Impact of PET reconstruction on Aβ-amyloid quantitation in cross-sectional and longitudinal analyses

Gihan P. Ruwanpathirana^{1,2}, Robert C. Williams², Colin L. Masters^{3,4}, Christopher C. Rowe^{3,4,5}, Catherine E. Davey^{1,2}, Leigh A. Johnston^{1,2}

1 Department of Biomedical Engineering, The University of Melbourne, Melbourne, VIC, Australia.

2 Melbourne Brain Centre Imaging Unit, The University of Melbourne, Melbourne, VIC, Australia

3 Florey Institute of Neurosciences and Mental Health, The University of Melbourne, Melbourne, VIC, Australia

4 The Australian Dementia Network (ADNET), Melbourne, Australia

5 Department of Molecular Imaging & Therapy, Melbourne, Austin Health, VIC, Australia

SUPPLEMENTARY MATERIALS

FIGURE S1: Iteration update vs phantom resolution. Comparison of the barrel phantom calculated

spatial resolution (FWHM) with the iteration update while using a post-reconstruction Gaussian smoothing of 0 mm and 5 mm.

FIGURE S2: The impact of post-reconstruction smoothing on A β **SUVR.** Change in mean SUVR for each reconstruction group after the application of a 5 mm post-reconstruction Gaussian smoothing. A β - and A β + groups are shown separately. Note: Error bars are not included as they are too small to be legible.

FIGURE S3: Summary of A β - longitudinal data reconstructed with low-, medium- and highresolution reconstruction configurations. The impact of PET spatial resolution on the A β accumulation rate difference

FIGURE S4: Summary of $A\beta$ + longitudinal data reconstructed with low-, medium- and highresolution reconstruction configurations. The impact of PET spatial resolution on the $A\beta$ accumulation rate difference.

Study Type	Cross-s	ectional	Longitudinal		
Aβ group	Αβ-	Αβ+	Αβ-	Αβ+	
Sample size	44	45	46	33	
Sex. F (%)	26 (59)	26 (58)	22 (47.83)	13 (39.39)	
$Age \pm SD$	71 ± 3.77	70.78 ± 3.96	71.91 ± 4.51	74.00 ± 5.59	
% Right hand	91	91	89*	84*	
% APOE4	21*	70 **	15	39	
CU, MCI, AD	$41, 0, 0^{***}$	37, 4, 0****	41, 4, 1	$24, 4, 4^*$	
MMSE ± SD	27.9 ± 1.22	27.71 ± 1.33	29.09 ± 0.98	27.52 ± 2.83	
$CDR \pm SD$	$0\pm0^{*}$	0.03 ± 0.13	005 ± 0.19	0.17 ± 0.30	
$CDR-SoB \pm SD$	$0.01\pm0.08^*$	0.09 ± 0.22	0.18 ± 1.03	0.79 ± 1.90	

TABLE S1: Demographics of Cross-sectional and Longitudinal study datasets.

Demographics marked with * are missing values from some subjects, where the number of * corresponds to the number of subjects missing. F = Female, SD = Standard Deviation, APOE4 = Apolipoprotein E4, CU = Cognitively unimpaired, MCI = Mild Cognitively Unimpaired, AD = Alzheimer's Disease, MMSE = Mini-Mental State Examination, CDR = Clinical Dementia Rating, CDR-SoB = Clinical Dementia Rating Scale Sum of Boxes.

TABLE S2: Reconstruction configurations used in the cross-sectional analysis and their relevant Aβ-PET

SUVR and FWHM values.

Recons- truction	Iterations	Subsets	Filter size	FWHM (mm)	Mean SUVR of	SD of Aβ-	Mean SUVR of	SD of Aß-
method			(mm)	()	Αβ-	group	Αβ+	group
					group		group	
PSFTOF	12	21	0	2.25	0.933	0.077	1.438	0.215
PSFTOF	10	21	0	2.35	0.932	0.079	1.439	0.216
PSFTOF	12	21	1	2.35	0.934	0.077	1.439	0.214
PSFTOF	10	21	1	2.45	0.932	0.077	1.439	0.215
PSFTOF	8	21	0	2.5	0.933	0.077	1.438	0.215
PSFTOF	8	21	1	2.55	0.934	0.077	1.439	0.216
PSFTOF	6	21	0	2.7	0.932	0.077	1.438	0.215
PSFTOF	6	21	1	2.75	0.932	0.077	1.438	0.216
PSFTOF	4	21	0	3.05	0.937	0.076	1.434	0.214
PSFTOF	4	21	1	3.1	0.937	0.075	1.435	0.215
PSFTOF	2	21	0	3.8	0.936	0.073	1.415	0.214
PSFTOF	2	21	1	3.9	0.935	0.073	1.414	0.213
OP	2	24	0	4.2	0.936	0.073	1.419	0.211
OPTOF	12	21	0	4.3	0.934	0.073	1.404	0.202
OP	10	24	0	4.3	0.936	0.072	1.419	0.212
OPTOF	10	21	0	4.35	0.934	0.073	1.405	0.201
OP	12	24	1	4.35	0.936	0.072	1.419	0.211
OPTOF	12	21	1	4.4	0.934	0.072	1.402	0.202

OP	8	24	0	4.4	0.935	0.073	1.418	0.210
OPTOF	8	21	0	4.4	0.938	0.073	1.404	0.202
OPTOF	10	21	1	4.45	0.934	0.073	1.402	0.202
OP	10	24	1	4.45	0.935	0.072	1.418	0.211
OP	8	24	1	4.5	0.935	0.073	1.418	0.210
OPTOF	6	21	0	4.5	0.935	0.073	1.405	0.200
OP	6	24	0	4.5	0.937	0.071	1.419	0.211
OPTOF	8	21	1	4.5	0.938	0.074	1.401	0.200
OPTOF	4	21	0	4.55	0.935	0.071	1.400	0.202
OPTOF	6	21	1	4.6	0.935	0.072	1.401	0.201
OP	6	24	1	4.6	0.937	0.071	1.417	0.210
OP	4	24	0	4.6	0.939	0.072	1.417	0.211
OPTOF	4	21	1	4.65	0.935	0.071	1.400	0.202
OP	4	24	1	4.7	0.939	0.072	1.416	0.211
OPTOF	2	21	0	4.85	0.937	0.070	1.393	0.201
OPTOF	2	21	1	4.9	0.937	0.070	1.391	0.200
OP	2	24	0	4.95	0.950	0.069	1.415	0.208
OP	12	4	0	5.05	0.951	0.069	1.419	0.210
OP	2	2	1	5.1	0.950	0.068	1.417	0.209
OP	12	4	1	5.15	0.951	0.070	1.418	0.208
OP	10	4	0	5.2	0.955	0.069	1.418	0.208
PSFTOF	12	21	5	5.25	0.940	0.073	1.408	0.203
PSFTOF	10	21	5	5.35	0.938	0.072	1.406	0.201
PSFTOF	8	21	5	5.35	0.939	0.072	1.405	0.202
OP	10	4	1	5.35	0.955	0.068	1.416	0.209
PSFTOF	6	21	5	5.45	0.938	0.071	1.404	0.202
OP	8	4	0	5.5	0.962	0.071	1.416	0.203
OP	8	4	1	5.55	0.961	0.070	1.416	0.202
PSFTOF	4	21	5	5.65	0.939	0.069	1.399	0.203
OP	6	4	0	5.95	0.975	0.070	1.413	0.197
OP	6	4	1	6	0.975	0.070	1.413	0.196
PSFTOF	2	21	5	6.25	0.934	0.066	1.376	0.198
OP	4	4	0	6.8	0.999	0.073	1.405	0.180
OP	4	4	1	6.85	0.998	0.072	1.405	0.179
OP	8	24	5	7	0.942	0.065	1.388	0.199
OP	10	24	5	7	0.942	0.064	1.391	0.199
OP	12	24	5	7.05	0.943	0.064	1.390	0.199
OP	6	24	5	7.05	0.942	0.063	1.387	0.200
OP	4	24	5	7.1	0.942	0.063	1.383	0.199
OPTOF	12	21	5	7.15	0.942	0.065	1.373	0.190
OPTOF	6	21	5	7.2	0.940	0.065	1.371	0.189
OPTOF	10	21	5	7.2	0.941	0.065	1.371	0.188
OPTOF	8	21	5	7.2	0.945	0.067	1.372	0.188
OPTOF	4	21	5	7.25	0.939	0.064	1.365	0.186

OP	2	24	5	7.5	0.948	0.060	1.376	0.191
OPTOF	2	21	5	7.55	0.938	0.062	1.357	0.184
OP	12	4	5	7.55	0.948	0.061	1.377	0.196
OP	10	4	5	7.7	0.953	0.061	1.380	0.192
OP	8	4	5	7.9	0.959	0.062	1.382	0.189
OP	6	4	5	8.3	0.973	0.064	1.380	0.182
OP	4	4	5	9.05	0.994	0.066	1.377	0.168