Critical Role for 24-Hydroxylation in Homeostatic Regulation of Vitamin D Metabolism

Zhinous Shahidzadeh Yazdi, Elizabeth A. Streeten, Hilary B. Whittlatch,
May E. Montasser, Amber L. Beitelshees, and Simeon I. Taylor

Department of Medicine
Division of Endocrinology, Diabetes, and Nutrition
University of Maryland School of Medicine
Baltimore, MD, USA

Corresponding author: Simeon I. Taylor, MD, PhD, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
Telephone number: +1 301 980 5272
Email: staylor2@som.umaryland.edu

Conflict-of-interest statement: SIT serves as a consultant for Ionis Pharmaceuticals and receives an inventor’s share of royalties from NIDDK for metreleptin as a treatment for generalized lipodystrophy. EAS, MEM, and HBW receive research support (unrelated to this project) from the Regeneron Genetics Center. ZSY and ALB have no conflicts to disclose.

Trial registration: NCT02891954 (clinicaltrials.gov)

Funding: National Institute of Diabetes, Digestive, and Kidney Diseases: R01DK118942, R01DK118924-02S1, and T32DK098107

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

The body has evolved effective homeostatic mechanisms to maintain free levels of Ca\(^{2+}\) and 1,25-dihydroxyvitamin D [1,25(OH)\(_2\)D] within narrow physiological ranges. The literature documents critical contributions of PTH to this homeostatic regulation. We developed a mechanistic mathematical model documenting an important contribution from homeostatic regulation of 24-hydroxylase activity. Data on vitamin D (VitD) metabolite levels were obtained from a clinical trial conducted in healthy participants with baseline total 25-hydroxyvitamin D [25(OH)D] levels \(\leq 20 \) ng/mL. The trial was designed as a crossover trial in which participants were studied before and after receiving VitD3 supplementation (\(\geq 4\) - 6 weeks) to achieve total 25(OH)D levels >30 ng/mL. VitD3 supplementation significantly increased mean levels of 25(OH)D by 2.7-fold and 24,25-dihydroxyvitamin D [24,25(OH)\(_2\)D] by 4.3-fold. In contrast, mean levels of PTH, FGF23, and 1,25(OH)\(_2\)D did not change in response to VitD3 supplementation. Mathematical modeling suggested that 24-hydroxylase activity was maximal for 25(OH)D levels \(\geq 50 \) ng/mL and achieved a minimum (~90% suppression) when 25(OH)D levels were <10-20 ng/mL. Suppression of 24-hydroxylase is triggered by mild-moderate VitD deficiency and is predicted to sustain physiological levels of 1,25(OH)\(_2\)D by suppressing metabolic clearance of 1,25(OH)\(_2\)D. VitD metabolite ratios [e.g., 1,25(OH)\(_2\)D/24,25(OH)\(_2\)D] provide useful indices demonstrating that the body has triggered homeostatic regulation to compensate for limited availability of VitD. Thus, suppression of 24-hydroxylase activity provides a first line of defense protecting against VitD deficiency. In severe VitD deficiency, when this first line of defense has been maximally deployed, the body triggers secondary hyperparathyroidism, thereby providing a second line of defense.
Key words: (1) PTH/VitD/FGF23; (2) Clinical Trials; (3) Disorders related to bone; (4) Disorders related to calcium/phosphate metabolism; (5) Screening
INTRODUCTION

Notwithstanding recent controversies about medical uses of vitamin D (VitD) supplements (1-4), it is well established that VitD plays an essential role in mediating absorption of dietary calcium in the intestine (5). 25-hydroxyvitamin D [25(OH)D] is synthesized in the liver in a reaction catalyzed by 25-hydroxylase (CYP2R1). 25(OH)D can undergo two alternative fates: 1α-hydroxylation by CYP27B1 to generate 1,25(OH)2D (the biologically active species) or 24-hydroxylation by CYP24A1 leading to 24,25-dihydroxyvitamin D [24,25(OH)2D] (6). Current clinical practice guidelines recommend measuring total circulating levels of 25(OH)D to assess clinical VitD status (7).

Total levels of 25(OH)D vary widely over a greater than tenfold range, depending on nutritional status, age, body weight, exposure to ultraviolet light, and levels of vitamin D binding protein (VDBP). Levels of 24,25(OH)2D generally vary in parallel with 25(OH)D (8, 9), consistent with the fact that 25(OH)D serves as the biosynthetic precursor of 24,25(OH)2D. In marked contrast, levels of 1,25(OH)2D are maintained in a relatively narrow physiological range despite wide variation in availability of 25(OH)D (8, 10). We have applied mathematical modeling to investigate homeostatic mechanisms that regulate VitD metabolism so effectively. The negative feedback loop involving PTH is often cited as a key factor contributing to maintenance of 1,25(OH)2D in a narrow physiological range (7). Tang et al. (11) have suggested that the balance between 1α-hydroxylation and 24-hydroxylation may also contribute. Our mathematical model provides quantitative estimates of the magnitude of homeostatic regulation of 24-hydroxylation, thereby confirming the importance of this mechanism. We discuss the implications of these insights for diagnosis and treatment of VitD deficiency. Furthermore, we discuss a clinically informative approach to assess VitD status based on calculated ratios of VitD metabolites. Tang
et al. (11) previously suggested that the 1,25(OH)\(_2\)D/24,25(OH)\(_2\)D ratio provides a more relevant index for assessment of VitD status compared to measuring total levels of 25(OH)D in serum or plasma. In this study, we calculated and assessed three VitD metabolite ratios (12-15) among which we concluded that 1,25(OH)\(_2\)D/24,25(OH)\(_2\)D and 25(OH)D/1,25(OH)\(_2\)D ratios may provide the most clinically relevant information regarding VitD status.

METHODS

This study (“Vitamin D Sub-study”) was part of our ongoing “Genetics of Response to Canagliflozin (GRC)” clinical trial (clinicaltrials.gov Identifier: NCT02891954) in healthy volunteers recruited from the Old Order Amish population in Lancaster PA, who are non-Hispanic white people. Although participants were excluded from the parent study if their 25(OH)D level was \(\leq\) 20 ng/mL, these VitD deficient individuals were eligible to participate in the VitD Sub-study, which investigated the effects of VitD3 supplements on canagliflozin-triggered changes in the serum phosphorus/FGF23/1,25(OH)\(_2\)D/PTH axis. Participants were required to meet all other inclusion/exclusion criteria for the parent study (8).

We screened 24 healthy volunteers from September 2019 to July 2021 and enrolled 19 individuals with 25(OH)D levels \(\leq\) 20 ng/mL who were otherwise eligible to participate in the parent GRC study. Details of demographics, baseline characteristics, recruitment, and disposition are reported elsewhere (8). Because of interruptions and delays associated with the COVID-19 pandemic, we did not complete our plan to study 25 research participants. The study was funded by a one-year Administrative Supplement from the NIH Office of Dietary Supplements; funding was not available to extend the clinical trial to enroll and study more participants after the end of
the funding period for the Administrative Supplement. We analyzed data after eleven participants (four females and seven males) completed the entire study protocol. Mean age for these eleven research participants was 48.0±3.2 years; mean BMI was 29.0±1.2 kg/m²; and mean eGFR was 98.5±4.0 mL/min/1.73 m² (8).

The Endocrine Society’s clinical practice guidelines proposed thresholds of 25(OH)D ≤20 ng/mL (≤50 nmol/L) for VitD deficiency, 21-29 ng/mL (51-74 nmol/L) for VitD insufficiency, and ≥ 30 ng/mL (≥75 nmol/L) for VitD sufficiency (7). We applied The Endocrine Society’s definition of VitD deficiency (≤20 ng/mL) as a key inclusion criterion for this sub-study and applied the definition of VitD sufficiency (≥30 ng/mL) as the criterion for adequacy of VitD3 supplementation.

VitD3 supplementation protocol

VitD-deficient participants completed canagliflozin challenge #1 and then received VitD3 capsules (Bio-Tech Pharmacal; Fayetteville, AR) in doses of either 50,000 IU per week for participants with BMI <30 kg/m² or 50,000 IU twice a week for participants with BMI ≥30 kg/m² for four weeks, followed by a second 25(OH)D measurement a week after completion of the four-week VitD3 supplementation protocol (8). If screening serum 25(OH)D levels (Quest Diagnostics) were <30 ng/mL, high-dose VitD3 supplementation was continued. Once screening 25(OH)D (Quest Diagnostics) levels were confirmed to be ≥30 ng/mL, maintenance-dose VitD3 supplementation (1000 IU/d or 2000 IU/d for BMI <30 kg/m² or BMI ≥30 kg/m², respectively) was continued until completion of canagliflozin challenge #2.

Clinical chemistry
Blood samples obtained at home visits were collected in test tubes as appropriate for each assay (8). Assays for baseline levels of plasma PTH, serum 1,25(OH)2D, and serum 25(OH)D were conducted at Quest Diagnostics. Total plasma levels of 25(OH)D and 24,25(OH)2D were assessed using LC/MS/MS assays conducted by Heartland Assays (Ames, IA). Quest’s serum 25(OH)D levels were used to determine eligibility for the VitD Sub-study. Heartland’s plasma 25(OH)D levels were used to assess the response to VitD3 supplements. We have reported 25(OH)D and 24,25(OH)2D in ng/mL and 1,25(OH)2D in pg/mL. Multiplication by a factor of 2.49 can be used to convert from ng/mL to nmol/L. Mean levels for 25(OH)D before and after VitD3 supplementation, were identical in assays conducted by Quest Diagnostics and Heartland Assays (8).

Mathematical Modeling

We developed a mathematical model to analyze relationships among 25(OH)D, 1,25(OH)2D, and 24,25(OH)2D. Details are provided in the Results section. The parameters of the model were estimated by an iterative trial and error approach to fit the clinical trial data. We assessed the model’s goodness of fit by calculating sums of squared errors as described in detail in the legend for Table 1.

Statistics

A two-sided p-value <0.05 (paired t-test) was taken as the threshold for statistical significance without any correction for multiple comparisons. We pooled all the data before and after VitD3 supplementation for graphing total levels of 1,25(OH)2D and 24,25(OH)2D as a function of total levels of 25(OH)D. Correlation coefficients were calculated using software provided in Excel.

Study approval
The Clinical Trial Protocol was approved by the University of Maryland Baltimore Institutional Review Board (FWA00007145). Informed consent was obtained from all participants.

RESULTS

We designed a clinical trial (NCT02891954) to investigate pharmacodynamic nutrient-drug interactions between VitD and an SGLT2 inhibitor (canagliflozin) (8). The study included two canagliflozin challenge tests to assess pharmacodynamic responses to canagliflozin. The first canagliflozin challenge was conducted at a time when research participants were VitD deficient [screening 25(OH)D levels ≤20 ng/mL] and the second after participants had received VitD3 supplements [screening 25(OH)D levels ≥30 ng/mL]. Data on recruitment, disposition, and primary outcomes are summarized elsewhere (8). Herein we report analysis of data for the effects of VitD3 supplementation on homeostatic regulation of VitD metabolite levels. This analysis focuses on mathematical modeling of changes in VitD metabolite levels in response to VitD3 supplements.

Interrelationships among 1,25(OH)₂D, 24,25(OH)₂D, and 25(OH)D.

As reported elsewhere, mean (±SEM) total plasma levels of both 25(OH)D and 24,25(OH)₂D increased significantly in response to VitD3 supplementation: from 16.5±1.6 to 44.3±5.5 ng/mL (p=0.0006) for 25(OH)D and from 1.0±0.1 to 4.3±0.6 ng/mL (p=0.0002) for 24,25(OH)₂D (8). We observed consistent increases in total levels of 25(OH)D and 24,25(OH)₂D (Figs. 1A and 1B). In contrast, mean total plasma levels of 1,25(OH)₂D did not change in response to VitD3 supplements (43.8±3.6 pg/mL versus 44.9±4.1 pg/mL) (Fig. 1C) (8). This observation provides strong evidence of the effectiveness of homeostatic mechanisms regulating levels of
Therefore, we conducted exploratory analyses to further investigate physiological mechanisms mediating this homeostatic regulation.

For this analysis, we pooled data on VitD metabolites – from before and after VitD3 supplementation (Fig. 2). Although there was no significant correlation between total plasma levels of 1,25(OH)\(_2\)D and 25(OH)D (Fig. 2A), total plasma levels of 24,25(OH)\(_2\)D increased as a function of total plasma 25(OH)D levels (Fig. 2B).

A critical role for regulation of 24-hydroxylase activity in homeostatic regulation of 1,25(OH)\(_2\)D

We considered possible mechanisms that might contribute to the observed sigmoid shape of the curve relating total 24,25(OH)\(_2\)D levels to total 25(OH)D levels (Fig. 2B). If the 24-hydroxylase enzyme (CYP24A1) followed simple Michaelis-Menten kinetics, one might have predicted that the relationship between plasma levels of 24,25(OH)\(_2\)D and 25(OH)D would have been described by a hyperbola (Fig. 3A, solid curve) rather than a sigmoid curve (Fig. 3A, dashed curve). The observed sigmoid curve approaches an asymptote at high levels of 25(OH)D – most likely a reflection of the saturability of the 24-hydroxylase enzyme (CYP24A1). What can explain the relative underproduction of 24,25(OH)\(_2\)D at low levels of 25(OH)D as compared to what would have been predicted by simple Michaelis-Menten kinetics? As suggested by others (11, 16), we hypothesized that expression of 24-hydroxylase enzyme is regulated, with low 24-hydroxylase activity when 25(OH)D levels are low and higher 24-hydroxylase activity when 25(OH)D levels are high. We applied mathematical modeling (see below) to provide quantitative estimates of the relationship between activity of the 24-hydroxylase enzyme and 25(OH)D levels (Fig. 3C). Our model suggests that 24-hydroxylase activity achieves a maximum when 25(OH)D levels exceed 50 ng/mL. In contrast, VitD deficiency is associated with suppression of 24-
hydroxylase activity—achieving a minimum corresponding to ~90% suppression of 24-
hydroxylase activity when 25(OH)D levels are less than 10-20 ng/mL. As summarized below,
our mathematical model provides estimates of 24-hydroxylase activity as a function of 25(OH)D
levels (Fig. 3C).

Mathematical model of sigmoid curve interrelating levels 24,25(OH)_{2}D and 25(OH)D.

The observed sigmoid curve expressing the concentration of total 24,25(OH)_{2}D as a function of
total 25(OH)D can be fit by an equation with the form of Equation (1):

\[
S(24,25) = \frac{\frac{W_{24}}{L_{24}} e^{aS(25)}}{1 + \frac{e^{aS(25)}}{L_{24}}}
\]

where \(S(25) \) and \(S(24,25) \) represent levels of 25(OH)D and 24,25(OH)_{2}D, respectively; \(W_{24} \) and
\(L_{24} \) represent analogs of the maximal velocity and Michaelis-Menten constant for 24-
hydroxylase enzyme with 25(OH)D as substrate; \(a \) is a model parameter to facilitate fitting the
equation to the observed data. Equation (1) provides a good fit to the observed data as shown by
the graph plotting total levels of 24,25(OH)_{2}D as a function of 25(OH)D (Fig. 2B). Goodness of
fit is evidenced by the fact that the sum of the squared errors (SSE) is small relative to the total
sum of the squares about the mean (SST): \(\text{SSE/SST} = 0.078 \) (Table 1).

The model assumes that 24,25(OH)_{2}D is cleared by a first order process with a rate constant of
\(m(24,25) \) [Equation (1a)]:

\[
\text{(1a) Rate of clearance of 24,25(OH)_{2}D} = m(24,25) \frac{\frac{W_{24}}{L_{24}} e^{aS(25)}}{1 + \frac{e^{aS(25)}}{L_{24}}}
\]
We hypothesized that the 24-hydroxylase enzyme follows Michaelis-Menten kinetics as described by Equation (2):

\[
(2) \text{Production of } 24,25(OH)_2D = \frac{V_{24} \times h \times S(25)}{K_{24} + S(25)}
\]

where \(S(25)\) represents the level of 25(OH)D; \(V_{24}\) and \(K_{24}\) represent the maximal velocity and Michaelis-Menten constant for 24-hydroxylase enzyme with 25(OH)D as substrate. \(h\) is a variable function of \(S(25)\) that represents 24-hydroxylase activity as a fraction of the maximally induced level of the enzyme observed when 25(OH)D levels are high.

At steady state, the rate of production of 24,25(OH)\(_2\)D [Equation (2)] is equal to the rate at which 24,25(OH)\(_2\)D is cleared [Equation (1a)]. Accordingly, the value of \(h\) can be calculated by Equation (3):

\[
(3) \quad h = m(24,25) \left(\frac{W_{24}}{L_{24}} \right)^{-1} e^{aS(25)} \left[\frac{V_{24} \times S(25)}{K_{24} + S(25)} \right]
\]

Genetic evidence demonstrates the critical role of CYP24A1-mediated 24-hydroxylation in inactivation of 1,25(OH)\(_2\)D (17, 18). Homozygosity for loss of function mutations in \textit{CYP24A1} has been reported to cause hypercalcemia – presumably due to excessive levels of 1,25(OH)\(_2\)D. Since CYP24A1 catalyzes 24-hydroxylation of both 25(OH)D and 1,25(OH)\(_2\)D, we modified Equation (1a) to yield Equation (4):

\[
(4) \text{Rate of clearance of } 1,25(OH)_2D = m(1,25) \left(\frac{W_{1,25}}{L_{1,25}} \right)^{-1} e^{aS(1,25)} \left[\frac{V_{1,25} \times S(1,25)}{K_{1,25} + S(1,25)} \right]
\]
where $S(1,25)$ represents the level of $1,25(\text{OH})_2\text{D}$; $W_{1,25}$ and $L_{1,25}$ represent analogs of the maximal velocity and Michaelis-Menten constant for 24-hydroxylase enzyme with $1,25(\text{OH})_2\text{D}$ as substrate; α is a model parameter that facilitates fitting the equation to the observed data; and $m(1,25)$ is a first-order rate constant analogous to $m(24,25)$ in Equation (1a).

Further, we hypothesize that CYP27B1-mediated 1α-hydroxylation of $25(\text{OH})\text{D}$ follows Michaelis-Menten kinetics:

\begin{equation}
(5) \quad \text{Production of } 1,25(\text{OH})_2\text{D} = \frac{V_1 \times S(25)}{K_1 + S(25)}
\end{equation}

where V_1 and K_1 represent the maximal velocity and Michaelis-Menten constant for 1α-hydroxylase with $25(\text{OH})\text{D}$ as substrate. Under steady state conditions, the rates of production and metabolic clearance of $1,25(\text{OH})_2\text{D}$ are equal. Thus, we can combine Equations (4) and (5) to yield Equation (6):

\begin{equation}
(6) \quad \frac{V_1 \times S(25)}{K_1 + S(25)} = m(1,25) \left(\frac{W_{1,25}}{L_{1,25}} \right) e^{\alpha S(1,25)} \frac{1 + e^{\alpha S(1,25)}}{L_{1,25}}
\end{equation}

Solving for $S(1,25)$, we obtain Equation (7):

\begin{equation}
(7) \quad S(1,25) = \left\{ \ln[S(25)] - \ln \left[m_{1,25} + \frac{S(25)}{K_1} \left(m_{1,25} - \frac{V_1}{W_{1,25}} \right) \right] - \ln \left[\frac{W_{1,25}K_1}{L_{1,25}} \right] \right\} / \alpha
\end{equation}

Equation (7) correctly predicts that $1,25(\text{OH})_2\text{D}$ levels are not correlated with $25(\text{OH})\text{D}$ levels (Fig. 2A). Indeed, the sum of the squared errors (SSE) is approximately equal to the total sum of the squares about the mean (SST): SSE/SST = 1.04 (Table 1). Furthermore, the ratio of SSR/SST = 0.094 suggests that a horizontal line with $1,25(\text{OH})_2\text{D}$=44.4 pg/mL (i.e., the mean level of $1,25(\text{OH})_2\text{D}$) provides a good fit for the observed data. Interestingly, the modeled curve predicts that levels of $1,25(\text{OH})_2\text{D}$ begin to decrease slightly for levels of $25(\text{OH})\text{D}$ less than a
cutoff of ~15-20 ng/mL. This “fall-off” may possibly be related to the fact that the model does not account for development of secondary hyperparathyroidism. If the model specified that low levels of 25(OH)D would trigger increased secretion of PTH, it would likely be possible for the model to maintain constant levels of 1,25(OH)₂D even for lower levels of 25(OH)D.

The data points in Fig. 2A demonstrate substantial “scatter” around the modeled curve. However, VitD binding protein (VDBP) levels are reported to vary over an approximately threefold range (19). This 3-fold variation in VDBP levels could account for the observed 3.4-fold range of total levels of 1,25(OH)₂D observed in this study, which in turn could account for the observed scatter for data points in the plot of total levels of 1,25(OH)₂D versus total levels of 25(OH)D (Fig. 2A).

Modeling VitD Metabolite Ratios

Tang et al. (11) proposed that the ratio of 1,25(OH)₂D/24,25(OH)₂D provides an improved assessment of clinical VitD status with a ratio ≥51 suggesting “VitD deficiency” and a ratio of 35-50 suggesting “VitD insufficiency”. We applied our mathematical model to predict the shape of the curve expressing Tang’s VitD metabolite ratio (1,25(OH)₂D/1,24(OH)₂D) as a function of total levels of 25(OH)D. Our modeled curve (Fig. 4A) closely resembles the curve included in the publication by Tang et al. (11). Based on our modeled curve, the cutoffs proposed by Tang et al. correspond to total 25(OH)D levels of ~17 ng/mL for “VitD deficiency” and ~21 ng/mL for “VitD insufficiency”.

Furthermore, our mathematical model provides a good fit to the observed data as shown by the graph plotting total levels of 1,25(OH)₂D/24,25(OH)₂D as a function of 25(OH)D (Fig. 4A).

Two other VitD metabolite ratios have been proposed in the literature: 1,25(OH)₂D/25(OH)D (15) and 24,25(OH)₂D/25(OH)D (12-14, 20, 21). Our mathematical model predicts that the
25(OH)D/1,25(OH)2D ratio (i.e., the reciprocal of the 1,25(OH)2D/25(OH)D ratio proposed in
the literature (15)) is a near-linear function of 25(OH)D levels (Fig. 5A); the graph of the
24,25(OH)2D/25(OH)D ratio versus 25(OH)D is predicted to be a sigmoid curve (Fig. 5B). The
modeled curves for all three VitD metabolite ratios provided good fits to observed data
[SSE/SST ratios of 0.49-0.52 (Table 1)].

As noted in the literature, ratios of VitD metabolites are relatively independent of inter-
individual variation in VDBP levels (20). For example, the following equations demonstrate that
the ratio of [1,25(OH)2D]/[24,25(OH)2D] is independent of VDBP levels:

\[
\frac{[1,25(OH)_2D]_{total}}{[24,25(OH)_2D]_{total}} \approx \frac{[1,25(OH)_2D]_{free}}{[24,25(OH)_2D]_{free}} \times \frac{K_{1,25}}{K_{24,25}}
\]

For example, when the \(\frac{[1,25(OH)_2D]_{total}}{[24,25(OH)_2D]_{total}}\) ratio is plotted as a function of total levels of 25(OH)D,
this represents a graph of a VDBP-independent variable on the y-axis and a VDBP-dependent
variable on the x-axis (Fig. 4A). In contrast, the graph of \(\frac{[1,25(OH)_2D]_{total}}{[24,25(OH)_2D]_{total}}\) as a function of
\(\frac{[25(OH)D]_{total}}{[1,25(OH)_2D]_{total}}\) plots VDBP-independent variables on both axes (Figs. 4B). This approach
minimized the contribution of inter-individual variation in VDBP levels, thereby minimizing
“scatter” of points in the graph (Fig. 4B). When \(\frac{[1,25(OH)2D]_{total}}{[24,25(OH)2D]_{total}}\) was plotted as a function of
\(\frac{[25(OH)D]_{total}}{[1,25(OH)_2D]_{total}}\), the absolute value of the Spearman correlation coefficient was quite high (rs = -0.94; p = 10^{-10}) (Fig. 4B). In contrast, the absolute value of the Spearman correlation coefficient
was lower (rs = -0.83; p=2.2x10^{-6}) when \(\frac{[1,25(OH)_2D]_{total}}{[24,25(OH)_2D]_{total}} \) was plotted as a function of total levels of 25(OH)D (Fig. 4A).

Case studies exemplifying impact of VitD metabolite ratios as diagnostic criteria

Data from three participants in our clinical trial illustrate the potential value of implementing a precision diagnostics approach, which implicitly corrects for variation in levels of VDBP. The three patients had similar levels of total 25(OH)D, ranging from 10.8 - 12.3 ng/mL (Table 2). Because all three participants’ total plasma 25(OH)D levels were substantially less than 20 ng/mL at baseline, the Endocrine Society’s clinical practice guidelines would diagnose all three of them as being VitD deficient and would recommend treatment for all three with VitD supplements. The three participants’ plasma PTH levels ranged from 29-62 pg/mL, which falls within Quest Diagnostics’ reference range (16 - 77 pg/mL). When VitD3 supplements were administered to participants #6 and #9, PTH levels exhibited a small, insignificant increase (+3 to +5%). In contrast, VitD3 supplements led to substantial suppression of PTH in participant #11 (-34%) – suggesting that participant #11 exhibited secondary hyperparathyroidism. The presence of secondary hyperparathyroidism suggests that participant #11 would likely benefit from treatment with VitD supplements. Interestingly, participant #9 had a normal baseline 1,25(OH)_2D/24,25(OH)_2D ratio of 20 suggesting that participant #9 was VitD sufficient (11).

Participant #6 exhibited a baseline 1,25(OH)_2D/24,25(OH)_2D ratio of 41, consistent with “VitD insufficiency” according to criteria proposed by Tang et al. (11). In contrast, participant #11 exhibited an elevated baseline 1,25(OH)_2D/24,25(OH)_2D level of 110 – the highest value observed in our clinical trial. Indeed, according to Tang et al., a 1,25(OH)_2D/24,25(OH)_2D ratio >100 identifies individuals with an increased likelihood of exhibiting high levels of plasma PTH.
Individual-level data on levels of VitD metabolite levels and VitD metabolite ratios are summarized graphically in Fig. S1.
DISCUSSION

Claude Bernard noted in the 19th century that “stability of the internal environment (milieu intérieur) is a condition for a free and independent life” (22). Later, in the early 20th century, Walter B. Cannon coined the term “homeostasis” to describe mechanisms that maintain the stability of the milieu intérieur (22, 23). Because of the critical importance of calcium in many biological processes, the “Wisdom of the Body” has evolved multiple homeostatic mechanisms to maintain free serum Ca\(^{+2}\) levels within a narrow physiological range. Because VitD plays a critical role in mechanisms mediating intestinal absorption of dietary Ca\(^{+2}\), homeostatic mechanisms have evolved to maintain stable levels of both free Ca\(^{+2}\) and free 1,25(OH)\(_2\)D within relatively narrow physiological ranges. For example, as noted in The Endocrine Society’s clinical practice guidelines, VitD deficiency induces increased secretion of parathyroid hormone (PTH) (7), which increases expression of 1α-hydroxylase enzyme in the kidney (6, 24), thereby enhancing biosynthesis of 1,25(OH)\(_2\)D and increasing intestinal absorption of Ca\(^{+2}\) (5). In addition to the beneficial actions of secondary hyperparathyroidism, elevated levels of PTH also exert adverse effects on bone health. The Endocrine Society’s clinical practice guidelines note that VitD-induced secondary hyperparathyroidism has an adverse impact on bone health by increasing “osteoclastic activity thereby creating local foci of bone weakness, which causes a generalized decrease in bone mineral density, resulting in osteopenia and osteoporosis” (7).

Two lines of defense to maintain physiological levels of 1,25(OH)\(_2\)D

Based on our study’s inclusion criteria, all our research participants met the Endocrine Society’s criterion for VitD deficiency [i.e., screening 25(OH)D ≤ 20 ng/mL]. Nevertheless, mean levels of PTH were within normal limits and did not change when VitD3 supplements were administered.
to correct the VitD deficiency. Mean PTH levels were 47.5 ± 4.8 pg/mL before and 48.4 ± 5.1 pg/mL after administration of VitD3 supplements. These data are consistent with published evidence suggesting that mild-moderate VitD deficiency may not trigger secondary hyperparathyroidism. In contrast, secondary hyperparathyroidism is a characteristic feature of severe VitD deficiency [25(OH)D <10-12 ng/mL] (25-27).

Our data demonstrate the existence of another physiologic mechanism contributing to homeostatic regulation of VitD metabolism. When VitD is in short supply, the body has at least two options to maintain physiological levels of 1,25(OH)2D: (a) to increase the rate at which 25(OH)D is converted to 1,25(OH)2D or (b) to decrease the rate at which 1,25(OH)2D is degraded. Our mathematical model suggests that mild-moderate VitD deficiency triggers suppression of 24-hydroxylase activity, which is the principal enzyme mediating degradation of 1,25(OH)2D (6). Because suppression of 24-hydroxylase is triggered by mild-moderate degrees of VitD deficiency, this mechanism provides the first line of defense against VitD deficiency. Interestingly, viewed from a different perspective, 24-hydroxylase activity is induced in response to high levels of 25(OH)D, which provides the major defense against VitD toxicity. In the absence of secondary hyperparathyroidism, it is possible that mild-moderate VitD deficiency may not indicate an absolute requirement for treatment with VitD supplements. On the other hand, recent publications have suggested that 24,25(OH)2D exerts a direct effect to promote healing of bone fractures (28-30). In other words, whether or not mild-moderate VitD deficiency increases the risk of bone fracture, adequate levels of 24,25(OH)2D may promote healing of bone fractures. In any case, considerable controversy exists with respect to the overall health impact of VitD status and VitD supplementation (1-4).
Published literature demonstrates that severe VitD deficiency triggers secondary hyperparathyroidism which induces increased 1α-hydroxylase activity thereby increasing the rate of 1,25(OH)₂D biosynthesis (24, 25). Because secondary hyperparathyroidism is triggered by severe VitD deficiency [e.g., 25(OH)D <10-12 ng/mL], this mechanism provides the second line of defense against VitD deficiency. Because secondary hyperparathyroidism has adverse effects on bone health, this provides a strong rationale for treatment with VitD supplements. We propose two diagnostic terms to reflect clinical differences between these two scenarios. Sub-Clinical VitD Deficiency describes a clinical condition when only the first line of defense (suppression of 24-hydroxylase) has been triggered. Overt VitD Deficiency describes a clinical condition when both lines of defense are triggered (i.e., suppression of 24-hydroxylase plus secondary hyperparathyroidism).

It is uncertain what mechanism(s) mediate homeostatic regulation of 24-hydroxylase activity. Interestingly, expression of the CYP24A1 gene (the gene encoding 24-hydroxylase enzyme) is reported to be increased by 1,25(OH)₂D and FGF23 but decreased by PTH (31). However, mean levels of 1,25(OH)₂D, FGF23, and PTH did not change in response to VitD3 supplementation (8). Taken at face value, these observations suggest that regulation of 24-hydroxylase activity may be mediated by factors other than levels of 1,25(OH)₂D, FGF23, or PTH. Nevertheless, it remains possible that regulation of 24-hydroxylase activity is sensitive to extremely small changes in levels of 1,25(OH)₂D, FGF23, or PTH, which were not detected in our study. Furthermore, all three hormones exhibit circadian variation (32-34). Since we have obtained blood samples at only one time of day, we cannot exclude the possibility that the relevant biomarker(s) might require measurements of circulating levels integrated over a 24-hour period. In any case, additional research will be required to answer this interesting question.
Strengths and limitations

The principal limitation of this study relates to the small number of individuals who participated in the study – in part because of challenges, interruptions, and delays due to the COVID-19 pandemic. Several strengths contributed to mitigating the limitation due to the small sample size. By studying the same individuals before and after receiving VitD3 supplements in a crossover study design, we were able to apply paired t-tests to assess statistical significance, which increased statistical power to assess the impact of VitD3 supplementation (Fig. 1). Furthermore, several of the endpoints (e.g., serum phosphorus, 1,25(OH)2D, PTH, and FGF23) exhibit circadian rhythms (32-34). We minimized the impact of circadian rhythms by obtaining all blood tests at the same time of day (7 AM). In addition, Heartland Assays specializes in applying LC-MS-MS to measure levels of hydroxylated VitD metabolites. The use of Heartland Assays’ clinical laboratory enhanced the accuracy and reproducibility of the data. Furthermore, we are reassured by the close similarity between our data with data previously published by Tang et al. when the 1,25(OH)2D/24,25(OH)2D ratio was plotted as a function of the 25(OH)D level (11). Inasmuch as the study by Tang et al. included 940 healthy army recruits, the high degree of similarity increases our confidence that our 11 participants provided a representative sample of healthy individuals.

Implications for clinical diagnosis of VitD deficiency

Although the Endocrine Society’s clinical practice guidelines recommend a “one-size-fits-all” approach based on measurements of total levels of 25(OH)D (7), this approach does not account for substantial inter-individual variation in levels of VDBP that limits the applicability of a “one-size-fits-all” approach. Whereas the usual clinical assays primarily reflect protein-bound levels
of VitD metabolites, it is the free levels (i.e., not bound to protein) that are biologically relevant (35). This provides a strong rationale for a precision diagnostics approach wherein diagnostic criteria for VitD deficiency are adjusted for each individual based on that person’s circulating levels of VitD binding proteins (i.e., VDBP and albumin). Other factors may also be relevant to setting individualized diagnostic criteria for VitD deficiency: for example, individual setpoints for PTH secretion, and an individual’s sensitivity to biological actions of PTH (36). These considerations raise challenging questions about how best to implement a precision diagnostics approach to diagnose VitD deficiency and secondary hyperparathyroidism.

In the practice of clinical endocrinology, deficiency states are frequently diagnosed by documenting the activation of compensatory homeostatic mechanisms. For example, hypothyroidism is diagnosed by documenting elevated levels of TSH. Conversely, hyperthyroidism is diagnosed by documenting suppression of TSH levels (37). By basing diagnoses on whether the body’s homeostatic responses have been triggered, physicians implicitly rely on Cannon’s concept of the “wisdom of the body” to diagnose hormonal status.

Following these precedents, one might base the diagnosis of VitD deficiency on documenting the activation of the relevant homeostatic mechanisms – e.g., suppression of 24-hydroxylase activity. However, it is challenging to base the diagnosis solely on measuring total 24,25(OH)₂D levels because of the confounding influence of inter-individual variation in VDBP levels. The observed threefold inter-individual variation in levels of VDBP (19) is predicted to cause a threefold inter-individual variation in total levels of 24,25(OH)₂D even in individuals with identical levels of free 24,25(OH)₂D. Fortunately, VitD metabolite ratios are known to be independent of VDBP levels (20). Tang et al. (11) have advocated the use of the 1,25(OH)₂D/24,25(OH)₂D ratio for this purpose. As confirmed by our mathematical modeling (Fig. 4A), VitD deficiency is
associated with a dramatic increase in the 1,25(OH)₂D/24,25(OH)₂D ratio as a consequence of the marked suppression of 24-hydroxylase activity induced by VitD deficiency. By providing an index of the level of 24-hydroxylase activity, the 1,25(OH)₂D/24,25(OH)₂D ratio provides a highly sensitive index of clinical VitD status. Furthermore, because of the extremely high correlation between the 1,25(OH)₂D/24,25(OH)₂D ratio and the 25(OH)D/1,25(OH)₂D ratio (Fig. 4B), it seems likely that the 25(OH)D/1,25(OH)₂D ratio might also provide a useful clinical assessment of VitD status. This latter ratio is based on two widely available assays [25(OH)D and 1,25(OH)₂D] whereas the 1,25(OH)₂D/24,25(OH)₂D ratio requires an assay for 24,25(OH)₂D, which is less widely available and more expensive.

We have offered some tentative hypotheses related to the necessity of VitD supplements in overt VitD deficiency as compared to the possible optional nature of VitD supplements in sub-clinical VitD deficiency. However, we acknowledge that the present study does not provide sufficient data to draw rigorous evidence-based conclusions with respect to treatment recommendations. Our small pilot study is based on biomarker data rather than hard clinical outcomes. Future research will be required to address these important clinical questions. Nevertheless, we believe it is valuable to offer hypotheses based on implications derived from consideration of underlying physiology and pathophysiology.

Comparisons among diagnostic criteria

We analyzed several possible indices of VitD status to determine the degree of overlap between data obtained before and after VitD3 supplements (Fig. S1):
• **25(OH)D and 24,25(OH)₂D**: No overlap was observed between the two data sets (i.e., before versus after administration of VitD³ supplements) for total levels of 25(OH)D (both Quest and Heartland assays) (Fig. S1A and S1B) or 24,25(OH)₂D (Figs. S1C).

• **1,25(OH)₂D/24,25(OH)₂D ratio**: Participants (#9 and #10) with screening 25(OH)D levels <20 ng/mL, exhibited baseline ratios of 1,25(OH)₂D/24,25(OH)₂D and 25(OH)D/1,25(OH)₂D that overlapped with the range of ratios observed after they had received VitD³ supplements (Figs. S1D and S1E). We hypothesize that this overlap of data is explained by the fact that these two participants were likely VitD sufficient at baseline and that they had been misclassified based on measurements of total 25(OH)D levels.

• **24,25(OH)₂D/25(OH)D ratio**: The 24,25(OH)₂D/25(OH)D ratio had a greater degree of overlap; six of eleven “VitD deficient” participants [i.e., 25(OH)D <20 ng/mL] exhibited 24,25(OH)₂D/25(OH)D ratios within the range observed in participants who had received VitD³ supplements. We hypothesize that the extensive degree of data overlap suggests that the 24,25(OH)₂D/25(OH)D ratio may not provide the optimal index to assess VitD status in individual patients.

Taken together, our pilot data suggest that two ratios may be more effective as indices to diagnose VitD deficiency: 1,25(OH)₂D/24,25(OH)₂D and 25(OH)D/1,25(OH)₂D. The 1,25(OH)₂D/24,25(OH)₂D ratio has the theoretical advantage that it explicitly includes a measurement of 24,25(OH)₂D and, therefore, directly reflects 24-hydroxylase activity – a key homeostatic regulator. In contrast, the 25(OH)D/1,25(OH)₂D ratio has the practical advantage that assays for both 25(OH)D and 1,25(OH)₂D are widely available and less expensive than assays for 24,25(OH)₂D.
Improved assessment of VitD status: an unmet need

In a recent editorial, Cummings & Rosen (2) questioned the value of screening the general population for VitD deficiency. Nevertheless, they emphasized that there are specific populations in whom screening would be valuable – including, people with malabsorption (e.g., inflammatory bowel disease), older people living in residential facilities who may not be exposed to sunlight, and people with osteoporosis. People with chronic kidney disease also fall into the group who may benefit from improved clinical assessment of VitD status. Based on the totality of evidence, we conclude that measurement of total levels of 25(OH)D does not provide optimal assessment of clinical VitD status. From a scientific perspective, ideal diagnostic biomarkers would address two critical challenges: (a) minimization of the confounding influence of variation in VDBP levels; and (b) integrating the “wisdom of the body” by reflecting the degree of activation of physiological homeostatic mechanisms. VitD metabolite ratios have potential to address both challenges. Future research will be required to fully assess the performance of this innovative precision diagnostics approach to assessment of VitD status.
ACKNOWLEDGEMENTS

The authors gratefully acknowledge research funding provided by NIDDK and the NIH Office of Dietary Supplements: R01DK118942, R01DK118942-02S1, and T32DK098107. We are also grateful to the staff at University of Maryland’s Amish Research Clinic and to the members of the Old Order Amish Community in Lancaster, PA who participated in this clinical trial.

AUTHORS’ CONTRIBUTIONS

Conception of the clinical trial and PI for NIH grant (R01DK118942-02S1): SIT and ALB

Acquisition and analysis of data: ALB, H-RC, MEM, EAS, SIT, HBW, ZSY

Preparation of first draft of manuscript: ZSY and SIT

Revising and approving final version of manuscript: all authors

Accountability for all aspects of work: SIT

DATA AVAILABILITY

Primary data will be made available upon request to qualified academic investigators for research purposes under a Data Transfer Agreement to protect research participants’ confidential information.
Table 1. Goodness of fit for mathematical model equations. The Table includes metrics for the goodness of fit for the modeling equations for 1,25(OH)\textsubscript{2}D (Fig. 2A) and 24,25(OH)\textsubscript{2}D (Fig. 2B) as well as the goodness of fit for modeling of three vitamin D metabolite ratios (Figs. 4A, 5A, and 5B).

<table>
<thead>
<tr>
<th></th>
<th>24,25(OH)\textsubscript{2}D</th>
<th>1,25(OH)\textsubscript{2}D</th>
<th>1,25(OH)\textsubscript{2}D/24,25(OH)\textsubscript{2}D</th>
<th>25(OH)D/1,25(OH)\textsubscript{2}D</th>
<th>24,25(OH)\textsubscript{2}D/25(OH)D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum of squares due to regression (SSR)a</td>
<td>113</td>
<td>315</td>
<td>809</td>
<td>3.37</td>
<td>0.150</td>
</tr>
<tr>
<td>Total sum of squares about mean (SST)b</td>
<td>105</td>
<td>3341</td>
<td>849</td>
<td>3.22</td>
<td>0.151</td>
</tr>
<tr>
<td>Sum of squared errors (SSE)c</td>
<td>8.2</td>
<td>3483</td>
<td>412</td>
<td>1.66</td>
<td>0.079</td>
</tr>
<tr>
<td>Ratio of SSE/SST</td>
<td>0.078</td>
<td>1.04</td>
<td>0.49</td>
<td>0.52</td>
<td>0.52</td>
</tr>
<tr>
<td>Ratio of SSR/SST</td>
<td>1.08</td>
<td>0.094</td>
<td>0.95</td>
<td>1.05</td>
<td>0.995</td>
</tr>
</tbody>
</table>

a \text{SSR} = \sum(\hat{x}_i - \bar{x})^2

b \text{SST} = \sum(x_i - \bar{x})^2

c \text{SSE} = \sum(x_i - \hat{x}_i)^2

Where \(x_i\) represents individual observed total levels of VitD metabolites, \(\hat{x}_i\) represents individual predicted total levels of VitD metabolites, and \(\bar{x}\) represents the mean of observed total levels of VitD metabolites.
Table 2. Three research participants exemplifying impact of precision diagnostics strategy for diagnosis of VitD deficiency. This Table summarizes selected laboratory data and calculated VitD metabolite ratios for participant #11 – the participant exhibiting the highest level of the 1,25(OH)₂D/24,25(OH)₂D ratio observed in our clinical trial (8). Participants #6 and #9 were selected as matches for participant #11 based on having similar baseline total levels of plasma 25(OH)D.

<table>
<thead>
<tr>
<th>Participant</th>
<th>#9</th>
<th>#6</th>
<th>#11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline 25(OH)D (ng/mL)</td>
<td>12.3</td>
<td>10.8</td>
<td>11.7</td>
</tr>
<tr>
<td>Baseline 24,25(OH)₂D (ng/mL)</td>
<td>0.9</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>Baseline 1,25(OH)₂D (pg/mL)</td>
<td>19</td>
<td>33</td>
<td>51</td>
</tr>
<tr>
<td>Baseline PTH (pg/mL)</td>
<td>51</td>
<td>29</td>
<td>62</td>
</tr>
<tr>
<td>Baseline FGF23 (pg/mL)</td>
<td>57</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>[1,25(OH)₂D] / [24,25(OH)₂D]</td>
<td>20</td>
<td>41</td>
<td>110</td>
</tr>
<tr>
<td>[25(OH)D] / [1,25(OH)₂D]</td>
<td>0.65</td>
<td>0.33</td>
<td>0.23</td>
</tr>
<tr>
<td>[24,25(OH)₂D] / [25(OH)D]</td>
<td>0.076</td>
<td>0.075</td>
<td>0.040</td>
</tr>
<tr>
<td>PTH: response to VitD3</td>
<td>+5%</td>
<td>+3%</td>
<td>-34%</td>
</tr>
<tr>
<td>Participants’ VitD status based on the “Endocrine Society” guideline</td>
<td>VitD deficient</td>
<td>VitD deficient</td>
<td>VitD deficient</td>
</tr>
<tr>
<td>Participants’ clinical classification using [1,25(OH)₂D] / [24,25(OH)₂D] ratio</td>
<td>VitD Sufficiency</td>
<td>Sub-clinical VitD deficiency</td>
<td>Overt VitD deficiency</td>
</tr>
</tbody>
</table>
FIGURE LEGENDS

Figure 1. Impact of VitD3 supplementation on total levels of VitD metabolites. Healthy participants (N=11) were recruited based on meeting the Endocrine Society’s criterion of VitD deficiency [25(OH)D ≤ 20 ng/mL]. Total levels of VitD metabolites were assayed before and after participants received VitD3 supplements (8): 25(OH)D (panel A), 24,25(OH)₂D (panel B), and 1,25(OH)₂D (panel C). Data are presented as means ± SEM; p-values were calculated using a two-tailed t-test for paired data.
Figure 2. Total levels of $\text{1,25(OH)}_2\text{D}$ and $\text{24,25(OH)}_2\text{D}$ as a function of total levels of $\text{25(OH)}_2\text{D}$. Panels A and B present pooled data for individual participants when they were VitD deficient (gray circles) and after they received VitD3 supplements (black circles). $\text{1,25(OH)}_2\text{D}$ (panel A) and $\text{24,25(OH)}_2\text{D}$ (panel B) are plotted as a function of total levels of $\text{25(OH)}_2\text{D}$. The text box in panel B presents the Spearman correlation coefficient. The curves represent the equations derived from our mathematical model: equation (1) in Panel A and equation (7) in Panel B. Values of parameters for Equation (1): $W_{24}=8$ ng/mL; $L_{24}=40$ ng/mL; and $\alpha=0.1$. Values for parameters for Equation (7): $W_{1,25}=40$ ng/mL; $L_{1,25}=60$ ng/mL; $V_1=40$; $K=60$ ng/mL; $\alpha=0.1$; and $m_{1,25}=1$.

![Diagram](image-url)
Figure 3. Assumptions underlying mathematical model: regulation of 24-hydroxylase activity in response to clinical VitD status. Panel A depicts curves corresponding to equations (1) and (2) [sigmoid and hyperbola, respectively]. Panel B depicts a family of hyperbolas [equation (2)] corresponding to varying degrees of induction from 10-100% of maximal induction of 24-hydroxylase activity. Panel C depicts equation (3), which is the fractional induction of 24-hydroxylase activity relative to the maximal level of induction as a function of 25(OH)D. Values of parameters for Equation (1): $W_{24}=8$ ng/mL; $L_{24}=40$ ng/mL; and $a=0.1$. Values for parameters for Equation (2): $V_{24}=10$ and $K_{24}=20$ ng/mL. Values of parameters for Equation (3) $m(24,25)=1$; other parameters the same as for Equations (1) and (2).
Figure 4. The $1,25(\text{OH})_2\text{D}/24,25(\text{OH})_2\text{D}$ and $25(\text{OH})_2\text{D}/1,25(\text{OH})_2\text{D}$ ratios reflect clinical VitD status. The graphs summarize data from individual participants when they were VitD deficient (gray circles) and after they received VitD3 supplements (black circles). Panel A depicts the $1,25(\text{OH})_2\text{D}/24,25(\text{OH})_2\text{D}$ ratio as a function of total $25(\text{OH})_2\text{D}$. The modeled curve was calculated as the ratio of modeled values for $1,25(\text{OH})_2\text{D}$ [equation (7)] divided by modeled values of $24,25(\text{OH})_2\text{D}$ [equation (1)]. Panel B depicts $1,25(\text{OH})_2\text{D}/24,25(\text{OH})_2\text{D}$ ratio as a function of $25(\text{OH})_2\text{D}/1,25(\text{OH})_2\text{D}$ ratio. The fitted curves were calculated by Graph Pad Prism software. Text boxes indicate Spearman correlation coefficients and p-values for the correlations.
Figure 5. VitD metabolite ratios [25(OH)D/1,25(OH)_2D and 24,25(OH)_2D/25(OH)D] as a function of the total levels of 25(OH)D. The graphs summarize data from individual participants when they were VitD deficient (gray circles) and after they received VitD3 supplements (black circles). Panel A depicts the 25(OH)D/1,25(OH)_2D ratio as a function of total 25(OH)D. The modeled curve was calculated as a linear regression using Graph Pad Prism software. Panel B depicts 24,25(OH)_2D/25(OH)D ratio as a function of 25(OH)D. The modeled curve was calculated as modeled values for 24,25(OH)_2D [equation (1)] divided by assumed values of 25(OH)D.
Figure S1. Individual level data for six potential indices of clinical VitD status: effect of VitD supplementation. Total levels of VitD metabolites were assayed before and after participants received VitD3 supplements (8). Individual participants’ data are plotted as follows: 25(OH)D assayed at Quest Diagnostics (panel A); 25(OH)D assayed at Heartland Assays (panel B); 24,25(OH)2D (panel C); the 1,25(OH)2D/24,25(OH)2D ratio (panel D); the 25(OH)D/1,25(OH)2D ratio (panel E); the 24,25(OH)2D/25(OH)D ratio (panel F). Individual participants were classified as VitD deficient (solid black symbols), VitD insufficient (solid gray symbols), or VitD sufficient (open symbols) based on published diagnostic criteria for the 1,25(OH)2D/24,25(OH)2D ratio (11): VitD deficient (ratio ≥51), VitD insufficient (ratio = 35-50), or VitD sufficient (ratio <35).
REFERENCES:

27. Jones G. 100 YEARS OF VITAMIN D: Historical aspects of vitamin D. *Endocr Connect.* 2022;11(4).

