Authors:
Valérie Tikhonoff (University of Padova)
Edoardo Casiglia (University of Padova)
Agostino Virdis (University of Pisa)
Guido Grassi (University of Milano-Bicocca)
Fabio Angeli (University of Insubria and Maugeri Care and Research Institute, IRCCS Tradate (VA))
Marcello Arca (Università degli Studi di Roma La Sapienza)
Carlo Barbagallo (University of Palermo)
Michele Bombelli (University of Milano-Bicocca)
Federica Cappelli (University of Pisa)
Rosario Cianci (Sapienza University of Rome)
Arrigo Cicero (University of Bologna)
Massimo Cirillo (University of Naples Federico II)
Pietro Cirillo (University of Bari)
Raffaella Dell'Oro (University of Milano-Bicocca)
Lanfranco D'Elia ("Federico II" University of Naples Medical School)
Giovambattista Desideri (University of L'Aquila)
Claudio Ferri (University of L'Aquila)
Ferruccio Galletti ("Federico II" University of Naples Medical School)
Loreto Gesualdo (University of Bari)
Cristina Giannattasio (University of Milano-Bicocca)
Guido Iaccarino (University of Napoli)
Francesca Mallamaci (CNR-IBIM Institute of Biomedicine)
Alessandro Maloberti (Ospedale Niguarda Ca' Granda)
Stefano Masi (University of Pisa)
Maria Masulli ("Federico II" University of Naples Medical School)
Alberto Mazza (General Hospital, Rovigo)
Alessandro Mengozzi (Department of Clinical and Experimental Medicine, University of Pisa, Italy)
Maria Lorenza Muiesan (University of Brescia)
Pietro Nazzaro (University of Bari, Neurology Department)
Paolo Palatini (University of Padova)
Gianfranco Parati (University of Milano-Bicocca and Istituto Auxologico Italiano San Luca Hospital)
Roberto Pontremoli (University of Genoa)
Fosca Quarti-Trevano (University of Milano-Bicocca)
Marcello Rattazzi (University of Padova)
Gianpaolo Reboldi (University of Perugia)
Giulia Rivasi (University of Florence and Careggi Hospital)
Elisa Russo (IRCCS Ospedale Policlinico San Martino and University of Genoa, Italy)
Massimo Salvetti (University of Brescia)
Pierluigi Temporelli (Division of Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS)
Giuliano Tocci (Sapienza University of Rome)
Andrea Ungar (University of Florence)
Paolo Verdeccchia (Hospital of Perugia)
Francesca Viazzi (University of Genoa and IRCCS Azienda Ospedaliera Universitaria San Martino-IST
Istituto Nazionale per la ricerca sul Cancro)
Massimo Volpe (University of Rome Sapienza, Sant'Andrea Hospital)
Claudio Borghi (University of Bologna)

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
PROGNOSTIC VALUE AND RELATIVE CUT-OFFS OF TRIGLYCERIDES PREDICTING CARDIOVASCULAR OUTCOME IN A LARGE REGIONAL-BASED ITALIAN DATABASE

Valérie TIKHONOFF a, MD, PhD; Edoardo CASIGLIA b, MD; Agostino VIRDIS c, MD; Guido GRASSI d, MD; Fabio ANGELI e, MD; Marcello ARCA f, MD; Carlo M. BARBAGALLO g, MD; Michele BOMBELLI h, i, MD; Federica CAPPELLI j, MSc; Rosario CIANCI k, MD; Arrigo FG CICERO l, MSc; Massimo CIRILLO m, MD, PhD; Pietro CIRILLO n, MD, PhD; Raffaella DELL’ORO o, MD; Lanfranco D’ELIA p, MD, PhD; Giovambattista DESIDERI q, MD; Claudio FERRI r, MD; Ferruccio GALLETTI s, MD, PhD; Loreto GESUALDO t, MD; Cristina GIANNATTASIO u, MD, PhD; Guido IACCARINO v, MD; Francesca MALLAMACI w, MD; Alessandro MALOBERTI x, y, MD, PhD; Stefano MASI y, MD, PhD; Maria MASULLI z, MD, PhD; Alberto MAZZA A, MD; Alessandro MENGIZZI b, MD; Maria Lorenza MUJESAN g, MD; Pietro NAZZARO h, MD; Paolo PALATINI i, MD; Gianfranco PARATI j, MD; Roberto PONTREMOLI k, MD; Rosaria PRAFARO l, MD, PhD; Marcello RATTAZZI m, MD, PhD; Gianpaolo REBOLDI n, MD, PhD; Giulia RIVASI o, MD; Elisa RUSSO p, MD; Massimo SALVETTI q, MD; Pier Luigi TEMPORELLI r, MD; Giuliano TOCCI s, MD; Andrea UNGAR t, MD; Paolo VERDECCHIA u, MD; Francesca VIAZZI v, MD, PhD; Massimo VOLPE w, x, MD; Claudio BORGHI y, z, MD.

*the two authors contributed to the manuscript equally

a Department of Medicine, University of Padua, Padua, Italy ; b Studium Patavinum, Department of Medicine, University of Padua, Padua, Italy ; c Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; d Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; e Department of Medicine and Surgery, University of Insubria, Varese, Italy; f Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy; g Biomedical Department of Internal Medicine and Specialistics, University of Palermo, Palermo, Italy; h Internal Medicine, Pio XI Hospital of Desio, ASST Brianza, Desio, Italy; i Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy; j Hypertension and Cardiovascular risk research center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, Bologna, Italy; k IRCCS AOU S.Orsola di Bologna, Bologna, Italy; l Department of Medicine “Scuola Medica Salernitana”, University of Salerno, Baronissi (SA), Italy; m Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, “Aldo Moro” University of Bari, Bari, Italy; n Department of Clinical Medicine and Surgery, “Federico II” University of Naples Medical School, Naples, Italy; o Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy; p Cardiology IV, “A.De Gasperi’s” Department, Niguarda Ca’ Granda Hospital, Milan, Italy; q School of Medicine and Surgery, Milano-Bicocca University, Milan, Italy; r Department of Advanced Biomedical Sciences, “Federico II” University of Naples, Naples, Italy; s CNR-IFC, Clinical Epidemiology of Renal Diseases and Hypertension, Reggio Cal Unit, Reggio
Calabria, Italy; ¹Department of Internal Medicine, Santa Maria della Misericordia General Hospital, AULSS 5 Polesana, Rovigo, Italy; ²Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; ³Department of Medical Basic Sciences, Neurosciences and Sense Organs, University of Bari Medical School, Bari, Italy; ⁴S. Luca Hospital, Istituto Auxologico Italiano and University of Milan-Bicocca, Milan, Italy; ⁵Department of Internal Medicine, University of Genoa, and Policlinico San Martino, Genoa, Italy; ⁶Medicina Interna I, Ca’ Foncello University Hospital, Treviso, Italy; ⁷Department of Medical and Surgical Science, University of Perugia, Perugia, Italy; ⁸Department of Geriatric and Intensive Care Medicine, Careggi Hospital and University of Florence, Florence, Italy; ⁹Division of Cardiac Rehabilitation, Istituti Clinici Scientifici Maugeri, IRCCS, Gattico-Veruno, Italy; ¹⁰Hypertension Unit, Division of Cardiology, Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University of Rome Sapienza, Sant’Andrea Hospital, Rome, Italy; ¹¹Hospital S. Maria della Misericordia, Perugia, Italy; ¹²IRCCS San Raffaele Rome, Rome, Italy.

Short Title: Cut-off value of triglycerides predicting CVD

Word Count: 6136 (including Title Page, Abstract, Text, References, Tables and Figures Legends)

Number of tables: 5

Number of figures: 3

Number of supplementary digital content files: 1

Corresponding Author:

Prof. Valérie Tikhonoff, MD, PhD
Department of Medicine (DIMED)
University of Padua
Via Giustiniani 2 – 35128 Padua, Italy
Tel 049-8212301
e-mail: valerie.tikhonoff@unipd.it
Abstract

Background: Despite longstanding epidemiologic data on the association between increased serum triglycerides (TG) and cardiovascular (CV) events, the exact level at which risk begins to rise is unclear. The Working Group on Uric Acid and Cardiovascular Risk of the Italian Society of Hypertension has conceived a protocol aimed at searching for the prognostic cut-off value of TG in predicting CV events in a large regional-based Italian cohort.

Methods: Among 14,189 subjects aged 18 to 95 years followed-up for 11.2 (5.3-13.2) years, by means of receiver operating characteristic (ROC) curve the prognostic cut-off value of TG, able to discriminate combined CV events, was identified. The conventional (150 mg/dL) and the prognostic cut-off values of TG were used as independent predictors in separate multivariate Cox models adjusted for age, sex, body mass index, total and high-density lipoprotein cholesterol, serum uric acid, arterial hypertension, diabetes, chronic renal disease, smoking habit, use of antihypertensive and lipid lowering drugs.

Results: During 139,375 person-years of follow-up, 1,601 participants experienced CV events. ROC curve showed that 89 mg/dL (95%CI 75.8-103.3, sensitivity 76.6, specificity 34.1, p<0.0001) was the prognostic cut-off value for CV events. Both cut-off values of TG, the conventional and the newly identified, were accepted as multivariate predictors in separate Cox analyses, the hazard ratios being 1.211 (95%CI 1.063-1.378, p=0.004) and 1.150 (95%CI 1.021-1.295, p=0.02), respectively.

Conclusions: Lower (89 mg/dL) than conventional (150 mg/dL) prognostic cut-off value of TG for CV events do exist and it is associated with increased CV risk in an Italian cohort.

Keywords: triglyceride, cut-off value, cardiovascular disease, mortality, hypertriglyceridemia
Clinical Perspective

1) What is new?

- Evidence indicates that elevated triglyceride levels are related to cardiovascular events and mortality. However, the exact level at which risk begins to increase is unclear.

- In a large cohort of European subjects, a prognostic cut-off value of triglycerides lower (89 mg/dL) than the conventional one (150 mg/dL) was identified.

2) What are the clinical implications?

- Triglyceride measurement must be considered an important part of the routine evaluation to manage cardiovascular risk.

- In primary prevention, subjects with triglycerides above 89 mg/dL should be carefully observed to prevent possible cardiovascular events.
Non-standard Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI</td>
<td>confidence interval(s)</td>
</tr>
<tr>
<td>CHD</td>
<td>coronary heart disease</td>
</tr>
<tr>
<td>CV</td>
<td>cardiovascular</td>
</tr>
<tr>
<td>HDL</td>
<td>high density lipoprotein</td>
</tr>
<tr>
<td>HR</td>
<td>hazard ratio(s)</td>
</tr>
<tr>
<td>ICD-10</td>
<td>International Classification of Diseases – 10th Revision</td>
</tr>
<tr>
<td>LDL</td>
<td>low density lipoprotein</td>
</tr>
<tr>
<td>ROC</td>
<td>receiver operating characteristic</td>
</tr>
<tr>
<td>TG</td>
<td>total plasma triglycerides</td>
</tr>
<tr>
<td>URRAH</td>
<td>URic acid Right for heArt Health</td>
</tr>
</tbody>
</table>
Introduction

The global burden of dyslipidemia has increased over the past 30 years, with elevated plasma low-density lipoprotein (LDL) cholesterol levels being the eighth most important risk factor for death in 2019 [1]. In high-income countries (mostly in Europe and North America), levels of LDL have been in steady decline in response to improvements in lifestyle and an increase in the use of lipid-lowering drugs [2,3]. Based on risk stratification, LDL cholesterol lowering is addressed aggressively by statin and by nonstatin therapies (ezetimibe, inhibitors of proprotein convertase subtilisin/kexin type 9, bempedoic acid, evinacumab, and inclisiran) today [4,5].

Despite reduction on cardiovascular (CV) mortality over the past two decades, the number of deaths remains high and a residual risk persists [6]. This has compelled an interest in individuals with residually elevated triglyceride (TG), who have higher concentrations of atherogenic cholesterol carried by circulating TG-rich lipoproteins [7-10]. It became more and more clear that if LDL is well controlled and non high-density lipoprotein (HDL) cholesterol is not well controlled, the culprit is TG-rich lipoprotein which is highly atherogenic [9,10].

The interest on the association between elevated TG and CV events has fluctuated over the past many years driven by changes in the evidence base that suggests that these either cause atherosclerotic CV disease or simply represent innocent bystanders [8]. Mendelian randomization studies have provided causal evidence for the role of TG-mediated pathways in coronary heart disease (CHD) incidence [11]. In the large meta-analysis from Emerging Risk Factors Collaboration study, comprising 302,430 people without an initial vascular disease compiled from 68 long-term prospective studies of Europe and North America, a total of 12,785 cases of CHD were recorded from a total of 2.79 million person-years of follow-up, showing a hazard ratio for nonfatal myocardial infarction and CHD death for TG as 1.37 (95% CI, 1.31–1.42) after adjustment for non-lipid risk factors [12]. In a recent paper, Raposeiras-Roubin et al. shown in a prospective cohort study including 3,754 middle-aged individuals with low to moderate CV risk that TG levels ≥150 mg/dl was associated with subclinical
atherosclerosis and vascular inflammation, even in participants with normal LDL-C levels [13]. Despite epidemiologic data demonstrating the association between elevations in serum TG and CV disease [14], the exact level at which risk begins to increase is unclear. The first lipid guidelines for CV prevention defined elevated TG as >250 mg/dL [15]. Since then clinical trials evaluating the impact of TG lowering therapies have used a cutoff around 150 mg/dL [16]. Therefore, in the recent European Society of Cardiology (ESC) guidelines, the treatment target and goal on CV prevention indicates the conventional cut-off of 150 mg/dl [4]. However, specific prognostic cut-off value of TG around which the rise of incident CV events associated with TG changes appears has not been precisely evaluated in a European cohort. The Working Group on Uric Acid and Cardiovascular Risk of the Italian Society of Hypertension has conceived and designed an ad hoc protocol aimed at searching for prognostic cut-off values of TG in predicting CV events in a large regional-based Italian cohort of men and women.

Methods

Database and study protocol

The database called URRAH involves data on subjects aged 18 to 95 years collected on a regional community basis from all the territory of Italy with a median follow-up period of 11.2 years (interquartile range from 5.3-13.2 years) up to 31 July 2017. The study protocol has been previously extensively described [17-19] and the STROBE cohort checklist was used to write the article [20]. The data that support the findings of this study are available from the corresponding author upon reasonable request. In brief, a nationwide Italian database was built by collecting data on subjects from representative cohorts having serum uric acid measurement and complete information about several variables including outcomes. 14,189 subjects were taken into account in the present analyses. For all subjects, a standardized set of items was recorded, including demographics, anthropometric measures, metabolic parameters, smoking
habit, systolic and diastolic arterial blood pressure, renal function, history of CV, renal and brain disease, concomitant treatments and outcomes. Hypertension was defined by the presence of at least two blood pressure recordings \(\geq 140 \) or \(\geq 90 \) mmHg or treatment with antihypertensive medications. Diabetes mellitus was defined if blood glucose was \(\geq 126 \) mg/dl at fast or \(\geq 200 \) mg/dl 2 hours after 75 g oral glucose load or if glycated haemoglobin was \(\geq 48 \) mmol/mol. Kidney function was evaluated through estimation of the glomerular filtration rate, using a standardized serum creatinine assay and according to the Chronic Kidney Disease Epidemiology Collaboration equation [21]. Chronic kidney disease (CKD) was defined for estimated glomerular filtration rate values \(< 60 \) mL/min per 1.73 m\(^2\). Procedures for taking and preparing blood specimens and laboratory analysis were standardized. Blood specimens were taken by venipuncture after an overnight fast. Specimens were placed in edetic acid tubes in an ice bath. Plasma was then separated in a refrigerated centrifuge at 4 °C within 2 h after collection; separated plasma was transferred into cryovials, and frozen for later measurement of lipid concentration. The study data were collected routinely or ad hoc in previously authorized studies. Subjects underwent no extra tests or interventions, and there was no impact on subjects’ care or outcome.

Ethics

The study data were collected routinely or *ad hoc* in previously authorized studies. Subjects underwent no extra tests or interventions, and there was no impact on subjects’ care or outcome. The study was performed according to the Declaration of Helsinki for Human Research (41st World Medical Assembly, 1990). The processing of the patients’ personal data collected in this study comply with the European Directive on the Privacy of Data. All data to be collected, stored and processed are anonymized, and all study-related documents are retained in a secure location. No personal information is stored on local personal computers. Approval was sought from the Ethical Committee of the Coordinating Center at the Division of Internal Medicine of the University of Bologna (No. 77/2018/Oss/AOUBo). Informed consent was obtained from all subjects at recruitment.
Outcome

According to the study protocol [18], incident events due to acute myocardial infarction, *angina pectoris*, heart failure, stroke, transient ischemic attack and hypertensive complications were taken into consideration during the follow-up (see Table 1s in Supplemental Materials for ICD10 codes). Events were double-checked with hospital and physicians’ files.

Statistics

General description. The SAS package version 9.4 (SAS Institute, Cary, NC) was used for statistical analysis. A preliminary power analysis based on differences from stratified values of TG for $\alpha=0.05$ and power $(1-\beta)=0.80$ was performed. Power analysis showed that the number of subjects in the database ($n=14,189$) represented a sample largely sufficient to avoid β error. The Kolmogorov-Smirnov normality test was performed. Continuous variables were expressed as mean \pm standard deviation and compared among classes or categories by the analysis of covariance adjusted time to time for proper confounders and followed by the Bonferroni’s post hoc test. Categorical variables were compared by means of the Pearson χ^2 test. In multivariate analyses, the covariables that were not independent from each other were previously log-transformed. The null hypothesis was rejected for values of $p<0.05$.

Preliminary Cox analysis. Multivariate dichotomic Cox regression models having all combined CV events (fatal + non-fatal) as dichotomic dependent variable, adjusted for age, sex, body mass index, serum uric acid, serum HDL-cholesterol, serum non-HDL cholesterol, arterial hypertension, diabetes, chronic renal disease, smoking habit, alcohol consumption and use of lipid lowering drugs were preliminarily used to search for an association between TG log-transformed as a continuous variable and CV event. We tested interactions of TG log-transformed with sex, diabetes mellitus, arterial hypertension, ethanol intake by incorporating corresponding interaction terms in the analysis. Hazard ratios (HR) with 95% confidence intervals (CI) were produced. The null hypothesis was rejected for values of $p<0.05$.
Univariate prognostic cut-off values. The receiver operating characteristic (ROC) curves method was used to search for prognostic cut-off of TG for CV events in the whole database. TG was used as basic variable and CV events as dichotomic classification variable. The De Long et al. method [22] was used. Ratio of cases in the positive group (prevalence), sensitivity and specificity were calculated. ROC curve was generated in the whole database, and a prognostic cut-off value was identified as the curve point nearest to the 100% of axis of the ordinates [23]. In practical terms, this was made by identifying the TG value associated to the highest values of the sum sensitivity + specificity. Youden's index [24] defined for all points of ROC curves was used as a criterion for selecting the optimum cut-off. The cut-off point identified is the value corresponding with maximum of the Youden index J=\max[Se_i + SP_i -1], where Se_i and SP_i are the sensitivity and specificity over all possible threshold values. The area under the curve was also shown for each ROC curves analysis [25].

Validation of the conventional and prognostic cut-off values and HR of being over cut-off. The conventional (≥150 mg/dl) and the prognostic (identified by mean of the ROC curve) cut-off values of TG were used as independent variables in separate multivariate Cox analyses adjusted for the confounders already identified, having combined CV events as dichotomic dependent variable in the whole database. A cut-off value identified via the ROC curves method was considered as valid if accepted in the model being the null hypothesis rejected, otherwise it was considered a false cut-off. The corresponding HR with 95% CI were obtained. The conventional (≥150 mg/dl) and prognostic validated cut-off values were used in the whole database to stratify combined CV events in descriptive analysis and for generating outcome curves according to the Kaplan-Meier non-parametric estimator of limit product. Log-rank tests were used to assess differences between curves.
Results

Descriptive statistics

The general characteristics of the 14,189 subjects are shown in Table 1, also showing men and women separately. Very few participants (3.8%) were on lipid-lowering therapy. TG was non-normally distributed in the whole database with a median TG level of 110 (25th-75th percentile 80-154) (Figure 1).

During 139,375 person-years of follow-up, 1601 participants experienced CV events (11.4 per 1000 age-adjusted person-years), 747 men (12.1 per 1000 age-adjusted person-years) and 854 women (11.0 per 1000 age-adjusted person-years).

Multivariate analysis

Preliminary Cox models having combined CBV events as dependent variable showed that, in the whole cohort, log transformed TG as a continuous variable was a significant predictor of CV events [HR 1.173 (1.035-1.330), p=0.01] with significant confounding factors age, BMI, serum HDL cholesterol, serum uric acid, diabetes mellitus, arterial hypertension, alcohol consumption and use of lipid lowering drugs (Table 2). Four interaction terms were tested (TG x gender, TG x diabetes mellitus, TG x arterial hypertension, TG x ethanol intake). Only TG x diabetes mellitus was significant when included in the model (p=0.017) with HR 1.329, 95% CI 1.051–1.680.

Search for prognostic cut-off value of TG

ROC curve furnished plausible univariate cut-off value of TG (>88 mg/dL, 95%CI 75.8-103.3, sensitivity 76.6, specificity 34.1, p<0.0001) as prognostic cut-off value for CV event (Figure 2 and Table 3). When the conventional TG value of 150 mg/dL is considered, the sensitivity and specificity parameters are 33.0 and 74.3, respectively.

Validation of conventional and prognostic cut-off values and HRs of being over cut-off

The conventional (≥150 mg/dl) and the identified by the ROC curve (≥89 mg/dl) cut-off values of TG were both accepted as predictors in separate multivariate Cox analyses,
adjusted for the confounders already identified, demonstrating that being over the
cut-off values lead to higher risk with the 1.150 (95% CI 1.021-1.295, p=0.02) and HR
1.211 (95% CI 1.063-1.378, p=0.004), respectively (Table 4 and 5). Kaplan-Meier curves
after stratification according to cut-off values of TG are shown in Figure 3. The curves
of subjects having TG<cut-off and TG>cut-off were clearly separate both for
conventional (150 mg/dl) and prognostic (89 mg/dl) cut-off values.

Discussion

First of all, the results of this present analysis confirm that, in a large sample with a
long follow-up, fasting TG is an independent risk factor for CV events. Adjusting for
factors associated with both CV events and TG such as diabetes, BMI, alcohol use, HDL
and non-HDL cholesterol attenuated but did not fully account for the association
between TG and CV events. This is consistent with a series of studies showing a
positive association of incident CV events with TG both fasting and non-fasting, in
particular three large meta-analyses provided adjusted odds ratio values ranging from
1.57 (95% CI 1.10–2.24) to 1.80 (95% CI 1.49–2.19) when individuals with TG in the top
tertile were compared to those with TG in the bottom tertile [26-29]. Unlike our study,
a number of studies have found that the association between TG and CV risk is
attenuated once adjusted for other lipid parameters, including HDL-C and non-HDL-C.
An analysis conducted by the Emerging Risk Factors Collaboration (n=302,430)
demonstrated that the HR for CHD as a result of elevated TG was 1.37 (95% CI 1.31–
1.42) when adjusted for non-lipid factors and became nonsignificant (0.99, 95% CI
0.94–1.05) when adjusted for HDL cholesterol and non-HDL cholesterol (0.99, 95% CI
0.94–1.05) [12]. Elevated TG levels are closely associated with higher levels of non-HDL
cholesterol and low levels of HDL cholesterol [30] and this may explain why this
association is weakened after adjustment for these parameters.

No significant interaction was found according to gender. This finding suggests that the
risk associated with increasing TG was similar in men and women, excluding the need
to identify different cut-offs of TG by gender for a better risk prediction. Other
observational data have demonstrated that TG are more strongly associated with CVD
risk in women than men. However, importantly, in both men and women, increasing
TG were associated with increased CVD risk even among those with TG well below 150
mg/dL [31].

In the last 25 years, other Authors have demonstrated a lower cut-point for TG (100
mg/dl) to be associated with increased risk of primary and secondary CV events [32-
34]. In the present study, the prognostic cut-off value of TG able to identify the
subjects at risk of developing CV events was 89 mg/dL in the whole cohort: being over
the cut-off, significantly led to HR>1 of developing a CV event. Therefore, our findings
expand the role of TG in predicting cardiovascular risk. Guidelines acknowledge that a
fasting TG level of <150 mg/dL is desirable [4,35]. Indeed, the AHA/ACC/multisociety
cholesterol guideline recommended the use of elevated TG as a “risk-enhancing
factor” in primary CV prevention and recommended optimizing diet and lifestyle as the
first step. Emphasis on weight loss (5%-10% reduction in body weight) through healthy
diet and physical activity (at least moderate 150 minutes/week or vigorous 75
minutes/week) can substantially lower TG levels by 20% to 50%. A healthy dietary
pattern includes lean protein, fish, fresh fruits and vegetables, legumes, avoidance of
refined foods with high glycemic index and added sugars and restricting alcohol intake
[36]. If elevated TG or non-HDL-C levels remain following aggressive lifestyle
intervention and statin therapy, guidelines recommend the use of TG-lowering agents
[4,35]. The JELIS (Japan EPA Lipid Intervention Study) trial and the REDUCE-IT
(Reduction of Cardiovascular Events with Icosapent Ethyl–Intervention Trial) trial used
icosapent ethyl, a prescription grade purified eicosapentaenoic acid (EPA) [37-38]. The
JELIS trial looked at more than 18,000 individuals and showed that EPA reduced major
coronary events by 19% compared with the control group [37]. The REDUCE-IT trial
included more than 8000 patients with CVD or diabetes with additional CV risk factors
[38]. All participants were on statins with LDLs below 100 mg/dL and TG between 135
and 499 mg/dL (with a mean triglyceride level of 216 mg/dL). The patients were
randomly assigned to icosapent ethyl 4 g daily or mineral oil. The composite
cardiovascular endpoint was reduced by 25% over approximately 5 years, with a number needed to treat of 21.

The main strength of the study described here is to have determined on a large Italian nationwide database with a long-lasting follow-up a clear prognostic cut-off of TG, identified by the ROC curves methods and validated in multivariate models, able to identify subjects at higher CV risk. Further, if a test is used for the purpose of screening in an epidemiological context, then a cut-off value with a higher sensitivity and negative predictive value must be considered [39]. The limitations are represented by the fact that data are partially derived from a selected sample of patients referred by general practitioners to specialized centres, an underestimation of morbid events is quite likely as in other cohort studies, the design was fit to demonstrate an association but not a causality in the relationship between TG and CV events, and the analysis was based on a single TG measurement without taking into consideration the dilution bias. A recent paper based on 15,792 study participants from the Atherosclerosis Risk in Communities and Framingham Offspring studies, using fasting TG measurements across multiple exams over time, showed that the average of several TG readings provided incremental improvements for the prediction of CVD relative to a single TG measurement [31]. However, regardless of the method of measurement, higher TG were associated with increased CVD risk, even at levels previously considered “optimal” (<150mg/dL).

On the other hand, the collected database represents the largest number of Italian cases ever collected, and to our knowledge there is no one more representative of the Italian situation. Furthermore, the present analysis was limited to Italian people and its results cannot be directly applied to other ethnicities. Consequently, further studies are needed to confirm that the thresholds of TG emerging from our analyses are valid also in general populations and in other ethnicities.

In conclusion, the Working Group on Uric Acid and Cardiovascular Risk of the Italian Society of Hypertension confirmed that, after adjusting for potential confounders, a lower than conventional prognostic cut-off of TG able to separate subjects at risk of developing CV events can be identified in an Italian cohort.
Sources of Funding

This work has been conducted with an unrestricted grant from the Fondazione of the Italian Society of Hypertension (grant: MIOL).

Disclosures

Borghi has received research grant support from Menarini Corporate and Novartis Pharma; has served as a consultant for Novartis Pharma, Alfasigma, Grunenthal, Menarini Corporate, and Laboratoires Servier; and received lecturing fees from Laboratoires Servier, Takeda, Astellas, Teijin, Novartis Pharma, Berlin Chemie, and Sanofi. The authors declare no competing interests. The remaining authors have no disclosures to report.
References

Table 1. General characteristics of the study participants also showing sex stratification. Continuous variables are expressed as mean (standard deviation). Categorical variables are in %.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Whole database (n=14,189)</th>
<th>Females (n=7,912)</th>
<th>Males (n=6,277)</th>
<th>p values between sexes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triglycerides (mg/dL)</td>
<td>128.9 (77.5)</td>
<td>125.0 (71.8)</td>
<td>133.8 (84.0)</td>
<td>0.008</td>
</tr>
<tr>
<td>Age (years)</td>
<td>59.1 (15.3)</td>
<td>59.3 (15.2)</td>
<td>58.8 (14.8)</td>
<td>0.003</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>26.7 (4.3)</td>
<td>26.7 (4.6)</td>
<td>26.6 (3.9)</td>
<td>0.06</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>88.9 (12.5)</td>
<td>84.7 (12.4)</td>
<td>93.9 (10.7)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Systolic BP (mmHg)</td>
<td>144.3 (24.6)</td>
<td>144.6 (25.5)</td>
<td>144.1 (23.4)</td>
<td>0.24</td>
</tr>
<tr>
<td>Diastolic BP (mmHg)</td>
<td>84.6 (12.7)</td>
<td>84.6 (13.1)</td>
<td>84.7 (12.2)</td>
<td>0.58</td>
</tr>
<tr>
<td>Heart rate (bpm)</td>
<td>71.2 (11.4)</td>
<td>72.3 (10.8)</td>
<td>69.8 (11.9)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Serum creatinine (mg/dL)</td>
<td>0.93 (0.23)</td>
<td>0.89 (0.23)</td>
<td>0.98 (0.21)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Serum glucose (mg/dL)</td>
<td>99.2 (25.6)</td>
<td>99.1 (27.1)</td>
<td>99.3 (23.5)</td>
<td>0.67</td>
</tr>
<tr>
<td>Serum uric acid (mg/dL)</td>
<td>4.96 (1.41)</td>
<td>4.69 (1.33)</td>
<td>5.30 (1.42)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Total cholesterol (mg/dL)</td>
<td>216.3 (38.7)</td>
<td>218.1 (38.6)</td>
<td>213.9 (38.7)</td>
<td><0.0001</td>
</tr>
<tr>
<td>HDL cholesterol (mg/dL)</td>
<td>53.4 (15.0)</td>
<td>55.4 (15.4)</td>
<td>50.7 (14.0)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Non-HDL cholesterol (mg/dL)</td>
<td>162.9 (39.2)</td>
<td>162.7 (39.0)</td>
<td>163.2 (39.4)</td>
<td>0.37</td>
</tr>
<tr>
<td>Smoking habit (yes, %)</td>
<td>35.2</td>
<td>24.2</td>
<td>49.1</td>
<td><0.0001</td>
</tr>
<tr>
<td>Ethanol intake (yes, %)</td>
<td>62.4</td>
<td>58.3</td>
<td>67.6</td>
<td><0.0001</td>
</tr>
<tr>
<td>Diabetes (yes, %)</td>
<td>10.0</td>
<td>10.2</td>
<td>9.7</td>
<td>0.38</td>
</tr>
<tr>
<td>Hypertension (yes, %)</td>
<td>65.4</td>
<td>65.6</td>
<td>65.1</td>
<td>0.50</td>
</tr>
<tr>
<td>CKD (yes, %)</td>
<td>21.1</td>
<td>22.4</td>
<td>19.5</td>
<td><0.0001</td>
</tr>
<tr>
<td>Antihypertensive use (yes, %)</td>
<td>35.1</td>
<td>35.4</td>
<td>34.8</td>
<td>0.51</td>
</tr>
<tr>
<td>Lipid-lowering drugs (yes, %)</td>
<td>3.8</td>
<td>3.7</td>
<td>4.0</td>
<td>0.33</td>
</tr>
</tbody>
</table>

BP: arterial blood pressure; HDL: high-density-lipoprotein; CKD: chronic kidney disease.
Table 2. Cox model for combined cardiovascular events using serum triglycerides as a continuous independent variable in the whole cohort (n=14,189).

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>HR</th>
<th>95% CI</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum triglycerides (mg/dL)</td>
<td>1.173</td>
<td>1.035-1.330</td>
<td>0.01</td>
</tr>
<tr>
<td>Age (years)</td>
<td>1.061</td>
<td>1.056-1.067</td>
<td><0.0001</td>
</tr>
<tr>
<td>Sex (1=men, 0=women)</td>
<td>1.025</td>
<td>0.919-1.144</td>
<td>0.66</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>0.970</td>
<td>0.957-0.982</td>
<td><0.0001</td>
</tr>
<tr>
<td>HDL cholesterol (mg/dl)</td>
<td>0.992</td>
<td>0.989-0.996</td>
<td><0.0001</td>
</tr>
<tr>
<td>Non-HDL cholesterol (mg/dL)</td>
<td>0.999</td>
<td>0.998-1.001</td>
<td>0.44</td>
</tr>
<tr>
<td>Serum uric acid (mg/dL)</td>
<td>2.047</td>
<td>1.681-2.492</td>
<td><0.0001</td>
</tr>
<tr>
<td>Diabetes (1=yes, 0=no)</td>
<td>1.908</td>
<td>1.689-2.156</td>
<td><0.0001</td>
</tr>
<tr>
<td>Hypertension (1=yes, 0=no)</td>
<td>1.469</td>
<td>1.281-1.684</td>
<td><0.0001</td>
</tr>
<tr>
<td>CKD (1=yes, 0=no)</td>
<td>0.910</td>
<td>0.808-1.025</td>
<td>0.12</td>
</tr>
<tr>
<td>Smoking (1=yes, 0=no)</td>
<td>1.051</td>
<td>0.936-1.180</td>
<td>0.40</td>
</tr>
<tr>
<td>Ethanol (1=yes, 0=no)</td>
<td>1.380</td>
<td>1.216-1.566</td>
<td><0.0001</td>
</tr>
<tr>
<td>Lipid-lowering drugs (1=yes, 0=no)</td>
<td>0.621</td>
<td>0.477-0.809</td>
<td><0.001</td>
</tr>
</tbody>
</table>

HR: hazard ratios; CI: confidence intervals; HDL high-density-lipoprotein; CKD: chronic kidney disease.
Table 3. ROC curve parameters of the cut-off value for combined cardiovascular events in a regional community-based cohort of 14,189 subjects.

<table>
<thead>
<tr>
<th>Cut-off (Cl‡)</th>
<th>>89 mg/dL (75-103)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUC (SE, CI)</td>
<td>0.569 (0.007, 0.561-0.578)</td>
</tr>
<tr>
<td>Youden index (CI)</td>
<td>0.1064 (0.0772-0.1233)</td>
</tr>
<tr>
<td>Sensitivity% (CI)</td>
<td>76.6 (74.4-78.6)</td>
</tr>
<tr>
<td>Specificity% (CI)</td>
<td>34.1 (33.2-34.9)</td>
</tr>
<tr>
<td>Z statistics, p</td>
<td>9.521, <0.0001</td>
</tr>
</tbody>
</table>

CI: 95% confidence intervals; AUC: area under the curve; SE: standard error; ‡bootstrap confidence intervals (1000 iterations)
Table 4. Hazard ratios of the variable “over cut-off value of serum TG (≥150 mg/dL)” for combined cardiovascular events in the whole database.

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>HR</th>
<th>95% CI</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific cut-off of TG (≥150 mg/dL)</td>
<td>1.150</td>
<td>1.021-1.295</td>
<td>0.02</td>
</tr>
<tr>
<td>Age (years)</td>
<td>1.062</td>
<td>1.057-1.068</td>
<td><0.0001</td>
</tr>
<tr>
<td>Sex (1=men, 0=women)</td>
<td>1.028</td>
<td>0.921-1.146</td>
<td>0.63</td>
</tr>
<tr>
<td>Body mass index (kg/m^2)</td>
<td>0.968</td>
<td>0.956-0.981</td>
<td><0.0001</td>
</tr>
<tr>
<td>HDL cholesterol (mg/dL)</td>
<td>0.992</td>
<td>0.989-0.996</td>
<td><0.0001</td>
</tr>
<tr>
<td>Non-HDL cholesterol (mg/dL)</td>
<td>0.999</td>
<td>0.998-1.001</td>
<td>0.72</td>
</tr>
<tr>
<td>Serum uric acid (mg/dL)</td>
<td>2.005</td>
<td>1.650-2.436</td>
<td><0.0001</td>
</tr>
<tr>
<td>Diabetes (1=yes, 0=no)</td>
<td>1.935</td>
<td>1.727-2.183</td>
<td><0.0001</td>
</tr>
<tr>
<td>Hypertension (1=yes, 0=no)</td>
<td>1.317</td>
<td>1.141-1.523</td>
<td>0.0002</td>
</tr>
<tr>
<td>CKD (1=yes, 0=no)</td>
<td>0.838</td>
<td>0.740-0.949</td>
<td>0.005</td>
</tr>
<tr>
<td>Smoking (1=yes, 0=no)</td>
<td>1.047</td>
<td>0.936-1.175</td>
<td>0.44</td>
</tr>
<tr>
<td>Ethanol (1=yes, 0=no)</td>
<td>1.444</td>
<td>1.270-1.638</td>
<td><0.0001</td>
</tr>
<tr>
<td>Statin use (1=yes, 0=no)</td>
<td>0.598</td>
<td>0.458-0.779</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

HR: hazard ratios; CI: confidence intervals; TG: serum triglycerides; HDL: high-density-lipoprotein; CKD: chronic kidney disease;
Table 5. Hazard ratios of the variable “over cut-off value of serum TG (≥89 mg/dL)” for combined cardiovascular events in the whole database.

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>HR</th>
<th>95% CI</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific cut-off of TG (≥89 mg/dL)</td>
<td>1.211</td>
<td>1.063-1.378</td>
<td>0.004</td>
</tr>
<tr>
<td>Age (years)</td>
<td>1.062</td>
<td>1.057-1.068</td>
<td><0.0001</td>
</tr>
<tr>
<td>Sex (1=men, 0=women)</td>
<td>1.028</td>
<td>0.921-1.146</td>
<td>0.62</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>0.968</td>
<td>0.956-0.981</td>
<td><0.0001</td>
</tr>
<tr>
<td>HDL cholesterol (mg/dL)</td>
<td>0.992</td>
<td>0.989-0.996</td>
<td><0.0001</td>
</tr>
<tr>
<td>Non-HDL cholesterol (mg/dL)</td>
<td>0.999</td>
<td>0.998-1.001</td>
<td>0.54</td>
</tr>
<tr>
<td>Serum uric acid (mg/dL)</td>
<td>1.993</td>
<td>1.639-2.423</td>
<td><0.0001</td>
</tr>
<tr>
<td>Diabetes (1=yes, 0=no)</td>
<td>1.942</td>
<td>1.719-2.193</td>
<td><0.0001</td>
</tr>
<tr>
<td>Hypertension (1=yes, 0=no)</td>
<td>1.318</td>
<td>1.141-1.523</td>
<td>0.0002</td>
</tr>
<tr>
<td>CKD (1=yes, 0=no)</td>
<td>0.838</td>
<td>0.740-0.949</td>
<td>0.005</td>
</tr>
<tr>
<td>Smoking (1=yes, 0=no)</td>
<td>1.051</td>
<td>0.936-1.180</td>
<td>0.40</td>
</tr>
<tr>
<td>Ethanol (1=yes, 0=no)</td>
<td>1.442</td>
<td>1.270-1.638</td>
<td><0.0001</td>
</tr>
<tr>
<td>Statin use (1=yes, 0=no)</td>
<td>0.595</td>
<td>0.456-0.777</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

HR: hazard ratios; CI: confidence intervals; TG: serum triglycerides; HDL: high-density-lipoprotein; CKD: chronic kidney disease;
Legend to figures

Figure 1. Distribution of baseline serum triglycerides in the whole database. TG: serum triglycerides.

Figure 2. Receiver-operator-characteristic (ROC) curves of combined cardiovascular events. 95% confidential intervals are shown (thin lines). AUC: area under the curve; p: criterion for rejection of the null hypothesis.

Figure 3. Kaplan-Maier survival curves for combined cardiovascular events for the identified cut-off value of triglycerides 89 mg/dL (panel A) and the conventional cut-off value of triglycerides 150 mg/dL (panel B). Trends of subjects having serum triglycerides > cut-off (blue line) and < cut-off (red line) are shown. Numbers of subjects at risk are shown in the two footnotes. Values of p indicate statistical difference vs. reference.
Table 1s. ICD10 codes used for diagnosis of cardiovascular events.

<table>
<thead>
<tr>
<th>Major cardiovascular diseases</th>
<th>I00-I78</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diseases of heart</td>
<td>I00-I78, I11, I13, I20-I51</td>
</tr>
<tr>
<td>Hypertensive heart disease</td>
<td>I11, I13</td>
</tr>
<tr>
<td>Ischemia heart disease</td>
<td>I20-I25</td>
</tr>
<tr>
<td>Other diseases of heart</td>
<td>I00-I09, I26-I51</td>
</tr>
<tr>
<td>Hypertension and hypertensive renal disease</td>
<td>I10, I12</td>
</tr>
<tr>
<td>Cerebrovascular diseases</td>
<td>I60-I69</td>
</tr>
</tbody>
</table>
Figure 1.
Figure 2.

Whole database (n=14189)

Sensitivity

100
80
60
40
20
0

100-Specificity

Criterion > 88 mg/dL
AUC = 0.569 P < 0.001
Figure 3.

Panel A

Panel B

Log-Rank test
\[\chi^2 = 72.7 \]
\[p < 0.0001 \]

Log-Rank test
\[\chi^2 = 39.4 \]
\[p < 0.0001 \]