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 14 
Abstract 15 
Glioma are often impossible to visualize discrimination within different grades and staging, especially for 16 
glioma molecular subgrouping which is highly related with surgery strategy and prognosis. Based on glioma 17 
guideline published on 2021, molecular subgroups such as IDH, 1p/19q etc. need to be detected to classify 18 
the subgroups (astrocytoma, oligodendroglioma, GBM) from high-grade glioma and guide the personalized 19 
treatment. However, timely intraoperative technology is limited to identify molecular subgroups of glioma 20 
tissues. To address this problem, we develop a deep learning-guided fiberoptic Raman diagnostic platform to 21 
assess its ability of real-time high-grade glioma molecular subgrouping. The robust Raman diagnostic 22 
platform is established using convolutional neural networks (ResNet) together with fingerprint spectra 23 
acquired within 3 seconds. We have acquired a total of 2358 Raman spectra from 743 tissue sites 24 
(astrocytoma: 151; oligodendroglioma:150; GBM: 442) of 44 high-grade glioma patients (anaplastic 25 
astrocytoma: 7; anaplastic oligodendroglioma:8; GBM: 29). The optimized ResNet model provides an overall 26 
mean diagnostic accuracy of 84.1% (sensitivity of 87.1% and specificity of 81.5%) for identifying 7 molecular 27 
subgroups (e.g., IDH, 1p/19q, MGMT, TERT, EGFR, Chromosome 7/10, CDKN2A/B) of high-grade glioma, 28 
which is superior to the best diagnosis performance using PCA-SVM and UMAP. We further investigate the 29 
saliency map of the best ResNet models using the correctly predicted Raman spectra. The specific Raman 30 
features that are related to the tumor-associated biomolecules (e.g., collagens, and lipids) validate the 31 
robustness of ResNet diagnostic model. This potential intraoperative technology may therefore be able to 32 
diagnosis molecular subgroups of high-grade glioma in real time, making it an ideal guide for surgical 33 
resection and instant post-operative decision-making. 34 
 35 
Introduction 36 
High-grade gliomas are the most common and aggressive primary tumors of the central nervous system1. 37 
The molecular genetic stratification of gliomas is important as more evidence emerges of the predictive and 38 
prognostic implications of different genetic subgroups2.As an major treatment, gross total resection is 39 
demonstrated to improve patient’s progression-free and overall survival. Moreover, molecular subgrouping 40 
techniques, which  can provide predictive and prognostic information, are introduced into the surgical 41 
workflow  This approach would allow the surgeon to optimized their extent of surgical resection for different 42 
gene profiles3–5.  43 
 44 
Based on the latest glioma grading guideline of World Health Organization (WHO) published on June 2021 45 
at the time of writing6, high-grade glioma include three subgroups, including grade 3 to 4 astrocytoma, grade 46 
3 oligodendroglioma, and grade 4 glioblastoma (GBM). Based on the histological glioma type and molecular 47 
subgroups together (e.g. IDH, 1p/19q, MGMT, TERT, EGFR, Chromosome7/10, CDKN2A/B), high-grade 48 
glioma could be classified into three types. For instance, GBMs, which are considered to be with high 49 
malignancy and poor prognosis, are discriminated from the other two high-grade glioma subgroup by IDH 50 
wild subgrouping with histological GBM type.7. Glioma without histological features is also diagnosed to be 51 
GBM with IDH wild and either EGFR amplification, TERT mutation or chromosome copynumber +7/-10 52 
(combined entire chromosome 7 gain/ entire chromosome 10 loss)6. Oligodendroglioma is currently defined 53 
on histological feature with1p/19q codeletion, and IDH mutation8. Astrocytoma is defined on histological 54 
feature with 1p/19q intact, and IDH wild9. Patients with 1p/19q codeletion have better prognosis and are 55 
sensitive to chemotherapy and radiotherapy. 56 
 57 
The current gold standard of the molecular subgrouping is immunohistochemistry (IHC), cytogenetic testing 58 
and next-generation sequencing10–12. However, next-generation sequencing is complex and time-consuming 59 
(1-2 weeks), which cannot provide molecular subgroups during surgery. To detect above molecular 60 
subgroups noninvasively, rapidly, and accurately, magnetic resonance imaging (MRI) shows the potential 61 
incorporating with machine learning algorithms. MRI diagnosed IDH subgrouping with an AUC of 0.88813, 62 
1p/19q with an AUC of 0.81114, and MGMT subgrouping with an AUC of 0.89815. However, molecular 63 
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subgroups (TERT, EGFR, Chromosome 7/10, and CDKN2A/B) have not been detected by MRI16,17. There is 1 
an urgent clinical need for comprehensive simultaneous detection of multiple molecular types. MRI also 2 
cannot uncover the rational biological explanation about IDH, 1p/19q, MGMT etc. subgroups simultaneously 3 
with robust diagnostic accuracy18. Therefore, rapid and non-destructive methods with higher molecular 4 
selectivity are required. 5 
 6 
Raman spectroscopy is a label-free optical vibrational spectroscopy technique, which can investigate specific 7 
biomolecular compositions of tissues, and has been explored for diagnosis of multiple human cancers19–26. 8 
Previous studies demonstrated that Raman spectroscopy enables intraoperative brain cancer detection in 9 
humans27,28. Leblond et al. discriminated dense cancer from normal brain with a sensitivity of 93% and a 10 
specificity of 91%19. Galli et al. achieved to classify oligodendroglioma, astrocytoma and GBM with correct 11 
rates of 94%, 86% and 90%29. However, IDH1-mutant, and 1p/19q codeletion, were discerned only with a 12 
correct rate of 81%. Uckermann et al. classified IDH1 mutation with a correct rate of 89%30. Sciortino et al. 13 
studied the Raman spectral difference between IDH wild and mutation, which achieves an accuracy of 14 
87%31. Livermore et al. also improved IDH subgrouping with the sensitivity and specificity of 91% and 95%32. 15 
However, other subgroups (TERT, EGFR, Chromosome 7/10, CDKN2/B) have not been investigated using 16 
the Raman biopsy technologies. Hollon et al. developed an artificial-intelligence-based molecular 17 
classification (IDH, 1p/19q and ATRX) of diffuse gliomas with the accuracy of 93.3 ± 1.6% using stimulated 18 
Raman histology (SRH)33. However, this approach scanning overall tissue (>1 cm) will cost too much time 19 
(>1 hour). 20 
 21 
To fulfil the unmet clinical need, here we develop a molecular-specific convolutional neural network (ResNet) 22 
model together with fiberoptic Raman spectroscopy to achieve real-time and accurate diagnosis of molecular 23 
subgroups in high-grade glioma. We have acquired a total of 2358 Raman spectra from 743 tissue sites 24 
(astrocytoma: 151; oligodendroglioma:150; GBM: 442) of 44 high-grade glioma patients (astrocytoma: 7; 25 
oligodendroglioma:8; GBM: 29). Our spectral ResNet model provides an overall mean diagnostic accuracy of 26 
84.1% (sensitivity of 87.1% and specificity of 81.5%) for identifying 7 molecular (IDH, 1p/19q, MGMT, TERT, 27 
EGFR, Chromosome 7/10, and CDKN2A/B) subgroups of high-grade glioma simultaneously. The AUCs of all 28 
the molecular subgrouping were larger than 0.8, and the AUCs of IDH, 1p/19q and CDKN were larger than 29 
0.9. The accuracy together with the sensitivity and specificity of the model was calculated using an external 30 
testing dataset from extra samples, which avoids spectra from the same samples for train and test set. The 31 
fingerprint spectra acquisition for each tissue cite is within 3 seconds, and the diagnostic time-cost for 7 32 
molecular subgrouping simultaneously using ResNet is 4 ms per spectra. The diagnostic performance of the 33 
deep learning model (ResNet) was then compared to that of the machine learning model (PCA-SVM) and 34 
manifold learning model (UMAP). We further investigated the saliency map with the ResNet to reveal the key 35 
biomolecular features for molecular subgrouping of high-grade glioma. It was found that the molecular 36 
weights of lipid and collagen in saliency map were relatively higher for high-grade glioma subgrouping. 37 
Together, the Raman technology could be integrated into the neurosurgical workflow for rapid and accurate 38 
identification of glioma molecular subgrouping with sensitivity beyond current capabilities. 39 
 40 
Results 41 
Workflow of high-grade glioma molecular subgrouping. As shown in Figure 1, the workflow of high-42 
grade glioma and GBM molecular subgrouping by Raman spectroscopy was described. Based on 2021 43 
WHO glioma classification guideline, we focus on 7 typical molecular subgroups (IDH, 1p/19q, MGMT, 44 
TERT, EGFR, Chromosome 7/10, CDKN2A/2B) of high-grade glioma. First, IDH and 1p/19q subgroups were 45 
identified to classify GBM from high-grade glioma. Then, molecular subgroups (MGMT methylation, TERT 46 
wildtype, EGFR amplification, CDKN homozygous deletion, Chromosome +7/-10) were identified in both 47 
high-grade glioma and GBM. 48 

As shown in Figure 2a, the workflow of deep-learning based Raman data classification and explanation 49 
analysis for high-grade glioma molecular subgrouping diagnosis was described. First, Raman spectra were 50 
acquired using fiberoptic Raman spectroscopy (Supplementary Figure S1) with 5 second for each tissue 51 
site (the details were described in the Method section). Second, the spectra have been preprocessed for 52 
auto-fluorescent removal, denoising, and min-max normalization. Third, for each molecular subgroup, the 53 
Raman data of the tissues was split into three datasets (80% for training, 10% for validation and 10% for 54 
test) for deep learning.  55 

To avoid overfitting, the models were trained and validated during learning iteration. The prediction 56 
performance of the test set works as the final results of built subgrouping models. For model comparation, 57 
the same training sets were also put into the PCA−SVM and UMAP models for 10-fold cross-validation. To 58 
compare the performance between deep-learning and other models, the confusion matrix and the receiver 59 
operating characteristic (ROC) curve of each model were evaluated in the test set, as shown in Figure 2a. 60 
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Finally, in Figure 2b, we evaluated the significant biomolecular information used for diagnosis by saliency 1 
maps which indicate the contribution of different Raman wavenumber. The saliency maps were generated by 2 
difference spectrum and binary stochastic filtering (BSF)34. The detail of BSF restrained schematic is 3 
described in the method. 4 

 5 
Raman spectroscopy analysis of glioma tissues. Using our fiberoptic Raman spectroscopy, we acquired 6 
Raman data from 743 tissue sites of 44 high-grade glioma patients. Figure 3 shows mean spectra from high-7 
grade glioma patients with standard deviation. The spectra have been preprocessed with iterative multi-8 
polynomial fitting, s-g filter and min-max normalization. Distinct tissue Raman peaks can be observed from 9 
all glioma (Figure 3) in the fingerprint region. For each molecular subgroup, difference spectrum was 10 
calculated by vector subtraction between mean spectra from positive and negative patients. In summary, 11 
spectra obtained are dominated by the CH2 scissoring deformations at 1440cm-1, near which the spectral 12 
difference is persistently observed. Peak of the bond are shifted in different molecular subgroups. Also 13 
pronounced are C=O stretching of protein backbone at 1661 cm-1, which is often referred to as amid Ⅰ band. 14 
Amide Ⅲ band between 1200 and 1380cm-1 is related to C-H and N-C bending deformations. The difference 15 
in Amide Ⅰ and Ⅲ bands is significant in 1p/19q (b), MGMT (c), TERT (d) and EGFR (e). Significant 16 
difference can also be observed near collagen bands at 854 and 938 cm-1 and lipid related signal from 492 to 17 
604 cm-1. 18 

Accurate and rapid glioma molecular subgrouping with deep learning. The models are first trained and 19 
optimized with both training dataset and validation dataset. Then the performance of each model is 20 
evaluated in the test dataset. Figure 4 shows the ROCs of molecular identification from high-grade glioma. 21 
The AUCs of deep learning (ResNet) are larger than 0.95 in IDH, 1p/19q and CDKN2A/B. The AUCs in other 22 
subgroups also exceed 0.8, revealing the potential of Raman based subgrouping. In comparisons, Figure 5 23 
respectively show the sensitivity, specificity accuracy and AUC for high-grade glioma subgrouping. For the 24 
most two previously investigated subgroups (IDH and 1p19q), our deep learning models (Resnet) achieve 25 
overall diagnostic accuracies of 90.67% (sensitivity of 93.75% and specificity of 88.37%) and 86.67% 26 
(sensitivity of 90.00% and specificity of 85.45%) in the table S2.  27 

Supplementary Figure S3-S6 compares the performance (sensitivity, specificity, accuracy and AUC) 28 
between machine learning (SVM), manifold learning (UMAP), and deep learning (ResNet), indicating that 29 
deep learning is a more practical algorithm in most subgroups. Comparing with PCA-SVM and UMAP in the 30 
table S2, ResNet was better for discriminating IDH mutation and 1p19q codeletion. Using ResNet also 31 
achieves better overall diagnostic accuracy in most of the other subgroups (82.67% in EGFR, 78.67% in 32 
Chromosome7/10 and 89.33% in CDKN2A/B). It is exceptional that in MGMT and TERT, using ResNet 33 
achieves lower diagnostic accuracy (88.00% in MGMT and 81.33% in TERT) than manifold learning (91.28% 34 
in MGMT and 87.92% in TERT). 35 

GBM molecular subgrouping with deep learning. To further demonstrate the effectiveness of our 36 
classification models, performance in GBM 5 molecular subgroups is also evaluated. In 422 tissue sites of 29 37 
high-grade glioma patients, the Raman spectra are preprocessed, split and fed into the models in the same 38 
way. Figure 6 shows the performance of subgrouping. With our deep learning model, the AUCs in all 39 
subgroups are larger than 0.85. The diagnostic accuracy in each subgroup is also better than 0.86 (over 0.9 40 
in MGMT, TERT and CDKN2A/B), demonstrating our ResNet to be a practical algorithm for subgrouping. 41 

Raman features related to high-grade glioma molecular subgrouping. To further investigate the 42 
significant biomolecular information identified in tissue Raman spectra during the glioma molecular diagnosis 43 
process of ResNet. Raw spectral region of interest (ROI) between molecular subgrouping, and ResNet 44 
determined spectral ROI which are most contributed to the diagnostic models are selected using the saliency 45 
maps, as shown in Figure 7 and table S3. The Raman peaks related to the glioma tissues are recognized, 46 
reflecting the most significant biomolecular variance in Raman diagnosis based on the BSF method of 47 
ResNet. In IDH recognition, the saliency map was positive related to the Raman peaks of (499 cm-1, 568 cm-48 
1, 577 cm-1 (phosphatidylinositol), 1078 cm-1 (lipid, phospholipid, nucleic acid), 1473 cm-1), negative related to 49 
the Raman peaks of (1448 cm-1 (collagen), 1433 cm-1 (lipid)). In 1p/19q recognition, the saliency map was 50 
positive related to the Raman peaks of (525 cm-1 (serine, cysteine), 547 cm-1 (cholesterol), 1085 cm-1 (nuclei 51 
acid), 1094 cm-1 (DNA)), negative related to the Raman peaks of (1319 cm-1 (collagen), 1332 cm-1 (CH3CH2 52 
wagging, collagen)). In MGMT recognition, the saliency map was positive related to the Raman peaks of 53 
(930 cm-1 (collagen), 951 cm-1 (protein), 1560 cm-1 (tryptophan)), negative related to the Raman peaks of 54 
(640 cm-1 (tyrosine), 1442 cm-1 (triglycerides)). In TERT recognition, the saliency map was positive related to 55 
the Raman peaks of (529 cm-1), negative related to the Raman peaks of (508 cm-1, 525 cm-1, 536 cm-1 56 
(cholesteryl esters), 540 cm-1 (cysteine)). In EGFR recognition, the saliency map was positive related to the 57 
Raman peaks of (1000 cm-1 (phenylalanine, collagen), 1221 cm-1 (protein)) negative related to the Raman 58 
peaks of (549 cm-1 (cholesterol), 850 cm-1 (tyrosine), 856 cm-1 (type I collagen)). 59 
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In Chromosome copy number +7/-10 recognition, the saliency map was positive related to the Raman peaks 1 
of (1129 cm-1 (protein, lipid), 1155 cm-1 (protein, glycogen)), negative related to the Raman peaks of (818 cm-2 
1 (collagen), 1068 cm-1(collagen, fatty acid, palmitic acid)). In CDKN2A/B recognition, the saliency map was 3 
positive related to the Raman peaks of (1169 cm-1 (type I collagen)), negative related to the Raman peaks of 4 
(1064 cm-1 (lipid), 1618 cm-1 (tryptophan), 1635 cm-1 (collagen)). The ResNet model recognized the relative 5 
intensity changes (either an increase or decrease) of multiple Raman bands related to biomolecules in the 6 
Raman spectra of high-grade glioma. 7 
 8 

Discussion 9 
Distinguishing the molecular subgroups in the surgery is significant as it devotes to identify the operation 10 
plan. In this work, we have developed and validated the Raman diagnostic platform of the unique ResNet 11 
model for real-time accurate identification of molecular subgroups of high-grade glioma and GBM patients. 12 
The ResNet model was optimized with tanh activation function instead of relu or linear function. Nonlinear 13 
activation function achieves better fitting to many different spectroscopic patterns with better accuracy and 14 
less loss during training networks. The overall process including Raman spectra acquisition and model 15 
detection for single tissue site cost within 5 seconds. In AUC comparisons, ResNet was better for diagnosis 16 
than PCA-SVM and UMAP. All molecular subgrouping of high-grade glioma differentiates with the AUC of > 17 
0.8 by using ResNet, especially IDH wild and mutation, 1p/19q intact and codeletion, CDKN2B depletion and 18 
no depletion differentiate with the AUC of >0.95. We also investigated GBM subgrouping to evaluate our 19 
Raman ResNet model. For the same molecular signature, of GBM subgrouping is better than high-grade 20 
glioma subgrouping in AUC comparisons, as shown in Figure 6. 21 
 22 
For saliency map shown in Figure 7, the reduction of lipid and collagen reflects IDH wild. Cholesterol, serine, 23 
cysteine, and nuclei acid increase, reflecting 1p/19q intact. Tyrosine, protein classes, triglycerides, 24 
tryptophan and collagen change in glioma tissues, reflecting spectral difference between MGMT 25 
demethylation and methylation. Serine and cysteine decrease, reflecting TERT mutation. Cholesterol and 26 
tyrosine decrease, reflecting EGRF amplification. Collagen, lipid and porphyrin change, reflecting 27 
Chromosome7 amplification; proline, valine and phenylalanine change, reflecting Chromosome10 depletion. 28 
Phenylalanine and collagen change, reflecting CDKN2A depletion; tryptophan, lipid and collagen change, 29 
reflecting CDKN2B depletion. Previous studies have confirmed that the decline of lipids and collagen is 30 
closely related to IDH mutation. Mutated IDH subtyping would convert α-ketoglutaric acid in the tricarboxylic 31 
acid cycle into 2-hydroxy-glutaric acid (2-HG), and the high level of 2-HG inhibits the synthesis of 32 
triglycerides and other lipids35, and the high level of D2-HG blocks the prolyl hydroxylation of collagen, 33 
leading to defective maturation of collagen36. For other molecular signatures, literatures haven’t provided 34 
sufficient support. 35 
 36 
Molecular classification could also have an immediate impact on the surgical strategies of patients with high-37 
grade glioma. Surgical goals should be tailored based on molecular subgroups37,38. Patients with molecular 38 
astrocytoma who undergo gross total resection achieve a 5-year increase in median survival compared to 39 
patients who receive subtotal resections. Our Raman molecular subgrouping creates an avenue for accurate 40 
and rapid differentiation of high-grade glioma subgroups to define a better prognosis. Moreover, fewer than 41 
10% of patients with glioma are enrolled in clinical trials39. Clinical trials limit inclusion criteria to a specific 42 
subpopulation, often defined by molecular subgroups. Our deep learning Raman method may offer a new 43 
opportunity for new clinical trials. 44 
 45 
Current multiple techniques were developed for intraoperative brain cancer. Modalities such as ultrasound 46 
(US) and optical coherence tomography (OCT), confocal fluorescence microscopy (CFM) have been shown 47 
to provide structural information (large scale for US, sub-micrometer resolution for CFM, and microscopic 48 
scale for CFM, OCT) in real time. Intraoperative US show the ability to margin deep seated brain tumors from 49 
normal brain40. Intraoperative OCT has been able to distinguish high-density/low-density cancer in nine 50 
patients with high-grade gliomas41. Intraoperative confocal microscopy has shown evidence for invasion 51 
detection using fluorescence in grade 1 to 2 glioma on 10 patients42. However, no evidence indicates these 52 
modalities could investigate molecular subgroups. Recently, SRH has shown the possibility of detecting 53 
three molecular signatures (IDH, 1P/19q and ATRX) through stimulated Raman modality33, However, in 54 
practice, Raman mapping for molecular subtyping is not necessary with time consuming. Molecular 55 
subgrouping is on patient level and has no heterogeneity, thus, detection of several sites is more suitable for 56 
clinical situation, meanwhile, overall site-detection method is more cost-effective on both devices and 57 
algorithm.  58 
 59 
This paper is a preliminary study confirmed that the feasibility of providing rapid molecular signature test to 60 
doctors during surgery. The influence of subdivided glioma categories on molecular feature recognition 61 
performance was discussed in this article, which can be applied in intraoperative scenarios to assist doctors 62 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.03.23292176doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.03.23292176
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

in identifying GBM combined with rapid freezing pathological results. Our deep learning fiberoptic Raman 1 
spectroscopy may improve the detection performance of molecular features such as MGMT methylation etc. 2 
By incorporating with molecular weight analysis, we found that potential related makers (e.g. lipid and 3 
protein, DNA and collagen) for high-grade glioma subgrouping. Although we don’t implement in vivo 4 
molecular subgrouping detection, previous researches have shown the solid foundation of in vivo Raman 5 
spectroscopy43,44, indicating the feasibility of in vivo molecular subgrouping.  6 
 7 
Methods 8 
Tissue preparation. This study was approved by the ethical committee of Beijing Tiantan Hospital (KY2023-9 
030-02). Before the operation, every patient underwent enhanced magnetic resonance imaging (MRI), 10 
including T1-weighted, T1-contrast, T2-weighted, and T2-Flair (T2-fluid-attenuated inversion recovery) 11 
modalities. Two experienced neuroradiologists independently reviewed the MRI data of patients, and those 12 
diagnosed with high-grade glioma (HGG) were considered for further analysis. During the operation, tumor 13 
tissues from patients diagnosed with HGG based on preoperative MRI were validated using rapid intra-14 
operative tissue pathology. Only specimens showing tissue pathology consistent with the MRI images were 15 
collected. After the tumor tissue was resected, a sodium chloride solution was used to remove blood 16 
adhered to the tumor tissue. The original tumor tissue was then cut into several small tissue particles 17 
(approximately 2mm*2mm*2mm). Then the tumor samples were snap-frozen in liquid nitrogen and stored at 18 
-80 ℃. All procedures were completed within 30 minutes. The tissues were sectioned and stained with 19 
hematoxylin-eosin (H&E) to confirm the pathological diagnosis of each sample. Finally, the tissues prepared 20 
on aluminum foil were used for Raman spectroscopic studies. 21 
 22 
Fiberoptic Raman spectroscopy. The Raman probe spectroscopy system as shown in Supplementary 23 
Figure S1 which we used for high-grade glioma and GBM diagnosis, which is composed of Raman probe 24 
with filters (RamanProbe, Inphotonics Inc.), 785nm laser (o8NLDM, Cobolt Inc.) and high-sensitive 25 
spectrometer with ddpCCD (Acton 785, Princeton Instrumentation Inc.). The laser excitation power for the 26 
tissue Raman collection is 65mW, and the exposure time of single spectrum is 5 second. The numerical 27 
aperture (NA) of Raman probe (1cm in diameter) is 0.22. 28 
 29 
Molecular subgrouping status. This study included 7 astrocytoma, 8 oligodendroglioma, and 29 GBM 30 
(including 2 molecular GBM) from Beijing Tiantan Hospital. The enrolled patients' data, including basic 31 
demographic information, imaging data, pathological diagnosis, and molecular characteristics, were collected 32 
from the hospital information system (HIS). The integrated diagnosis of tumors in this study relied on 33 
histological pathology and molecular features. The histological pathology of tumors was validated using the 34 
hematoxylin-eosin (H&E) stain of tumor tissue. The following key molecular features, which contribute to the 35 
integrated diagnosis of glioma, were determined using pyrosequencing and/or next-generation sequencing 36 
(NGS), including the mutation status of IDH1 and IDH2, MGMT promoter methylation status, 1p/19q co-37 
deletion status, the mutation status of the TERT promoter, EGFR amplification status, gain of chromosome 7 38 
and loss of chromosome 10, and the homozygous deletion status of CDKN2A/B. According to the 2021 39 
WHO classification of tumors of the central nervous system, common diffuse gliomas in adults are divided 40 
into three types: astrocytoma, IDH-mutant; oligodendroglioma, IDH-mutant and 1p/19q co-deleted; and 41 
glioblastoma, IDH-wildtype. All IDH-mutant diffuse astrocytic tumors are considered as a single type 42 
(astrocytoma, IDH-mutant) and are graded as CNS WHO grade 2, 3, or 4. However, the presence of 43 
homozygous deletion of CDKN2A/B results in a CNS WHO grade of 4, even without typical histological 44 
features such as microvascular proliferation or necrosis. For IDH-wildtype diffuse gliomas in adults, if one or 45 
more of the three genetic parameters are present (TERT promoter mutation, EGFR gene amplification, 46 
combined gain of chromosome 7 and loss of chromosome 10), these lesions are assigned to the highest 47 
WHO grade, namely molecular GBM. Oligodendroglioma, IDH-mutant and 1p/19q co-deleted, are graded as 48 
CNS grade 2 or 3 based on histological features. Anaplastic oligodendroglioma is not included in this 49 
classification. Only in the context of an IDH-wildtype diffuse and astrocytic glioma in adults, if there are 50 
typical histological features (microvascular proliferation or necrosis) or key molecular characteristics (TERT 51 
promoter mutation or EGFR gene amplification or +7/-10 chromosome copy number changes), a diagnosis 52 
of glioblastoma, IDH-wildtype can be made. 53 

 54 
Raman spectrum pre-process. The original spectral data contains various noise and auto-fluorescence 55 
background; therefore, the spectra need to be processed before being input into the deep learning model. 56 
The pre-processing takes four steps: (1) wavenumber selection; (2) background subtraction; (3) smoothing; 57 
(4) normalization. In brief, the wavenumber between 400-1800 cm-1 was selected as the region of interest. 58 
The asymmetric least-squares method was applied to subtract the background signal. The data were then 59 
smoothed by a Savitzky-Golay filter to reduce the noise and increase the signal-to-noise ratio. All the 60 
processing mentioned above was done by Python 3.7 library scipy 1.8.0. 61 
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Raman spectrum classification model. Using PCA, we assume that all meaningful information which 1 
contains within the variance. Through finding the maximum variance space, we could get principal 2 
components (PC1, PC2 etc.) of Raman shift with high variance. Using SVM, we create a hyper plane (ω*x-3 
b=0) with minimum distance between points. SVM method only focuses on class weight from extreme points, 4 
in the meanwhile ignoring distances between other points to hyper plane. Therefore, SVM may fit well with 5 
small sample size Raman spectrum data. Combing PCA and SVM, we built a machine learning based 6 
classification model for high-grade glioma subgrouping. All the processing mentioned above was done by 7 
Python 3.7 library sklearn 0.24.2. 8 

Different with PCA, UMAP used nonlinear dimensional reduction, and find a representation (UMAP1, UMAP2 9 
etc.) of Raman data in low-dimensional space RN. Firstly, a good map from Riemannian manifold M to RN 10 
was found. Then Raman data D is uniformly drawn from M. By simulating approximate distances in M 11 
between points in D that are close enough in RN, we finally get UMAP values in RN. Here, we built supervised 12 
UMAP classification model for high-grade glioma subgrouping. All the processing mentioned above was 13 
done by Python 3.7 library UMAP-learn 0.5.3. 14 

Structure of ResNet were described in the Figure 2B. Here we optimized the 1D ResNet networks for 15 
Raman data modeling using following strategies. (1) In order to achieve the capture of information at 16 
different scales, multi-layer convolution operations are used. (2) To simulate many different data patterns, 17 
nonlinear activation functions Tanh are used instead of Linear or Relu. (3) To achieve accurate optimization 18 
of hyper parameters of network, backpropagation and gradient descent are used to fit spectral wavenumber 19 
information. (4) The saliency map of deep learning models (ResNet) was simulated by the binary stochastic 20 
filtering (BSF) feature selection methods as shown in Figure 2B. All these optimization steps efficiently 21 
extract one-dimensional Raman spectral data information for binary subgrouping, and avoid model over-22 
fitting. All the processing mentioned above was done by Python 3.7 Library keras 2.2.4 and tensorflow 23 
1.14.0. 24 

Model evaluation. For subgrouping evaluation, true positives correspond to correct molecular subgrouping 25 
of Raman spectra from each tissue site compared with the ground truth of Glioma from the same tissue, 26 
false positives correspond to wrong subgrouping for instance (e.g., IDH wild), and false negatives 27 
correspond to wrong subgrouping for instance (e.g., IDH mutation). Outcomes of high-grade glioma Raman 28 
classification were evaluated with respect to sensitivity (SEN), specificity (SPC), and accuracy (ACC) as 29 
follows: 30 
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  (3) 33 

The binary classification for glioma molecular subgrouping was evaluated with a binary receiver operating 34 
characteristic (ROC) analysis according to the method. A ROC curve was generated by continuously varying 35 
the threshold of the probability for each category based on the ground truth. The area under the ROC curve 36 
(AUC) ranging from 0 to 1 evaluates the ability of a model to accurately distinguish different glioma 37 
subgroups with maximum sensitivity and specificity. 38 
 39 
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 1 
Fig. 1 | Workflow of high-grade glioma molecular subgrouping classification. According to 2021 WHO 2 
classification system, 7 typical molecular subgroups (IDH, 1p/19q, MGMT, TERT, EGFR, Chromosome7/10, 3 
CDKN2A/2B) were selected. First, high-grade glioma was classified for IDH and 1p/19q subgroups, and 4 
GBM was identified from high-grade glioma. Then, Raman of high-level glioma and GBM were classified for 5 
7 molecular subgroups (MGMT methylation etc.). 6 
 7 
 8 
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 1 
Fig. 2| Workflow of each subgrouping classification. a, Workflow of each subgrouping modeling: the 2 
dataset preparing, Resnet model training for classification and BSF model training for weighing wavenumber 3 
contribution. b, Structure of the Resnet model designed. The numbers in bracket represent the size 4 
[(channels,) length] of the hidden layers. The orange numbers represent the strides of the first convolution 5 
layer in each identity block (orange dash line). Abbreviation: Conv: convolution layer with kernel size = 3 and 6 
strides = s, BN: batch normalization. 7 
 8 
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 1 
Fig. 3| Mean FP Raman spectra of high-grade glioma molecular subgrouping for classification 2 
acquired from 743 tissue sites of 44 patients under Raman spectroscopy. a, Tissue Raman spectral 3 
differences between IDH wild and mutation (wild:442; mutation: 301). b,1p/19q intact and codeletion tissues 4 
(intact: 593; codeletion: 150). c, MGMT unmethylation and methylation tissues (methylation: 546; 5 
unmethylation: 197). d, TERT wildtype and mutation tissues (mutation: 508; wildtype: 235). e, EGFR non-6 
amplification and amplification tissues (amplification: 241; non-amplification: 502). f, Gain of chromosome 7 7 
& loss of chromosome 10 and wild-type (+7/-10: 192; wild-type: 551). g, CDKN2A/B homozygous deletion 8 
and retention (homozygous deletion: 226; retention: 517).  9 
 10 
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 1 
Fig. 4| Comparisons of Raman diagnostic ROC using deep learning (ResNet) model. 7 molecular 2 
subgroups of high-grade glioma (a, IDH, b, 1p/19q, c, MGMT, d, TERT, e, EGFR, f, Chromosome7/10, g, 3 
CDKN2A/B) and 5 molecular subgroups of GBM (MGMT, TERT, EGFR, Chromosome7/10, CDKN2A and 4 
CDKN2B).  5 
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 1 
Fig. 5| Heatmap of Raman diagnostic performance. For instance, sensitivity, specificity, accuracy and 2 
AUC of machine learning (SVM), manifold learning (UMAP), and deep learning (ResNet) models using 3 
Raman spectral datasets for separating high-grade glioma 7 molecular subgroups. SEN: sensitivity, SPC: 4 
specificity, ACC: accuracy, AUC: area under classification. 5 
 6 
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 1 
Fig. 6| Classification performance in GBM 5 molecular subgroups. a, 5 typical molecular subgroups 2 
selected in GBM. b, Raman diagnostic ROC using deep learning (ResNet) model. c, Heatmap of Raman 3 
diagnostic sensitivity, specificity, accuracy and AUC of machine learning (SVM), manifold learning (UMAP), 4 
and deep learning (ResNet) models using Raman spectral datasets for separating GBM 5 molecular 5 
subgroups. SEN: sensitivity, SPC: specificity, ACC: accuracy, AUC: area under classification. 6 
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 1 
Fig. 7| Saliency maps in ResNet model for Raman shift signatures. Discriminating high-grade glioma 7 2 
molecular subgroups (IDH, 1p/19q, MGMT, TERT, EGFR, Chromosome7/10, CDKN2A/B) correlates the 3 
Raman shift of biomolecular subgroups, normalized with max values of difference spectrum. 4 
 5 
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