on the interval from 0 to 1. Note the natural equivalence between the WCIS for171

interval forecasts and the CAE for point forecasts, which mirrors that between the WIS and the absolute error. In both172

cases, the interval scoring method preserves the behavior and intuitive interpretation of the corresponding point forecast173

technique.174

4



Figure 1: Illustration of different scoring possibilities. Panel (a) shows only the Contextual Absolute Error (CAE) point
score (Equation 3), with the others displaying different realizations of the Contextual Interval Score (CIS, Equation 4).
Blue arrows represent the width penalty term (note that they are scaled by α

2δ ). Red arrows indicate the miss term of
the CIS. Observe that because the miss term is not scaled, any forecast that entirely misses the y − δ to y + δ region,
regardless of width, will incur the maximum penalty of 1. For clarity, each of the panels refers to a single-interval
evaluation. The full Weighed Contextual Interval Score (WCIS) is composed of an average across multiple α intervals.
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3 Results175

The WCIS is expressly intended to be a flexible scoring method and as such there are many possible and highly variable176

ways to apply it. We use this Results section to present two test cases. Each uses four weeks ahead predictions from the177

Forecast Hub’s ensemble model, and each conveys an essential aspect of the value of the WCIS [3]. The first is a close178

look at the performance of incident case forecasts for California and Maryland during the Delta variant wave of 2021. It179

demonstrates the normalization effect of the δ-parameterization and how this contributes to the contextual robustness180

of the WCIS. Next, we examine hospitalization predictions from May 2021 to May 2022. This period includes both181

the Delta and Omicron variant waves and allows for a larger exploration of the utility and communicability of the182

WCIS. Target data for these analyses are sourced directly from the Forecast Hub’s repository of truth data [19]. Original183

sources for these data are the JHU CSSE for cases and mortality, and the US Department of Health & Human Services184

for hospitalizations [18, 21]. Note that we use a rolling, centered 7-day mean to smooth the target data and minimize185

the effects of uneven real-time reporting.186

3.1 Metric Comparison (First Test Case)187

In Section 1.2 we developed intuition regarding the challenges posed by forecast scenarios with high spatial and188

temporal variability and demonstrated that given these challenges, extant evaluation methods can be inconsistently189

meaningful. In this section, we examine how the WCIS fares in this context as compared to other evaluation strategies.190

We use the Forecast Hub ensemble model’s four week ahead incident case forecasts for California and Maryland as a191

demonstrative test case, as shown in Figure 2.192

The utility threshold δ chosen for this test case is an expanding mean of historical incidence values weighted to193

emphasize recent epidemic activity (see Appendix A1 for the detailed formulation). This is intended to reflect the194

public’s intuitive understanding of the evolving state of the pandemic, accounting for humans’ natural recency bias195

while ensuring that the institutional memory of dynamics further in the past is still accounted for. Weighing recent196

data more heavily makes the WCIS penalty harsher following extended periods of low incident cases and reduces197

the penalty following times of significantly higher activity. This is intended to reflect complacency in COVID-19198

management/resource allocation and human behavior, based on the following characterization. First, extended periods199

of low epidemic intensity trigger riskier behavior (such as returning to crowded indoor bar/restaurant settings) and200

policy changes (such as the lifting of mask mandates) that would make early warning of a surge much more beneficial.201

Second, forecast inaccuracy is less detrimental following periods of very high activity since there are more likely to be202

higher levels of population immunity and risk mitigation behavior in response. We emphasize again that δ definitions203

characterize specifically defined representations of utility. The parameterization chosen here is not intended to provide204

an assessment of forecast quality outside the utility scenario posited by the assumptions given above. However, it205

demonstrates an important capability of utility threshold selection: δ can be a defined as a dynamic function of data206

that changes in time and space. Since contextually meaningful forecast utility varies significantly over these same207

dimensions, a broadly applicable and interpretable score must be able to account for this instability.208

First, we compare the WCIS to the WIS. As previously stated, the WIS provides an intuitive evaluation on a per-state209

basis but can fail for the purposes of comparing forecast quality across different scales. The WIS plot in Figure 2210

shows this problem, as Maryland’s WIS curve (which has significant temporal variation relative to itself) is dwarfed211

by California’s. The WCIS, on the other hand, shows normalized curves that allow for intuitive comparison of the212

two states’ forecast performances. Note that California’s WCIS and WIS curves are similarly shaped (Maryland’s are213

as well, but the similarity is harder to see due to scaling). In fact, on a per-state basis, we do not expect or desire the214

WCIS and WIS to be radically different, except when predictions significantly deviate from the δ-bounded region. (This215

general correlation, except for more "extreme" errors, can be clearly seen in the comparison scatter plots available in216

Appendix A2.) Next, we examine the WIS per capita as compared to the WCIS. Again, we observe the curves are217

relatively similarly shaped. The important differences here are not ones of scale, but of intuition. Per capita evaluation218

can be a helpful normalization, but it lacks the intuitive meaning of the WCIS. Additionally, population is (relatively)219

constant in time. While the WCIS normalization parameter δ in this test case is also relatively consistent, thus yielding220

a similar shape to the per capita curve, δ is not constrained to be so. Thus, it allows for a much more dynamic and221

meaningful evaluation. Finally, we compare the WCIS to the WIS PE, which is a probabilistic analogue to the percent222

error (the quotient of the WIS and the target value scaled by 100). Like the other scores, we observe that the WIS PE223

offers some periods of intuitive, meaningful evaluation. but fails for Maryland in mid-June when target values are low224

and the score is artificially inflated. Because of its utility-based normalization scheme, the WCIS does not have this225

problem.226
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Figure 2: Comparison of WCIS with other metrics for California and Maryland. The top two plots are weekly incident
COVID-19 case forecasts for California and Maryland performed by the Forecast Hub’s ensemble model, predicting
four weeks ahead. The four final plots are the performance for each state according to different evaluation metrics,
aligned temporally with the forecasts. (Note that the "WIS PE" plot is the quotient of the WIS and the target value
scaled by 100, which can be interpreted heuristically as a probabilistic percent error. Additionally, COVIDhub forecasts
(both point and quantile) have a lower bound of zero, so error bars that may appear to extend below the range of the
figure are actually constrained to zero. Finally, both the WCIS and the various WIS-derived scores are calculated using
all submitted prediction intervals (which for case forecasts were 50%, 80%, and 95%), not just the 50% interval shown.
Only one interval is shown here for visual clarity.)
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3.2 Aggregation and Comparison (Second Test Case)227

The prior section examines the in-situ benefits of the WCIS as compared to other probabilistic evaluation metrics. Here,228

we demonstrate why those benefits are helpful in a higher level, more general, multi-period and multi-location analysis.229

For this test case we choose a different target variable: state-level weekly COVID-19 hospitalizations. However, in this230

test case we are not concerned with specific states over a short time period. Instead, we ask whether hospitalization231

forecasts were helpful for all states over the course of a full year. (Note that Forecast Hub hospitalization predictions232

were performed at daily resolution, but for the sake of visualizing a longer-term analysis we aggregate to and evaluate233

at weekly totals.)234

As ever, using the WCIS requires a specific interpretation of forecast efficacy in the selection of the utility threshold δ.235

In this case, we choose to assess hospitalization predictions as a function of potential hospital capacity changes. The236

utility threshold chosen for this is a heuristic for the amount of resource allocation, staffing changes, and other matters237

that hospitals might practically accomplish in response to an assumed change in pandemic dynamics at the state level.238

Specifically, δ is the 0.9 quantile of the historical deviations in each state’s hospital bed capacity over the prediction239

horizon of the forecast. Our assumption is that the historical bed capacity deviations are generally indicative of a state’s240

capacity to make changes. Additionally, we assume that it is more difficult to make changes over a shorter timeline.241

Thus, any deviation over a shorter-term horizon can also occur for longer term horizons, but the reverse is not true. For242

example, when examining one week ahead predictions, only historical capacity changes over the course of a single243

week are considered. For four weeks ahead predictions, capacity changes for one, two, three, and four weeks ahead are244

considered. Finally, the 0.9 quantile is selected as the threshold under the assumption that states are not necessarily able245

to repeat their larger historical deviations, but can approach them. To be clear, this choice of δ is a simple approximation246

of state level hospitalization prediction utility intended to enable a demonstration of the WCIS, not to conclusively247

determine the quality of hospitalization forecasts. Facility or city level hospitalization forecasts, for which the use of248

much more specific capacity management data might be available, would likely warrant entirely different selections249

of the utility threshold. However, given the loss of granularity inherent to state level aggregation, we contend that a250

response predicated on a forecast outside the δ-range as defined here would ask a state to make changes beyond what251

could be reasonably expected over the forecast’s prediction horizon.252

How does the WCIS help assess forecast efficacy in this multi-region, yearlong analysis? Since it was designed primarily253

as a way to meaningfully aggregate and compare forecasts in disparate contexts, the results for each state over the entire254

time period of interest can be easily and intuitively displayed. One way of doing so is demonstrated in Figure 3, in255

which we can easily observe several important aspects of hospitalization forecasting performance. For example, during256

times of rapidly changing pandemic activity (surges and declines), the utility of forecasts decreases substantially. We257

can intuit that this is a consistent trend across different locations both by directly observing the large central grid and258

by examining the spatially averaged (lower) array of the figure. In contrast, if we examine the temporally averaged259

(right-side) array, we observe that the there is less variability in average quality in space than there is in time. Thus, by260

making an up-front determination about what constitutes a useful prediction (performing the δ-parameterization), we261

are capable of making, displaying, and intuitively evaluating forecasts. This allows, given a well-informed choice of δ,262

for meaningful overall analysis without needing to delve into the specific circumstances during which each forecast was263

made. Without contextual normalization, conveying informative and comparable performance would be much more264

challenging. This capability, demonstrated by the ease of interpreting Figure 3, is the overall aim for our creation of the265

WCIS. It permits a substantive and easily interpretable performance evaluation.266
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Figure 3: Heatmap of the WCIS for 4 week ahead hospitalization forecasts, performed by the Forecast Hub’s ensemble
model The central and largest grid shows the most granular results: region- and time-specific performance. On the right
and lower sides of the grid are average performances over time and space, respectively. The shaded line plot at the
bottom of the figure is the target variable aggregated across all regions. Note that its domain is aligned exactly with
those of the time-dependent heatmaps above, to provide insight into the trends of the overall pandemic alongside the
more granular information in the heatmaps. (See Appendices A3 and B3 for heatmaps of other target variables and for
hospitalizations over differing prediction horizons).
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4 Discussion267

4.1 Contextually Relevant Retrospective Evaluation268

What is the purpose of using a framework like the Forecast Hub to provide real-time epidemiology predictions? We269

contend that at its most fundamental, the goal must be to add utility. A useful prediction provides meaningful and270

actionable information for someone making a decision subject to uncertain future pandemic outcomes. Determining271

whether or not forecasts accomplish this necessitates an explicit definition of utility, which brings up an important272

philosophical difference between the WCIS and other techniques. The WCIS formulation, centered around a user-273

defined utility threshold δ, is based on our assertion that there will never be a one-size-fits-all solution for assessing274

and aggregating short-term forecast quality. One must always consider prediction context lest standard metrics tell a275

misleading story. Additionally, different decision-making mechanisms yield different judgments of predictions. The276

helpfulness of a model that predicts rainfall, for example, will be judged very differently by a user deciding whether or277

not to bring an umbrella on a walk as compared to a user deciding whether or not to issue regional flood warnings. An278

incorrect forecast of light rain with a realization of heavy rain is good enough for the first user but may be catastrophic279

for the second. Again, forecasts use is essential to consider. The WCIS ensures this by requiring a direct definition of280

the utility threshold.281

In this light, we summarize the contribution of the WCIS. In brief, it is a probabilistic forecast evaluation metric that282

is intuitively interpretable (like the WIS), easily comparable (like other normalized metrics), and robust to numerical283

problems (unlike other normalized metrics). Real-world use cases for epidemic predictions must at some point include284

the translation of modeling results to policy and decision makers. The WCIS is expressly intended to function well285

in this process, allowing for intuitive forecast evaluation that can be easily communicated to an audience with less286

technical expertise. Figure 3 demonstrates this directly. Without effective contextual normalization, generating such a287

display would be challenging given large differences in error magnitude, likely requiring a transformation (such as288

log-scaling) that limits interpretability. Instead, the WCIS allows for a direct, clearly defined interpretation of forecast289

utility to be displayed, aggregated, and compared in a technically meaningful and intuitively understandable way.290

4.2 On Propriety and the Application of the WCIS291

In the context of a collaborative and influential effort like the COVID-19 Forecast Hub, predictions are constantly292

evaluated, ranked, and potentially published widely. This naturally results in pressure for participants to maximize293

the performance of their submissions. Using a proper score function for forecast evaluation helps to ensure honest294

reporting. Briefly, if a participant attempts to game the system by submitting forecasts calculated to maximize their295

performance (instead of just reporting what they honestly believe is most likely to occur), a proper score makes sure296

that in expectation, no submission can perform better than their true belief [20]. Using proper scores makes sure that297

forecasts disseminated by collaborative efforts like this represent the best-faith projections of modelers. The WIS is a298

proper score, and is the primary metric used by the Forecast Hub for evaluating probabilistic forecasts [17].299

The WCIS is not a statistically proper interval score. However, we propose that a score with the desired features of the300

WCIS is inherently improper. The foundation of the WCIS is the notion of a specific and constrained region around the301

target value wherein predictions are applicable, represented by the V-shaped CAE function. This means that from a302

gaming/error minimization perspective, the WCIS could encourage probabilistic forecasts that are affected by the size303

of the δ-region (see Appendix C1 for an empirical demonstration of this) [22]. Similar to prior forecasting efforts when304

improper metrics were used, propriety is sacrificed in exchange for other, desirable properties of the score [23, 24, 25].305

Additionally, ongoing work by Bosse et al. indicates that applying monotonic transformations like the natural logarithm306

to target data can help to alleviate the domination of higher-activity forecasting scenarios for model comparison and307

aggregation while retaining propriety [26]. Therefore, we expressly do not recommend the WCIS for real-time forecast308

ranking or ensemble creation, because such use introduces options for forecast hedging and could encourage dishonest309

reporting. Instead, we propose that the WCIS is best suited for retrospective use to answer specific questions about310

forecast utility.311

4.3 Conclusion312

The WCIS builds on the strengths of the Weighted Interval Score while adding advantageous capabilities for retrospective313

evaluation of pandemic forecasts. The central tenet of the WCIS is the δ-parameterization, which impels users to314

directly characterize contextual utility. Judging predictions in this way allows for a powerful and effective normalization315

of the error, making the WCIS easy to interpret, compare, and aggregate across heterogeneous forecasting scenarios.316

Importantly, this robust efficacy exists only for each individual definition of utility. We belabor this point because it is317

inherent to our overall assertion about forecast interpretability: that a specific use case is necessary to meaningfully318
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evaluate prediction quality. Without an explicit link to how forecasts are used, there is no way to consistently and319

meaningfully evaluate them over variable spatial and temporal conditions. Other evaluation metrics are in essence320

arbitrary until they are contextualized, whereas the WCIS builds this contextualization directly into the formulation of321

the score.322

Our goal is to enable and encourage honest and contextually specific discourse about the utility of short-term epidemic323

predictions. The design of the WCIS reflects this desire. It incorporates prediction uncertainty, keeps the technical324

definition of utility as simple as possible, and generates an intuitively interpretable and comparable numerical output.325

Our intent is to allow for people without specific technical experience to be able to interact with and evaluate probabilistic326

forecasting in a meaningful way. As the public health community learns from COVID-19 and prepares for future327

challenges, explicit analysis of the utility of historical predictions is essential. We hope the WCIS will help with328

effective and meaningful communication between modelers and practitioners in this effort.329
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