Observer-rated outcomes of Communication-Centered Treatment (CCT) for adults who stutter:

A preliminary study

Courtney T. Byrd¹, Geoffrey A. Coalson¹*, Danielle Werle¹

¹Arthur M. Blank Center for Stuttering Education and Research, The University of Texas at Austin, Austin, Texas, United States of America

*Corresponding author

E-mail: geoffrey.coalson@austin.utexas.edu

¶These authors contributed equally to this work.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Previous studies have reported that adults who stutter demonstrate significant gains in communication competence, per self-ratings and clinician-ratings, upon completion of a communication-centered treatment, or CCT. The purpose of the present study was to determine whether gains in communication competence would also be reported by untrained observers. Eighty-one untrained observers completed an online survey that required each to view one of two videos depicting an adult who stutters during a mock interview recorded prior to CCT or after CCT. Participants were then asked to rate the communication competence of the interviewee on a 100-point visual analog scale and provide additional demographic information. Communication competence of the adult who stutters was rated significantly higher in their post-treatment video. Two observer-based factors were significantly associated with ratings of communication competence: years of education and years the respondent had known an adult who stutters. Upon controlling for these demographic factors, significantly higher ratings of communication competence for the post-treatment video were maintained. Although preliminary, findings suggest gains in communication competence demonstrated in previous studies through clinician and client observations are not limited to the sterile clinical environment, and further emphasizes the ecological validity of CCT. [ClinicalTrials.gov NCT05908123; https://clinicaltrials.gov/show/NCT05908123]
Introduction

Public perception that adults who stutter are poor communicators is pervasive. Decades of research illustrate the widespread belief that effective communication – a skill that is considered essential for academic success (e.g., [1]), workplace advancement (e.g., [2-5]), and interpersonal relationships (see [6-7]) – cannot be adequately attained in the presence of stuttered speech. Based on this assumption, treatment options for adults who stutter have historically focused, in part or whole, on learning to speak fluently, and concealing moments of overtly stuttered speech (see systematic review by Brignell et al. [8]). The assumption that communication skills cannot be gained or improved without suppressing stuttered speech has gone unchallenged within clinical trials for decades. Only recently have clinical researchers demonstrated that targeting fluency during treatment is not necessary to improve the communication competency of persons who stutter.

Byrd and colleagues [9-11], for example, explored the impact of participation in a communication-centered treatment (CCT) designed to improve communication skills with no attempt to change speech fluency. Participants were rated to be significantly stronger communicators post-treatment by clinicians who were unfamiliar with the participants and blinded to pre-/post-treatment status of video samples [9-10]. Participants themselves also reported significantly stronger communication competencies after treatment across a variety of speaking contexts (dyad, small group, large group, public presentation) and listeners (strangers, acquaintances, friends; Coalson et al. [11]). Critically, neither self- nor clinician ratings of communication competency were predicted by pre-treatment stuttering frequency.

Taken together, these clinical data provide preliminary but compelling evidence that fluency and communication are not inextricably linked, at least from the perspective of speakers.
who stutter and their clinicians. Although promising, both the participants and the clinicians in
the prior studies had shared knowledge of the nature of stuttering, the focus of CCT, and the
desired clinical outcomes; thus, there was a relatively stable internal criteria for subjective
evaluation, that one could argue may diverge from the appraisal of unfamiliar, untrained
laypersons. Potential bias also may result from the sampling context. Clinicians who
participated in the previous studies were blind to the pre- versus post-treatment status of videos,
and videos were randomized, but they were evaluating a large number of consecutive videos
depicting participants who stutter – a scenario rarely encountered in everyday life which may
have also potentially compromised their ratings.

Therefore, to extend previous findings to a more ecologically valid context, the present
study examined whether post-treatment gains in communication competency observed by
clinicians in previous studies to reflect behavioral changes that are also identifiable to untrained,
naïve observers. To do so, we recruited a large cohort of untrained observers to rate the
communication competency of an unfamiliar adult who stutters based on a video sample
recorded either before treatment had begun (Pre-treatment Video Stimuli) or after treatment had
been completed (Post-treatment Video Stimuli). To explore implicit factors known or suspected
to influence social evaluation, and evaluation of people who stutter (e.g., [12-13]) in particular,
we also considered to what extent demographic and observer-related factors may account for
perceived communication competency ratings for each video sample.

Communication-Centered Treatment (CCT) for stuttering

The majority of treatment approaches for adults who stutter primarily or exclusively
targeted fluency-centered speech techniques intended to either eliminate or minimize moments
of stuttered speech (i.e., fluency shaping [14-15]; stuttering modification [16]). Yet, from the few randomized control trials (RCTs) that exist for adults who stutter, it is evident that fluency-centered treatment (a) has minimal impact on the psychological consequences of stuttering [17-18]), (b) is prone to high rates of relapse (71% [19]), and (c) may compromise the speaker’s innate ability to communicate (e.g., unnatural, effortful, and/or incongruent with their identity [20]). Additionally, listeners often rate speech techniques often employed during treatment to achieve fluency as equally or less desirable than stuttered speech [21-23].

Furthermore, several recent studies indicate that stuttering severity does not predict communication attitudes in person who stutter regardless of age (e.g., children [24]; adults: [25]). These data challenge the assumption that fluency must be targeted to facilitate positive perspectives of self and/or communication in persons who stutter. In fact, Byrd and colleagues [9-11, 26-27] provide evidence that significant positive changes in communication attitudes, and communication competence, can be reliably attained through participation in a treatment that focuses on improving overall communication and explicitly excludes clinical goals that attempt to hide, eliminate, or modify stuttered speech in children and adults following CCT.

Preliminary findings with children who stutter

Byrd et al. [26, n = 23, ages 7- to 14-years old] examined changes in cognitive and affective wellbeing before and after treatment reported by 23 children and adolescents who stutter and their parents. Specifically, adolescents who stutter reported greater quality of life (as measured by the Overall Assessment of Speaker’s Experience with Stuttering [28]) following treatment, and parents reported significant improvement in their child’s ability to establish peer relationships (as measured by the PROMIS-Pediatric Short Form Peer Relationships Scale [29]).
A follow-up study by Byrd et al. [27] replicated these findings in an additional 23 child and adolescent participants (ages 7- to 14-years old). That is, participants and their parents reported significant post-treatment gains in quality of life and peer relationships. Combined, these findings indicate that treatment that excludes any attempt to modify speech fluency of children who stutter, and instead targets communication skills, results in significant gains that meet or exceed those previously reported for fluency-focused or stuttering modification treatment approaches.

Byrd et al. [9] extended analyses of their communication centered, whole person approach, by examining communication competencies in 37 children and adolescents who stutter (ages 4- to 17-years old) pre- versus post-treatment. An unfamiliar clinician rated pre- and post-treatment presentations (3 to 4 minutes in length), recorded in front of a large group of peers, based on nine difference communication skills: (1) language use, (2) language organization, (3) speech rate, (4) intonation, (5) volume, (6) gestures, (7) body position, (8) eye contact, and (9) facial affect (for detailed description, see Byrd et al. [9-10]). Findings provided preliminary evidence that, in addition to replicating the positive post-treatment changes in cognitive and affective aspects of stuttering reported in prior studies (Byrd et al. [26-27]), clinicians rated communication competency of children and adolescents who stutter during presentations as significantly stronger in samples recorded after treatment. Of particular relevance to the present study, these changes in communication competence following CCT were not significantly predicted by pre-treatment stuttering frequency.

Preliminary findings with adults who stutter
Positive post-treatment gains in communication competence after treatment reported for children who stutter have been replicated in adults who stutter who have participated in CCT. Coalson et al. [11] examined self-reported clinical outcomes from 33 adults who stutter after an 11-week communication-centered treatment (for greater detail see Byrd et al. [10]) program similar to the one-week treatment program for children described in Byrd et al. [9, 26-27]).

During the first and last week of treatment, participants completed the Self-Perceived Communication Competence [30] - a brief scale designed to self-assess communication skills in four specific communicative contexts (dyad, small group, large meeting, presentation) with three interlocutors (stranger, friend, acquaintance). Significant gains in self-rated communication competence were reported post-treatment across all 12 speaking scenarios and, similar to the children and adolescents who stutter in Byrd et al. [9], post-treatment gains were not predicted by stuttering frequency.

Improvement in communication competence is not limited to the perspective of the speaker who stutters. Byrd et al. [10] examined post-treatment communication competencies in 11 adults who stutter who participating in communication-centered treatment. Each participant completed a mock interview with an unfamiliar interviewer during the first week (pre-treatment sample) and final week (post-treatment sample). Randomized video samples of these interviews were rated offline by an unfamiliar speech-language pathologist blind to pre-/post-treatment status of each video. As observed for children and adolescents who have participated in CCT, adults who stutter demonstrated observable post-treatment improvements in eight of the nine targeted communication competencies (i.e., language use, language organization, speech rate, intonation, volume, gestures, body position, eye contact, and facial affect), and, again, these improvements were not predicted by pre-treatment stuttering frequency. Taken together with
Coalson et al. [11], these preliminary data suggest that expert clinicians, as well as the adults who stutter themselves, observe positive changes in communication competencies when completing CCT, irrespective of pre- and/or post-treatment stuttering severity.

Untrained observers

Although the client- and clinician-based outcome measures used in Byrd et al. [9-11] are commonplace within clinical trials of adult stuttering treatment (e.g., [17, 31-34]; however, see [35-38] for third-party ratings of naturalness), it could be argued that the changes reported were evaluated from two parties – the client and the clinician – whose shared perspectives invite a potential for rater bias because of their personal history and knowledge of stuttering and/or stuttering treatment. A logical means to address potential rater biases due to familiarity with the condition, and/or its treatment, is to examine clinical outcomes from the perspective of raters who have neither – the naïve observer.

To date, no clinical trials known to the present authors have investigated post-treatment communication competence for adults who stutter from the perspective of the naïve observer. Unlike clinicians or participants, untrained observers provide a valuable means to assess the ecological validity of any communicative outcome measure, by virtue of their inherently variable standards of communication competence. Novice laypersons rely upon a range of intrinsic and extrinsic cues to evaluate the quality of a speaker’s communication competence that are likely dissimilar from speakers and well-trained clinicians. By assessing the perspective of a large group of untrained observers, we can capture the variance of such internal criteria while also measuring the ecological impact of CCT outcomes. Thus, our primary research question is to assess to what extent the gains in communicative competence observed by clinicians in previous
studies are also evident to general public. That is, we will analyze whether treatment outcomes observed by the trained clinician withstand the inherent variability of observer judgement.

Observer-based variables

Naïve observers within the general public hold a well-documented negative bias towards persons who stutter (e.g., [39-42]). A number of demographic factors have been found to influence an observer’s evaluation of any speaker (e.g., age, gender, education, occupation, familiarity with language/multilingualism), including those who stutter (see [13, 43-44]). Such demographic factors as well as additional observer-based factors have a potential or documented influence on naïve observers’ attitudes towards adults who stutter (e.g., familiarity with person who stutters [45-46]; personal history with a communication disorder [47-48]; visible and/or nonvisible disability [49]).

Additionally, factors known to mitigate an observer’s overall evaluation of an adult who stutters as a person may override any attempt to measure a targeted trait, such as communication abilities, of specific communicative traits, resulting overly positive evaluations (see Werle & Byrd [50] for positive feedback bias by professors when evaluating presentations students who stutter) or overly negative evaluations (see Byrd et al. [12], for gender bias towards adults who disclosure stuttering). Given the central nature of communication abilities to how a person who stutters is perceived to the general public, it is worthwhile to examine whether ratings of communication competence – the focus of the present study – are attributable to public biases.

Said another way, it is possible that observer ratings of the communication competence of a particular adult who stutters may be driven entirely by their overall perception of all people who stutter irrespective of their communicative skills. Thus, a second critical question to consider is
to what extent observer-based factors mediate the opinions of the general public when rating communication abilities in adults who stutter to discern the unique influence of communication competence from generalized biases – positive or negative – towards adults who stutter.

Rationale for the present study

The purpose of the present study was to examine how naïve observers rate the communication skills of an adult who stutters who completed an approach to treatment that focuses on communication effectiveness and makes no attempt to modify fluency or reduce stuttered speech. A secondary aim of this study was to assess whether observer-based factors of untrained observers influence perceived communication competence.

RQ1: Does communication effectiveness training yield positive gains in naïve observers’ evaluation of the communication skills of an adult who stutters?

RQ2: Do observer-based variables predict evaluation of the communication skills of an adult who stutters?

Methods

The following study was approved by the authors’ university institutional review board (IRB: 2015-05-0044) and is part of an ongoing series of registered clinical trials (clinicaltrials.gov, NCT 05908123 [51]) designed to examine clinical outcomes of the Blank Center CARE Model™. Consent was obtained by all survey respondents prior to viewing communication competence stimuli. Communication competency stimuli was comprised of two separate videos: one depicting a speaker before he had completed CCT (Pre-treatment Video Stimuli) and one depicting the same speaker after he had received CCT (Post-treatment Video Stimuli).
Communication-Centered Treatment (CCT)

A detailed description of the treatment program is provided in Byrd et al. [10]. The overarching goal is to ensure individuals who stutter communicate effectively, advocate for themselves in a manner that maintains agency, and ensure their quality of life does not depend on producing, or attempting to control, stuttered speech. In brief, adult participants complete 11 weeks of treatment comprised of two 60-minute sessions per week (one group session, one individual session), totaling 22 sessions which include training in Communication, Advocacy, Resilience, and Education (the Blank Center CARE Model™). With respect to Communication, participants receive explicit instruction on how to appropriate incorporate nine core communication skills that do not rely on fluency speech production (i.e., language use, language function, speech rate, intonation, volume, gestures, body position, eye contact, facial affect). Training provided during the individual sessions provide a natural foundation for the weekly group sessions, wherein participants apply these skills in a variety of functional yet challenging speaking scenarios, including mock job interviews, small group mingling, impromptu icebreakers, one-on-one interactions with unfamiliar persons, and multiple presentations varied both in purpose (e.g., informative, persuasive, inspirational) and audience composition (e.g., small and large groups, familiar and unfamiliar listeners).

Communication competency stimuli

Two video samples were selected from the 22 unscripted, impromptu mock interviews generated before and after treatment examined by Byrd et al. [10] – one recorded pre-treatment and its post-treatment counterpart. Each of the two video stimuli depicted a one-one-one, in-person mock interview between (a) an adult who stutters, who served as the interviewee, and (b)
an unfamiliar clinical staff member of the Blank Center, who served as the interviewer. The
same adult who stutters served as interviewee in both Pre-treatment and Post-treatment Video
Stimuli. Interviewers differed between video stimuli to limit potential habituation to speaker.
Each interviewer was unfamiliar with the participant who served as the interviewee, and both
were provided identical, commonplace interview questions as prompts (e.g., “What do you
consider your strengths and weaknesses?”; “Describe a prior work-related issue and how you
addressed it.”).

Selection criteria included (a) significant intra-speaker gains in communication
competence as rated by the speech-language pathologist evaluator, and (b) relatively comparable
stuttering frequency and severity. Although selecting a pre- and post-video sample of the same
participant with identical stuttering frequency and severity was not possible, as unscripted
interactions naturally vary in length, stuttering frequency, and stuttering severity, the video
samples selected for the present study were matched as closely as possible. As detailed in Table
1, stuttering severity equivalents for both the Pre- and Post-treatment Video Stimuli were rated
as moderate per the Stuttering Severity Index – 4th Edition (SSI-4 [52]) Stuttering frequency and
severity ratings for each video were completed by an unfamiliar speech-language pathologist
trained in disfluency count scoring but unfamiliar with the participant and the timepoint (Pre-
treatment, Post-treatment) of each video. To further examine perceptual differences between
video samples, a validation survey (administered as part of a separate project, Byrd et al. [53])
asked a separate cohort of naïve observers not included in this study to rate stuttering severity
using a 100-point visual analog scale (0 = no stuttering, 100 = extremely severe stuttering) after
rating one of the two video samples. Naïve observers rated stuttering severity to be statistically
comparable ($p = .95$) between Pre- and Post-treatment Video Stimuli, with nearly identical mean severity ratings ($M = 64.71$ and 64.95, respectively; see Table 1).

Table 1. Characteristics of Pre-Treatment and Post-Treatment Video Stimuli

<table>
<thead>
<tr>
<th></th>
<th>Pre-treatment Video</th>
<th>Post-treatment Video</th>
</tr>
</thead>
<tbody>
<tr>
<td>%SSa</td>
<td>10.60%</td>
<td>8.24%</td>
</tr>
<tr>
<td>Total syllables</td>
<td>594</td>
<td>1258</td>
</tr>
<tr>
<td>Total words</td>
<td>453</td>
<td>959</td>
</tr>
<tr>
<td>SSI-4b</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>Frequency</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Duration</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Physical Concomitants</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>27</td>
<td>25</td>
</tr>
</tbody>
</table>

Observer-Rated Severity (100-point VAS)

<table>
<thead>
<tr>
<th></th>
<th>Pre-treatment Video</th>
<th>Post-treatment Video</th>
</tr>
</thead>
<tbody>
<tr>
<td>M (SE)</td>
<td>64.71 (2.54)</td>
<td>64.95 (2.41)</td>
</tr>
<tr>
<td>N</td>
<td>63</td>
<td>57</td>
</tr>
<tr>
<td>Length of Video</td>
<td>5 min, 30 sec</td>
<td>6 min, 25 sec</td>
</tr>
</tbody>
</table>

aPercent of stuttered speech, disfluency types based on Yairi and Ambrose [54]

bStuttering Severity Instrument-4th Edition [52]

The participant who served as the interviewee in the selected Pre- and Post-treatment videos was an adult Hispanic male who stutters. The participant spoke English and described himself as monolingual. No additional communication, developmental, psychological,
neurological, and/or physical issues were reported by the participant or identified by the clinician during initial evaluation.

Survey administration and respondent description

The two selected video samples were embedded in a Qualtrics-based survey distributed to adult, untrained observers via MTurk platform who were compensated for their participation, with the survey prompting one of the two videos in succession of access of the survey to ensure random observation of the Pre- and the Post-treatment sample. Each survey began with an informed consent landing page, followed by the instructions: “You are about to watch a video of an interview. Immediately following the video, you will be asked questions about the interviewee. The interview will be approximately 5 to 7 minutes in length. You will only be able to move forward in the survey after you have watched the video in its entirety.” Participants then watched either the video of the participant before training (Pre-treatment Video Stimuli), or the participant after training (Post-treatment Video Stimuli), with the “advance” button disabled for both the survey portal and the embedded video. Following the video, respondents were provided the following instructions accompanied by a 0-100 visual analog rating scale: “Using the scale below, please rate the interviewee’s communication skills. 0 = Communication skills not at all effective, 50 = Communication skills somewhat effective, 100 = Communication skills extremely effective.” Participants were then asked to describe what factors led to their rating in a free response text box. Following their rating and written feedback, respondents were asked to provide demographic information (e.g., age, race, ethnicity, gender, education, occupation, primary language). Participants were also asked to report their personal relationship with stuttering, persons who stutter, or other communication disorders (“Are you a person who stutters? Do you personally know a person who stutters? If so, please describe your relationship
and how long you have known this person. Have you had previous speech, language, and/or hearing evaluation or therapy?”) as well as any visible or nonvisible diagnoses unrelated to communication difficulties (i.e., physical condition, psychological condition, neurological condition, emotional condition, vision/hearing loss, reading disorder, other/describe, none).

Each survey included three attention check questions and four comprehension check questions to assess quality of individual responses. Survey data was collected in July 2021, and all respondents who completed the survey following the Pre-treatment and Post-treatment Video Stimuli in full were paid per MTurk standards of distribution.

The survey was initiated by 128 respondents (67 Pre-treatment Video Stimuli, 61 Post-treatment Video Stimuli). Of these 128 respondents, 36 (28%, 19 Pre-treatment Video Stimuli, 17 Post-treatment Video Stimuli) did not pass at least one of the seven attention/comprehension check questions during the course of the survey and were excluded from final analysis. Of the remaining 92, four were excluded because they self-identified as a person who stutters (2 Pre-treatment Video Stimuli, 2 Post-treatment Video Stimuli). Seven additional respondents were excluded (3 Pre-treatment Video Stimuli, 4 Post-treatment Video Stimuli) due to free-response items that suggested unclear understanding of the task (e.g., “She [the interviewer] can ask some more questions.”), questionable attention to the study (e.g., “Everything is perfect.”), or potentially auto-generated responses (e.g., unusual format of free-responses repeated across items or participants). The final corpus included 81 respondents (43 Pre-treatment Video Stimuli, 38 Post-treatment Video Stimuli). See Table 2 for detailed description of respondents.

Table 2. Demographic characteristics of naïve observer groups
<table>
<thead>
<tr>
<th></th>
<th>Pre-treatment</th>
<th>Post-treatment</th>
<th>N</th>
<th>t, X²</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>43.4 (16.4)</td>
<td>41.8 (16.5)</td>
<td>81</td>
<td>.39</td>
<td>.35</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Native American or Alaskan Native</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>8</td>
<td>5</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black or African American</td>
<td>6</td>
<td>3</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Native Hawaiian or Pacific Islander</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>27</td>
<td>29</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Identification</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
<td>.74</td>
<td>.39</td>
</tr>
<tr>
<td>Not Hispanic or Latino</td>
<td>38</td>
<td>31</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic or Latino</td>
<td>5</td>
<td>7</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-Identified Gender</td>
<td></td>
<td></td>
<td></td>
<td>2.9</td>
<td>.09</td>
</tr>
<tr>
<td>Male</td>
<td>19</td>
<td>24</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>24</td>
<td>14</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Identification</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years of Education</td>
<td>16.4 (2.7)</td>
<td>16.5 (3.0)</td>
<td>16.5 (2.8)</td>
<td>-.13</td>
<td>.45</td>
</tr>
<tr>
<td>Primary Language</td>
<td></td>
<td></td>
<td></td>
<td>.07</td>
<td>.80</td>
</tr>
<tr>
<td>Bengali</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>Total</td>
<td>Male</td>
<td>Female</td>
<td>Knows adult who stutters</td>
<td>Years known</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>------</td>
<td>--------</td>
<td>--------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>English</td>
<td>36</td>
<td>31</td>
<td>67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filipino</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>French</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hindi</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marathi</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portuguese</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saurashtra</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swedish</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamil</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkish</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Knows adult who stutters | 25 | 19 | 44 | .54 | .46 |
Years known | 12.6 (17.0) | 9.7 (14.2) | 11.2 (15.8) | .83 | .21 |
Nonvisible or mixed disability | 8 | 8 | 16 | .08 | .78 |

Note. Means and standard deviations (in parenthesis) reported for age, years of education, and years known.

Analyses

RQ1: An independent *t*-test was conducted to compare naïve observers’ evaluation of communication competency depicted in one of two stimuli - a video depicting an adult who stutters who received communication effectiveness training (Post-treatment Video Stimuli) or a video depicting an adult who stutters who has not received communication effectiveness training (Pre-treatment Video Stimuli). Video type (Post-treatment Video Stimuli, Pre-treatment Video Stimuli) served as the independent variable, and ratings from the 100-point visual analog scale (VAS) of communication skills served as the dependent variable (0 = low competence, 100 =
high competence). Effect sizes were obtained using Cohen’s d [55]. Because of the preliminary nature of the data and modest sample size, findings were verified by non-parametric analysis (Mann-Whitney U, $\alpha = .05$).

RQ2: A linear regression was conducted to assess the influence of viewing communication competency stimuli (Post-treatment Video Stimuli, Pre-treatment Video Stimuli) and nine observer-related variables (age, race, ethnicity, gender, years of education, non-English primary language, knowing an adult who stutters, number of years respondent has known adult who stutters, nonvisible diagnosis; see Table 2) upon ratings of the communication skills of an adult who stutters. Categorical variables with responses that were either not reported (i.e., non-binary self-identified gender) or reported infrequently (i.e., non-English primary language with fewer than 4 respondents) were transformed to create a single binary variable (i.e., male/female; English/non-English primary language). To maintain relatively even distribution amongst categories during analysis, race wascollapsed into a single binary variable (i.e., White, people of color) due to relatively infrequent self-identification as Black/African American ($n = 9$; Pre-treatment Video Stimuli = 6, Post-treatment Video Stimuli = 3) or racial identification that was not included in existing categories ($n = 3$, Pre-treatment Video Stimuli = 2, Post-treatment Video Stimuli = 1).

To determine which of the nine observer-related factors held meaningful predictive value of observer ratings, and therefore qualify for entry into the linear regression, we applied a version of Hosmer et al.’s [56] step-by-step method for *purposeful selection of covariates* modified for OLS linear regression. First, nine univariate analyses were conducted for each variable (chi-square tests for categorical variables, independent t-tests for continuous variables). Only variables with p-values greater than 0.25 were excluded. Second, a model with non-
excluded variables was fitted, then each predictor re-assessed and deleted if significance

exceeded $p > .05$. Third, the reduced model was compared to the original model using F values
to ensure improved fit and to verify that change in beta coefficients between models did not

exceed 20% (i.e., deleting-refitting-verifying cycle). Fourth, any variables that were excluded
during the initial step were re-entered into the model, one at a time, but retained only if p-values
were less than .05. Fifth, any interaction terms of interest between the remaining variables were
entered into the model. Interaction terms were assessed using the deleting-refitting-verifying
cycle used for main effects and retained only if statistically significant at $p < .05$ and if model

fitness improved. Any main effects and interaction terms remaining after these steps were

completed comprised the final model (see Table 3). Because of the preliminary nature of the data

and modest sample size, bootstrap analysis was conducted to confirm initial findings (95%

confidence intervals; 5000 samples).
Table 3. Summary of regression analyses of stimuli (Pre-treatment Video Stimuli, Post-treatment Video Stimuli) and observer-based factors predicting communication skills of an adult who stutters, as rated by naïve observers

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>95% CI</th>
<th>β</th>
<th>t</th>
<th>p</th>
<th>F</th>
<th>df</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>Intercept</td>
<td>-5.25, -11.34, .78</td>
<td>-1.68</td>
<td>.089</td>
<td>6.03</td>
<td>1, 79</td>
<td>.071</td>
<td></td>
</tr>
<tr>
<td>Pre-/Post-treatment Video Stimuli</td>
<td>11.24</td>
<td>2.38, 20.11</td>
<td>.27</td>
<td>2.46</td>
<td>.013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 2</td>
<td>Intercept</td>
<td>-5.68, -11.25, -.11</td>
<td>-1.95</td>
<td>.046</td>
<td>7.30</td>
<td>3, 77</td>
<td>.221</td>
<td></td>
</tr>
<tr>
<td>Pre-/Post-treatment Video Stimuli</td>
<td>12.12</td>
<td>3.97, 20.26</td>
<td>.29</td>
<td>2.84</td>
<td>.004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years of education</td>
<td>-2.47</td>
<td>-3.92, -1.03</td>
<td>-.33</td>
<td>-3.28</td>
<td><.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years AWS known</td>
<td>.23</td>
<td>-.03, .49</td>
<td>.17</td>
<td>1.67</td>
<td>.087</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bootstrapped</td>
<td>Intercept</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-/Post-treatment Video Stimuli</td>
<td>3.88</td>
<td>20.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years of education</td>
<td>-3.99</td>
<td>-3.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years AWS known</td>
<td>.01</td>
<td>.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. CI = confidence interval for unstandardized beta coefficients; AWS = adult who stutters
Results

RQ1: An independent t-test was conducted to assess how naïve observers rate communication skills of an adult who stutters. As depicted in Fig 1, findings reveal significantly stronger perceived communication skills when viewing the video of a speaker post-CCT (Post-treatment Video Stimuli; $M = 70.3$, $SD = 21.1$) than when viewing a video of a speaker pre-CCT (Pre-treatment Video Stimuli; $M = 59.0$, $SD = 20.1$), $t(79) = 2.46$, $p = .016$, $d = .55$ [medium effect size]. Findings were confirmed via nonparametric analysis, $U(43,38) = 532.50$, $z = 2.70$, $p = .007$.

RQ2: A linear regression was conducted to determine the contribution of observer-related factors (i.e., age, race, ethnicity, gender, years of education, non-English primary language, knowing an adult who stutters, number of years respondent has known adult who stutters, nonvisible diagnosis) upon ratings of the communication skills of an adult who stutters. As expected, the video stimuli depicting a speaker post-treatment was a significant predictor of higher observer ratings when entered as the lone predictor variable ($\beta = .67$, $p = .013$), explaining 7.1% of the variance ($R^2 = .071$; $F(1, 79) = 6.03$, $p = .016$; see Model 1 in Table 2). Upon completing Hosmer et al.’s (2013) purposeful selection of covariates, only two factors were identified as potential predictive covariates: (1) years of education, which significantly predicted observer ratings ($\beta = -.33$, $p < .001$) and accounted for 12.2% of the variance ($R^2 = .122$), and (2) years the respondent has known an adult who stutters, which approached significance ($\beta = .17$, $p = .087$), and accounted for 2.8% of the variance ($R^2 = .028$). After accounting for the contribution of these two observer-based factors, video stimuli of a post-treatment speaker remained a significant, positive predictor of improved observer ratings ($\beta = .29$, $p = .004$) with
the final model accounting for 22.1% of the variance ($R^2 = .221; F(3, 77) = 7.30, p < .001$; see Model 2 in Table 3).

To verify these outcomes, a bootstrapping analysis was conducted to determine 95% confidence interval (CI) for unstandardized beta coefficients of each factor based on 5000 samples. Bootstrap analysis confirmed a significant, positive coefficient for video stimuli depicting a post-treatment speaker ($p = .007, [CI: 3.88, 20.72]$) while controlling for potential influence of both observer-related factors (years of education: $p = .003, [CI: -3.99, -.85]$; years respondents have known an adult who stutters: $p = .049 [CI: .01, .46]$).

Discussion

The primary purpose of this study was to examine whether naïve observers rated an adult who stutters as a stronger communicator after completing a specialized 11-week treatment program (CCT) designed to enhance communication skills rather than stuttering frequency or severity. A secondary purpose was to examine to what extent observer-related factors mediated these ratings. A large sample of naïve observers were recruited to view, and then rate, one of two videos of an adult who stutters who had completed the treatment program (Post-treatment Video Stimuli) or who had yet to complete the treatment program (Pre-treatment Video Stimuli). Findings indicate that naïve observers rated the speaker in the Post-treatment Video Stimuli to be a stronger communicator than the same speaker in the Pre-treatment Video Stimuli video. Two observer-rated factors were identified as significantly associated with communication competency ratings: (1) years of rater education and (2) years the rater had personally known an adult who stutters. Accounting for these factors, naïve observers nevertheless rated the video of the adult who stutters recorded after training as a significantly stronger communicator.
RQ1: Communication competence gains from the perspective of naïve observers

Naïve observers rated the communication competence of an adult who stutters demonstrates during a mock interview recorded after CCT (Post-treatment Video Stimuli) as significantly higher than the video of the same adult, in the same mock interview setting, recorded prior to CCT (Pre-treatment Video Stimuli). These findings are consistent with the significant pre-/post-treatment gains in communication competence reported for adults who stutter as rated by speech-language pathologists [10] and client’s self-reported dyadic interactions ([11]; dyadic interactions: \(p < .0001 \)). Findings also corroborate significant gains in communication competence observed by speech-language pathologists for young children and adolescents after a one-week treatment program based on the same clinical principles [9]. Consistency across ratings of communication competence from three difference perspectives – client, clinician, and naïve observer – provide confidence that changes in previous studies were not attributable to rater bias (i.e., client or clinician) and perhaps reflect a meaningful change in communication abilities also observable by untrained laypersons.

Unlike previous studies by Byrd and colleagues [9-10], wherein a single clinician rated pre-/post-treatment video samples from multiple adults who stutter (i.e., many-to-one), the structure of observation in this study was reversed. In those previous studies, our analyses captured the variance of treatment outcomes across multiple participants, with rater variance held constant by use of a single clinician rater. In the present study, multiple observers rated communication competence of a single adult who stutters (i.e., one-to-many) based on viewing one of two videos. By assigning one video to one respondent per survey, we were able to
minimize respondent burden of watching multiple videos and potential order effects. Moreover, this statistical design allowed us to capture the variance of responses amongst the general public in response to changes in communication competence previously observed by clinicians. These data provide preliminary proof that gains observed in the clinic may also generalize to the perceptions of unfamiliar observers beyond the clinic – an issue of critical concern for any clinical trial and many participants in treatment. That being said, it is possible that the consistency between within-clinic and beyond-clinic evaluation of communication competence observed in this study may vary between individual participants. A natural next step is to assess the variance of treatment outcomes across participants by a single naïve observer, similar to one-to-many rating design in Byrd et al. [9-10], practical issues notwithstanding (e.g., order effects, participant/respondent burden). For now, findings from the present study provide meaningful external validity for the positive outcomes a novel treatment approach, and suggest that gains in communication competence, when observed in the clinic by a single clinician, will likely be observed by the general public.

As noted, stuttering frequency and severity in the Pre-Treatment and Post-treatment Video Stimuli were comparable (Pre-treatment Video Stimuli: SSI-4: 31 moderate [score 27]; Post-treatment Video Stimuli: SSI-4: moderate [score 25]), lending support to the notion that ratings of communication competence were not driven by changes on overt or observable stuttering behaviors. One may suggest that, similar to the rationale of the present study for communication competence, ratings of stuttering severity provided by expert clinicians may not reflect judgments of severity by the naïve listeners in the general public, and potentially influenced the observed-based ratings of communication competence more than expected. Comparable observer-based ratings of stuttering severity for Pre-Treatment and Post-treatment
Videos reported in Table 1 ($p = .95$) suggest this was not the case. It is also possible that observer judgment of stuttering severity was less distracting because it was accompanied by higher (or lower) communication abilities. For example, Werle et al. [57] found that naïve observers who view a presenter who producing 15% SLDs but demonstrates high communication competence rate the stuttering as less distracting than the same presenter produced 15% SLDs but demonstrated low communication competence.

Further assessment of qualitative feedback from respondents in the present study support the findings of Werle et al. [57] and indicate that fluency was less of a concern in the presence of stronger communication competence in the Post-treatment Video Stimuli. When comparing the most neutral observers (i.e., 50% who provided the neither the most or least favorable ratings in each group; 25th to 75th percentile), respondents who watched the Post-treatment Video Stimuli noted that they certainly heard the interviewee stuttering, but also commented that its importance was offset by communication skills (e.g., “The interviewee was very articulate and concise in his language and tone of voice. He used his hands when speaking, which made him appear more animated and that was easier to follow.” “Even though the interviewee had a stuttering issue, he was able to explain himself well. He gave good examples when asked for them by the interviewer.”; “I believe that [he] communicated well. ... He looked the interviewer directly in the eyes, smiled, and nodded.”). Accordingly, respondents who viewed the Pre-treatment Video Stimuli (25th to 75th percentile) often focused either on stuttering alone (e.g., “He was not bold and confident about the way he deliver[s] things. He is a stammer[er]”; “The interviewee has a speech impediment and it is difficult for him to communicate verbally.”) or stuttering in addition to poor nonverbal communication skills (e.g., “He seems to stay within his capabilities of communication, but his stutter is distracting. He answers questions directly, but he doesn't use
much eye contact.”; “He had a stutter and his body language looked tense but he gave great answers.”) In sum, although similarly moderate stuttering was present in both videos and perceived by both respondent cohorts, qualitative data from the present study indicate that, consistent with Werle et al. [57], heightened communication skills of the speaker who received training helped to minimize the relevance of stuttering severity during observers’ judgment.

RQ2: Observer-based factors associated with ratings of communication competence

Two demographic factors – years of education and years the respondent had known an adult who stutters - were identified as significant predictors of observer-rated communication competence. Specifically, observers rated communication competence to be stronger as the number of years the respondent had personally known an adult who stutters increased, but weaker as the amount of education the respondent had completed increased. Although observer-rated evaluations of communication competence remained significant upon controlling for these factors during analyses, the potential implications of these two factors warrant discussion. In terms of the number of years respondents have known a person who stutters, previous research has indicated that people who have developed first-hand relationships with any stigmatized groups are likely to report improved overall judgments of persons within that group (e.g., [58-59]), including persons who stutter (e.g., [60-61]; cf. [46, 62]). It is noteworthy that simply knowing/not knowing a person who stutters was insufficient to impact ratings, suggesting that the quantity and perhaps quality of time spent with an individual who stutters is necessary to significantly change how one views the communication abilities of a person who stutters. Future studies examining observer evaluations of participants who stutter should continue to include this
as a measured factor, based on its long-standing influence on the general public views

individuals who stutter.

Across videos, there was a significant negative relationship between years of education and communication ratings, wherein participants with higher levels of education often provided lower ratings of the speaker’s communication abilities, regardless of the video presented. To be clear, the mean number of years of education for each respondent group was equivalent (Pre-treatment Video Stimuli; $M = 16.4$ years of education; Post-treatment Video Stimuli, $M = 16.5$ years of education, $p = .45$). Research investigating responses to historically stigmatized groups has documented several patterns of responses held by evaluators. The pattern of response in the present study is consistent with the status characteristic model (e.g., [63]). Within this model, evaluators hold lower expectations of a particular group, and group members must perform exceptionally compared to in-group peers to achieve equivalent ratings. This pattern of response is in contrast to the positive feedback bias found in the shifting standards model in which lower expectations of the stigmatized group result in unduly earned higher ratings [64]. Relevant to the present study, researchers have found that when evaluators are judging individuals for maximum competency or skills, they align more with the status characteristic model [65]. In other words, when tasked with examining for top performance, evaluators rate members of stigmatized groups more critically and assign lower ratings. One interpretation of the present results is related to the video context and protocol directions. Job interviews are arguably high-stakes experiences in which candidates are evaluated critically. It is possible that, when tasked with evaluating communication skills within this high-stakes context, individuals with more years of education were evaluating more sensitively and/or with higher expectations than individuals with fewer
years of education. This could possibly be anchored in their own personal experiences as either an interviewee or interviewer.

Results are contrary to recent works by Werle and Byrd [50, 66], however, who detailed a potential positive response bias when raters with higher years of education (i.e., college professors) evaluate students who stutter. It is possible that positive response bias becomes less evident for respondents who experience fewer years of academic evaluation based on communication abilities, or perhaps a unique pattern observed for professors and teachers whose job duties require ongoing evaluation of adult students. It is also possible that dyadic speaking context lowered the likelihood of positive feedback bias found for professors, who were perhaps more likely to overcorrect their personal biases observed for Werle and Byrd [50, 66] when presented with a speaker in a context for which they regularly provide evaluation (e.g., presentations). In that respect, positive response bias for the mock interviews included in the present study may be more apparent for respondents with a history of employment or training in human resources. Combined, although these two factors held significantly influence on ratings of communication competence, the significance of video status (Pre-treatment versus Post-treatment) beyond the influence of these factors, as well as the large number of demographic information included in the analyses, provides greater confidence that CCT training may be effective irrespective of unique demographic factor.

Limitations and future studies

Although these combined factors accounted for an estimated 22.1% of the variance in the sample population of untrained observers – a non-trivial amount of inter-subject variability when evaluating communication competence of an adult who stutters - we acknowledge that a number
of additional factors, known and unknown, beyond the focus of CCT also influence observer judgments. For example, visual nonverbal information (e.g., attire, physical appearance, environments) have a documented effect on evaluator judgments (e.g., [67]). To this point, it should be noted that the same adult was depicted in both video samples in the present study and, by coincidence, the participant happened to be wearing a necktie on during the first interview (Pre-treatment Video Stimuli). Although this may be considered more professional attire, this video was also rated less favorably, suggesting that attire was less critical than overall communication skills. Another unfortunate potential speaker-based factor that may influence ratings, but unrelated to CCT, was degree of accent and language proficiency. To be clear, the interviewee in this study was monolingual with no observable accent, nor did respondents note the speaker’s accent or English proficiency during subjective feedback. During pilot studies, however, naïve observers rated a multilingual adult who stutters with strong English proficiency but a heavier accent less favorably during a similar interview sample. These same respondents often provided specific negative feedback focusing on the speaker’s accent and/or level of English proficiency. Future studies of this nature should provide a clear definition of as well as linguistic versus speech fluency from the outset, similar to the instructions provided to respondents in Werle and Byrd [50, 66] fluency versus communication skills.

From a methodological standpoint, video samples that naturally vary in length and content also introduce potential confounds. For example, in the present study, the Post-treatment Video was longer and contained more total words than the Pre-treatment Video Sample, introducing the possibility that respondents became fatigued or impatient when viewing and prior to VAS rating. Again, the Post-treatment Video Sample received a significantly stronger mean rating than the Pre-treatment Video Sample, which tempers this concern. It is also possible that, although both
mock interviews were unprompted events, and interviewers were unknown to the participants, the participant benefitted from the previous mock interview experience and felt at greater ease in the identical space provided for both interviews. Additional review of communication skills in a different space, or perhaps investigation of content overlap between interviews, would address this point. Yet another consideration is that dyadic interviews lend themselves to a specific, one-on-one style of interaction that favors certain adults who stutter more than others, and post-CCT gains may not necessarily generalize to other contexts such as presentations (however, see Coalson et al. [11] for post-CCT gains across all speaking contexts as rated by adult clients who stutter). It is important to note this is one entry in a series of clinical trials focused on the outcomes of CCT from a variety of perspectives (e.g., self, clinician, observer). A larger cohort of respondents is always necessary to corroborate preliminary results, and examination of clinical outcomes will continue across multiple contexts, from multiple perspectives, and with multiple measures, in future studies.

Conclusion

This study examined the clinical outcomes of CCT – a specialized treatment for adults who stutter that focuses on communication rather than fluency – from the perspective of naïve observers. Results found that naïve observers rated a participant depicted in a video sample recorded after treatment as a significantly stronger communicator than a video of the same participant recorded prior to treatment. Findings provide corroborating evidence that clinical gains in communication competence rated by clinicians, and self-rated by participants, in previous studies was also observed for unfamiliar, untrained observers.
Acknowledgements

This project was supported by the foundational grant support funded to the Arthur M. Blank Center for Stuttering Education and Research and endowed support provided through the Michael and Tami Lang Stuttering Institute, the Dr. Jennifer and Emanuel Bodner Developmental Stuttering Laboratory, and the Dealey Family Foundation Stuttering Clinic awarded to the second author. The authors would like to thank Michael Mahometa for his assistance with statistical analysis and all survey participants.

References

13. Louis KO. Epidemiology of public attitudes toward stuttering. In Stuttering meets stereotype, stigma, and discrimination: An overview of attitude research 2015 (pp. 7-42). West Virginia University Press Morgantown, WV.

54. Yairi E, Ambrose NG. Early childhood stuttering for clinicians by clinicians: Pro-Ed; 2005.

Fig 1. Communication competence of an adult who stutters, as rated by untrained observers before CCT (Pre-Treatment) and after CCT (Post-Treatment)