The genetic drivers of juvenile, young, and early-onset Parkinson’s Disease in India

Shan V Andrews, PhD1*; Prashanth L Kukkle, DM2,3*; Ramesh Menon, PhD4*; Thenral S Geetha, PhD4; Vinay Goyal, DM5,6,7; Rukmini Mridula Kandadai, DM8,9; Hrishikesh Kumar, DM10; Rupam Borgohain, DM8,9; Adreesh Mukherjee, DM11; Pettarusp M Wadia, DM12; Ravi Yadav, DM13; Soham Desai, DM14; Niraj Kumar, DM15,16; Deepika Joshi, DM17; Sakthivel Murugan, PhD4; Atanu Biswas, DM11; Pramod K Pal, DM13; Merina Oliver, MSc6; Sandhya Nair, PhD4; Anbu Kalyavizhi, MSc4; Praveena L Samson, MSc4; Manjari Deshmukh, MSc4; Akshi Bassi, MTech4; Charuguilla Saindip, MTech4; Nitin Mandloi, MSc4; Gilbert Di Paolo, PhD1; Uday Muthane, DM18†; Shyamal K Das, DM11‡; Andrew S Peterson, PhD4; Thomas Sandmann, PhD1; Ravi Gupta, PhD4; Vedam L Ramprasad, PhD4; Parkinson Research Alliance of India (PRAI)

*These authors contributed equally to this work.
†Author is unavailable for correspondence due to poor health.
‡Author is deceased.

1 Denali Therapeutics, South San Francisco, USA
2 Manipal Hospital, Miller Road, Bangalore, India
3 Parkinson’s Disease and Movement Disorders Clinic, Bangalore, India
4 MedGenome Labs Ltd, Bangalore, India
5 All India Institute of Medical Sciences (AIIMS), New Delhi, India
6 Medanta Hospital, New Delhi, India
7 Medanta, The Medicity, Gurgaon, India
8 Nizams Institute of Medical Sciences (NIMS), Hyderabad, India
9 Citi Neuro Centre, Hyderabad, India
10 Institute of Neurosciences Kolkata, Kolkata, India
11 Bangur Institute of Neurosciences and Institute of Post Graduate Medical Education and Research (IPGME&R), Kolkata, India
12 Jaslok Hospital and Research Centre, Mumbai, India
13 National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
14 Department of Neurology, Shree Krishna Hospital and Pramukhaswami Medical College, Bhaikaka University, Karamsad, Anand, Gujarat, India
15 All India Institute of Medical Sciences, Rishikesh, India
16 All India Institute of Medical Sciences, Bibinagar (Hyderabad Metropolitan Region), India

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
17 Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi
18 Parkinson and Ageing Research Foundation, Bangalore, India

Corresponding Author:
Shan V. Andrews, PhD
Denali Therapeutics
161 Oyster Point Blvd.
South San Francisco, CA 94080
andrews@dnli.com
Abstract

Importance: Recent studies have advanced our understanding of the genetic drivers of Parkinson’s Disease (PD). Rare variants in more than 20 genes are generally accepted to be causal for PD, and the latest PD GWAS study identified 90 independent risk loci. However, there remains a gap in our understanding of PD genetics outside of the European populations in which the vast majority of these studies were focused.

Objective: To identify genetic risk factors for PD in a South Asian population and therefore increase understanding of PD genetics more broadly.

Design: This study included common variant (minor allele frequency, MAF > 5%) genome-wide association studies (GWAS) for PD diagnosis (case-control analysis) and age of onset of motor symptoms (case-only analysis). In addition, rare variant (MAF < 1%) analyses delimiting the presence of pathogenic or likely pathogenic variants in previously known PD genes (case-only) and evaluating differential burden of predicted deleterious variants at the gene level (case-control) were performed. Finally, rare and common variants were combined to examine the distribution of a PD polygenic risk score within groups defined by presence of a PD gene mutation.

Setting: 10 specialty movement disorder centers across India.

Participants: 674 PD subjects predominantly with age of onset ≤ 50 years (encompassing juvenile, young, or early-onset PD) were recruited from the contributing centers over a 2-year period. 1,376 control subjects were selected from the reference population GenomeAsia, Phase 2.

Main Outcomes & Measures: Diagnosis of PD, age of onset of motor symptoms.

Results: Common variant GWAS of PD diagnosis yielded a genome-wide significant signal (lead SNP p-value = 4.11E-11) in the SNCA region, strongly colocalized (posterior probability = 1) with SNCA region signal from European PD GWAS. PD cases with pathogenic mutations in PD genes exhibited, on average, lower PD polygenic risk scores than PD cases lacking any PD gene mutations. The top-ranked gene from gene burden studies of rare predicted loss-of-function and deleterious variants was BSN, which encodes Bassoon, a presynaptic protein previously associated with neurodegenerative disease.

Conclusions & Relevance: This study constitutes the largest genetic investigation of PD and first demonstration of SNCA association with PD in an Indian population to date. Ongoing work seeks to expand this cohort, enabling improved statistical power to detect PD genes in this understudied group.
Introduction

Parkinson’s disease (PD) is a progressive movement disorder characterized by dopaminergic neuron loss in the substantia nigra. Aging, environmental factors, and genetics contribute to PD risk and progression. To date, common variants in 90 independent risk loci, discovered via genome-wide association studies (GWAS), and rare variants in more than 20 genes have been associated with PD. However, most genetic studies of PD have been conducted in individuals of European ancestry. Recent large-scale PD genetics studies in Latinos and East Asians have both confirmed the cross-ancestry presence of well-established European PD GWAS signals (i.e., in the SNCA region) and also have provided evidence for the existence of ancestry-specific genetic drivers of PD. However, South Asian populations remain particularly underrepresented in PD genetics studies and in human genetics studies generally, comprising ~25% of the world population but only ~1% of individuals assessed overall in GWAS (as of 2018). Previous genetics studies of PD in South Asians have been limited by small sample size, a lack of genome-wide interrogation, and/or case-only analyses. The success of recent efforts to broaden PD genetic discovery beyond European populations, and the high rates of founder effects and consanguinity in South Asians (themselves imparting distinct advantages for variant and gene discovery) render expanded genetics efforts in South Asians a promising opportunity to better understand the genetic basis of PD.

Focusing on individuals with young- (YOPD; typically defined as age of onset, or AoO, ≤ 40) or early-onset (EOPD; 40 < AoO ≤ 50) forms of PD, impart a greater probability of success, because younger age of onset is associated with a greater genetic contribution to disease. These results are also relevant for late-onset PD (LOPD; defined herein as AoO > 50) wherever rarer variants associated with earlier-onset or more monogenic PD overlap signals detected via GWAS studies of common variants in LOPD. Several such “pleomorphic” risk loci/genes are
known already: SNCA, GBA1, LRRK2, and VPS13C3,21. Previous genetic studies of early-onset PD have been conducted in a wide variety of ancestral populations, including European22–26, East Asian20,27–35, and South Asian12,16,17 groups. However, most of these early-onset studies were limited by the same factors that have hindered South Asian PD genetics studies generally: small sample sizes, analysis of only a small number of previously known PD genes, and lack of control populations to allow for genetic association studies.

In the present study, we address these limitations by conducting the largest genetic study of PD in a South Asian population to date, including genome-wide and case-control discovery approaches. Specifically, we jointly profiled 674 PD subjects predominantly with earlier onset PD from the Parkinson’s Research Alliance of India (PRAI) cohort via genotype array and whole exome sequencing (WES), expanding upon our previous study of 99 subjects from this cohort17. Combining these PD data with 1,376 ancestry-matched controls profiled via whole genome sequencing (WGS) and derived from a novel South Asian reference population18,19, we performed several studies quantifying variants and genes associated with PD diagnosis and age of onset, utilizing both common and rare variants.

Methods

674 subjects with PD were recruited through a network of 10 specialty movement disorder centers and/or neurology clinics located across India. PD diagnosis was made via modified UK Brain Bank criteria, and the study was approved by the Ethics Committee of Vikram Hospital (Bengaluru, India) Private Limited; additional details can be found in the previous clinical characterization of this cohort36. 1,376 ancestry-matched controls with available WGS data were selected from the GenomeAsia, Phase 2 (GAsPh2) reference cohort18,19.
Common variants were profiled with the South Asian Research Genotyping Array for Medicine (SARGAM)19, imputed with 6,461 samples from a GAsPh2 reference panel18,19, and subjected to stringent quality control (eMethods in Supplement 1). Several steps were taken to identify and address genotype measurement error stemming from use of the first iteration of the SARGAM platform (eMethods and eFigure 1 in Supplement 1). A GWAS of PD risk was performed for 4,499,703 common variants (study minor allele frequency or MAF > 5%) by comparing sporadic PD cases (N = 515) to matched controls (N = 1,363), adjusting for sex, age, and the first 10 principal components to account for population stratification. A second association analysis of PD AoO (N = 484 sporadic PD cases) was performed similarly. A significance level of \(P < 5 \times 10^{-8} \) was used to define genome-wide significance.

WES data was generated for 576 subjects with PD. Variants were called with Sentieon's GATK best practices germline pipeline and combined with results from WGS data for an additional 92 cases (eFigure 2 in Supplement 1). Using American College of Medical Genetics (ACMG) criteria, we identified pathogenic, likely pathogenic, or variants of uncertain significance (VUS) in known PD genes in these 668 cases, as described previously (eMethods and eFigure 3 in Supplement 1)17.

We established an ancestry-normalized polygenic risk score (PRS) using variant-specific weights from a recent GWAS study of PD in Europeans2, and an adjustment procedure to apply this score in a South Asian ancestry sample, as described previously37. PRS distributions were compared between cases and controls and within PD cases defined by presence of a PD mutation, with a significance level of \(P < 0.05 \).

To perform gene burden studies of rare variants (MAF < 1%) between cases (WES, N = 633) and controls (WGS, N = 1363), we first accounted for case-control platform differences by
implementing a previously described calibration procedure informed by synonymous variants (eMethods and eFigure 4 in Supplement 1)38. Selected parameters from the calibration procedure were then used in gene burden testing of qualifying variants (QV) defined based on their predicted functional consequences. Case-control analysis was performed using Fisher's exact test with multiple testing correction applied across all tests (eMethods in Supplement 1).

Results

Data and Analysis Overview
Genetic data was available on a total of 674 PD subjects, encompassing sporadic PD (N = 532; 78.9%) and familial PD (N = 142; 21.1%). Of these 674 subjects, genotype array data was generated on 659 subjects. WGS data was available for a pilot cohort of 92 subjects, as described previously17, and we generated WES data on 576 subjects. Control subjects were selected from available WGS from GAsPh2; a total of 1,376 subjects met criteria for ancestry matching (Figure 1, eFigure 5 in Supplement 1). AoO was available for 651 PD subjects (eTable 1 in Supplement 1), and used to assign them to diagnostic groups, as previously described36: 23 juvenile-onset PD (JOPD; AoO ≤ 20 years, 3.5%), 313 YOPD (20 < AoO ≤ 40, 48.1%) and 289 EOPD (40 < AoO ≤ 50, 44.4%) and 26 LOPD (AoO > 50, 4.0%). Case and control genetic data were combined to define genetic drivers of PD, encompassing common variant-(minor allele frequency, MAF > 5%) and/or rare variant (MAF < 1%) - based studies (Figure 1).

A genome-wide significant signal for PD diagnosis in the SNCA region mirrors signal in Europeans
We conducted a GWAS of PD diagnosis with genetic data from sporadic PD samples (N\textsubscript{cases} = 515) and ancestry matched controls (N\textsubscript{controls} = 1363; eFigure 6 in Supplement 1). Two loci reached genome-wide significance, including one containing the canonical PD gene SNCA.
(Figure 2A). The lead SNCA region SNP in both the PRAI cohort and the latest GWAS of PD diagnosis in European samples2, rs356182 (p = 4.11E-11), is harbored in a neuronal enhancer element that physically interacts with the SNCA promoter. This enhancer-promoter loop is not observed in the other cell types (microglia and oligodendrocytes) assayed for chromatin interactions in the same dataset39 (Figure 2B). The PRAI PD and European PD SNCA signals are highly colocalized (coloc40 posterior probability = 1; Figure 2C) and show a consistent direction of effect (Figure 2D). The other genome-wide significant locus harbored a lead SNP (rs59330234; p = 1.02E-8) in an intron of CCDC85A, a potentially novel PD locus (e.g. it has not been observed in European PD GWAS). Overall, there was very little concordance genome-wide between PRAI PD GWAS and European PD GWAS signal (excluding the SNCA region), even when considering loci reaching a suggestive (p < 1E–5) significance threshold in the PRAI PD GWAS (eFigure 7 in Supplement 1). In our (case-only) GWAS of AoO in sporadic PD samples (N\textsubscript{cases} = 484), no genome-wide significant signals were observed (eFigures 6 and 8 in Supplement 1). Summary statistics for both the PD diagnosis and age of onset GWAS analyses are available.

PRKN variants are a major driver of PD across diagnostic groups

We combined WGS data from a pilot cohort of 92 subjects (previously described17) with newly generated WES data for 576 additional individuals (eFigure 9 in Supplement 1) and assessed them for the presence of pathogenic, likely pathogenic, risk variants, or VUS in a list of 64 previously-associated PD genes by applying ACMG criteria (see eMethods and eFigure 3 in Supplement 1). Among the 649 subjects with available AoO information, pathogenic or likely pathogenic variants (eTable 2 in Supplement 1) were more frequently observed in cases with an earlier age of onset, ranging from 47.6\% of JOPD cases (10 of 21 cases), 10.2\% of YOPD cases
(32 of 313), 3.8% of EOPD cases (11 of 289), and none in LOPD cases (0 of 26; Figure 3A). The total diagnostic yield, defined as the percentage of cases having a pathogenic or likely pathogenic variant in a PD gene, was 8.1%. Of the 36 JOPD, YOPD, or EOPD cases with a pathogenic variant, 25 cases harbored a \textit{PRKN} mutation (Figure 3B). Almost all pathogenic \textit{PRKN} variants were deletions (22/25 cases), most of them homozygous (20/22) and covering the 3rd and 4th exons of \textit{PRKN} (Figure 3C). No clinical features displayed significant differences between \textit{PRKN} pathogenic variant carriers and non-carriers (eTable 3 in Supplement 1).

Pathogenic mutations were also observed in \textit{PINK1} (N\textsubscript{cases} = 4), \textit{CHCHD2} and \textit{VPS13C} (both N\textsubscript{cases} = 2), and \textit{ATP13A2}, \textit{PLA2G6}, and \textit{PRRT2} (all N\textsubscript{cases} = 1; Figure 3B). Likely pathogenic mutations were observed in \textit{PLA2G6} (N\textsubscript{cases} = 6), \textit{PRKN} (N\textsubscript{cases} = 3), \textit{CHCHD2} and \textit{MAPT} (both N\textsubscript{cases} = 2), and \textit{GCH1}, \textit{PINK1}, \textit{SYNJ1}, and \textit{WDR45} (all N\textsubscript{cases} = 1; eTable 4). No pathogenic or likely pathogenic variants co-occurred in the same individual.

Next, we broadened considered variants to include risk variants and VUS, and tabulated occurrences of these variants specifically in a list of 21 genes previously described as causal for PD3. \textit{GBA1} mutations were the most frequent in the cohort (eFigure 10 in Supplement 1), including variants observed across multiple individuals (eTable 4 in Supplement 1), e.g. p.Ser164Arg (N\textsubscript{cases} = 10), p.Asp448His (N\textsubscript{cases} = 6), p.Arg170His, p.Ser276Phe, and p.Ala495Pro (all N\textsubscript{cases} = 3), and p.Arg170Ser and p.Arg434Cys (both N\textsubscript{cases} = 2). None of these variants co-occurred in the same individual. A list of all identified variants in PD cases, across all 64 PD-related genes, including the counts of heterozygous and homozygous carriers in cases and controls (when available) is available as eTable 4 in Supplement 1.
PD gene pathogenic variant carriers have significantly reduced polygenic burden relative to non-carriers

We next leveraged our imputed SARGAM microarray data to construct a polygenic risk score (PRS) for PD, using weights from the most recent PD GWAS study in European samples², and a previously described method to project a PRS informed by weights of one ancestral population to another³⁷. PD cases had a significantly higher PRS score than controls (Wilcoxon test, p-value = 1.94E-11; Figure 4A). To further quantify this difference, we binned samples into deciles (using breakpoints defined in the controls, as previously described³⁷) and calculated decile-specific odds ratios for disease, adjusted for age and sex. Membership in the tenth decile was significantly associated with increased odds of disease relative to a joint 5th and 6th decile comparison group³⁷ (Odds Ratio = 1.61, p = 0.006; Figure 4B).

Next, we compared the PRS between controls and several groups of PD cases defined by presence of a PD-related mutation (“VUS”, “Likely Pathogenic”, or “Pathogenic”) or lack thereof (“None”), and within those same PD case groups. The “None” (p = 5.72E-9) and “VUS” (p = 4.08E-8) groups exhibited significantly higher PRS than the control group, adjusted for age and sex. Interestingly, the “Pathogenic” group exhibited significantly lower PRS compared to the “None” group (p = 1.92E-3; Figure 4C), adjusted for age and sex. No other comparisons achieved nominal (p < 0.05) statistical significance.

Gene burden analyses of rare, predicted deleterious variants demonstrate suggestive evidence linking BSN to PD

We next performed gene burden analysis with WES data from PD cases (N = 633) and WGS data from controls (N = 1363; Figure 1, eFigure 8 in Supplement 1). Using a calibration procedure informed by synonymous variants³⁸, we derived coverage and variant quality filters to adjust for platform differences between cases and controls (see eMethods in Supplement 1).
After imposing these filters, and further restricting to variants with MAF < 1% across all ancestral populations, a total of 134,871 variants from the PD case WES data and 195,903 variants from the control WGS data could be evaluated. We selected QVs according to several criteria (see eMethods)41. For example, the most stringent analysis considered 91 genes with predicted loss-of-function (LoF) variants. Additional, more permissive definitions of QVs, informed by the \textit{in silico} prediction tools Combined Annotation Depletion-Dependent (CADD)42 and Polymorphism Phenotyping v2 (PolyPhen2)43 were implemented, along with a minimum carrier count across cases and controls of 5 samples, resulting in different gene counts corresponding to stringency: 1) 2,854 genes carrying LoF + PolyPhen2 “probably damaging” variants, 2) 4,572 genes with LoF + PolyPhen2 “probably damaging” or “possibly damaging” variants, 3) 7,627 genes with variants with CADD score > 20, and 4) 9,209 genes with broadly “Functional Rare” variants (encompassing missense, inframe, frameshift, and nonsense variants) for analysis (\textbf{Figure 5A}). After removing the LoF only tests (low gene count) and gene-QV criterion combinations potentially impacted by confounding (see eMethods in Supplement 1), a total of 21,412 burden tests were performed, with many genes tested multiple times under different QV criteria (eTable 5 in Supplement 1). No tests surpassed a Bonferroni correction threshold (p = 2.33E-6), likely due to the limited statistical power afforded by the cohort (eFigure 11 in Supplement 1). However, several genes achieved marginal significance (p < 5E-4) across multiple QV criteria, demonstrating association with PD not entirely restricted to a single set of variants (\textbf{Figure 5B}). For example, we observed suggestive associations for \textit{BSN} under the “Functional Rare” QV criterion (p = 2.57E-5, the most significant result observed overall), but also the LoF + PolyPhen2 “probably damaging” or “possibly damaging” (p = 3.56E-4) and the CADD score > 20 (p = 3.88E-4) criteria. \textit{BSN} encodes the Bassoon protein and is highly
expressed in the brain (Gene-Tissue Expression (GTEx) Project v844, eFigure 12A in Supplement 1). Interestingly, the variants driving the differential gene burden signal were localized towards the C-terminus (a similar region of the protein implicated in a recent genetics study of progressive supranuclear palsy-like syndrome45) and were never observed in controls (eFigure 12B in Supplement 1).

Discussion

We have conducted the largest genetics study of PD in a South Asian population to date and to our knowledge, a study focused on PD patients with an earlier-onset phenotype (AoO ≤ 50 years) and utilizing a diverse set of genetic data types (genotype array and WES in cases, WGS in controls) and analysis approaches (including common and rare variation, variant and gene-level inferences, and PRS). By comparing these PD patients with ancestry-matched controls we identified a genome-wide significant signal in the region of *SNCA*, a canonical PD gene, that recapitulates the European PD GWAS signal from the same region. Approximately 8% of PD patients harbor a pathogenic or likely pathogenic mutation in a previously known PD gene (predominantly, *PRKN*), and carriers of such pathogenic variants have a significantly reduced polygenic burden relative to PD cases without any PD gene mutations. Finally, through case-control comparison of rare variants at the gene level, we demonstrate suggestive evidence for an association of *BSN* and increased PD risk.

The PD diagnosis GWAS yielded two genome-wide significant signals. The first was an intronic SNP in *CCDC85A*, implicating this gene, which is highly expressed in the brain44, for the first time in PD. The second signal, in the *SNCA* region, was driven by the lead SNP rs356182, which matches that of one of the two independent *SNCA* region signals reported in a recent European PD GWAS2, and has been functionally characterized extensively46,47. Neuronal chromatin
interaction data39 utilized herein indicates that rs356182 variants impact \textit{SNCA} gene expression in this cell type as shown previously46,48, and consistent with the proposed impact of this SNP on upregulating a \textit{SNCA} 5′ untranslated region transcript isoform in frontal cortex46. This SNP has also been reported as the lead SNP in \textit{SNCA} region signals in recent PD studies in Latino5 and Chinese7 populations, and in a multi-ancestry meta-analysis including individuals of European, East Asian, Latin American, and African ancestry49. Our results extend the relevance of rs356182 to an additional ancestral population, South Asians, and to earlier onset forms of PD.

Beyond this \textit{SNCA} region signal, no regions demonstrating suggestive signal for PD diagnosis (p < 1E-5) in our South Asian cohort showed evidence of association in European samples. Many of these suggestive signals may turn out to be false positives, but some might also correspond to common variation associated with PD risk that is unique to South Asians populations. Future, larger studies of PD in South Asians will be better powered to distinguish these possibilities.

The examination of known PD genes revealed strong rare variant drivers, and the diagnostic yield (~8%) in our patient population matches that of similar studies in East Asian populations20,33,34 (7.9% to 11.6%). Homozygous deletions in \textit{PRKN} comprised the majority of pathogenic variants identified in this cohort, consistent with previous studies demonstrating that homozygous or compound heterozygous \textit{PRKN} variants are the major driver of young- or early-onset PD50–52. Furthermore, the identified \textit{PRKN} deletions were concentrated in exons 3 and 4 of \textit{PRKN}, consistent with a recent comprehensive assessment of \textit{PRKN} mutation frequency53.

We also detected a number of \textit{GBA1} variants in PD cases. However, all were classified via ACMG criteria as being “Risk” or “VUS” variants, and therefore their roles as causal genetic drivers remains to be elucidated. One such \textit{GBA1} variant, p.Ser164Arg, was observed in 10 (unique) PD cases out of 668 (1.5%). Data from gnomAD54, and curated via a recent
comprehensive investigation of GBA1 variant frequency55 suggests this variant has only been observed in South Asian populations. Along these lines, previous reports of this variant in homozygous form in Gaucher disease patients56–58 and in heterozygous form in PD patients16 have exclusively been from Indian population patient samples. In the latter instance, GBA1 p.Ser164Arg was observed in 3 of 250 (1.2\%) EOPD patients, a frequency similar to that observed in this cohort. Two additional variants, p.Ser276Phe and p.Arg434Cys, observed in 3 and 2 PD cases respectively, appear to be only present in South Asian individuals, and 1 other variant, p.Arg170Ser, observed in 2 PD cases, has not been previously reported in reference population databases54,55. Given this evidence, future functional studies should ascertain if these variants, in particular p.Ser164Arg, lead to a LoF like known GBA1 PD-risk variants and/or if they pinpoint novel aspects of GBA1 biology.

When considering rare and common variants jointly, we observed a modestly increased polygenic burden in PD cases relative to controls. This difference was driven by PD cases lacking a PD gene mutation (“None” group) and those carrying only VUS, which both exhibited elevated polygenic burden relative to controls. Recent functional studies of induced pluripotent stem cell (iPSC) derived dopaminergic neurons from EOPD patient samples without known PD gene mutations displayed increased \(\alpha\)-synuclein accumulation and reduced lysosomal membrane protein abundance compared to control iPSC lines59. Our findings are consistent with these results in arguing for the existence of genetic contributions to EOPD beyond rare mutations in known PD risk genes. It was also observed in our study that PD cases with a pathogenic PD gene mutation had significantly reduced polygenic burden relative to PD cases lacking a PD gene mutation. Similar findings of reduced polygenic burden in mutation carrier cases relative to non-carrier cases have also been observed for other phenotypes such as autism spectrum disorder60,
breast and colorectal cancer, diabetes, osteoporosis, and short stature58. These observations are consistent with a liability threshold model of disease by which rare, pathogenic variant carriers require a smaller contribution from common variants to reach a disease diagnosis, compared to non-carriers62. However, because only a limited number of studies have examined the interplay between rare and common variant genetic drivers in PD specifically60,61, this is an important area of future work.

Gene-based burden analyses revealed a suggestive association for BSN, which has had limited connection to PD previously. As mentioned above, BSN encodes Bassoon, a large synaptic scaffolding protein that plays a critical role in assembling the presynaptic active zone, where synaptic vesicle exocytosis primarily occurs65. Bassoon is also a key regulator of presynaptic proteostasis, controlling degradative pathways that have been extensively implicated in PD, such as autophagy, notably in concert with the \textit{bona fide} PD-linked protein Parkin66. Recent human genetic and preclinical studies have also directly implicated Bassoon in neurodegenerative diseases, by identifying mutations in individuals with PSP45, a primary tauopathy, and showing a role of Bassoon in the seeding and toxicity of tau pathology in mice67. Our findings suggest a broader involvement of Bassoon in neurodegenerative disease, and future work should look to evaluate the functional impact of the individual BSN variants driving the gene-level association we observed.

\textbf{Limitations}

The total sample size for our study population consisted of roughly 2,000 cases and controls, limiting the statistical power for all variant- and gene-based discovery analyses. Moreover, given this sample size, and the rarity of early-onset PD cases generally, we were not able to derive a suitable validation cohort for our findings. In some instances, our findings are validated by
previous studies in other cohorts and/or populations, such as the SNCA region signal for PD diagnosis or high frequency of PRKN deletions in our cohort. Other novel findings, such as the reduced polygenic burden observed in PD cases carrying pathogenic variants, or the suggestive association of BSN, require replication in additional South Asian PD cohorts and in PD cohorts more generally.

Conclusions
Our study offers the first glimpse into the genetic drivers of Parkinson’s Disease in a South Asian population. We demonstrate a robust genome-wide significant signal in the SNCA region, adding the Indian population to the series of ancestral groups (European, Latino, Chinese) in which rs356182 is the lead SNP, and extending its relevance to earlier onset forms of PD for the first time. We recapitulate previous findings demonstrating the strong role of pathogenic PRKN variants in J/E/YOPD, and achieve similar diagnostic yield to that observed in previous J/E/YOPD genetics studies. These results validate the PRAI cohort for PD genetics discovery and rationalize the growth of this cohort through additional subject recruitment. We also present evidence for interplay between rare and common genetic drivers in this cohort wherein polygenic burden is inversely related to presence of a pathogenic variant. This result motivates the study of rare and common variants jointly in PD genetics studies moving forward.

The Global Parkinson’s Genetics Program (GP2) was recently initiated to directly address the limited insights into PD disease etiology and limited potential for equitable personalized medicine due to the strong bias of European ancestry samples in previous PD genetics studies. This work is a first step in addressing this knowledge gap. Recruitment of additional PD and control samples for the PRAI cohort is in progress. With these efforts and parallel GP2-fueled PD genetics studies in India, the knowledge of PD genetic risk factors in South Asians, and
therefore understanding of PD genetics as whole, should increase substantially in the coming years.

Author Contributions

Drs. Andrews, Kukkle, and Menon had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the analysis.

Concept and design: Andrews, Kukkle, Menon, Peterson, Sandmann, Gupta, Ramprasad

Acquisition, analysis, or interpretation of data: Andrews, Kukkle, Menon, Geetha, Goyal, Kandadai, H. Kumar, Borgohain, Mukherjee, Wadia, Yada, Desai, N. Kumar, Joshi, Murugan, Biswas, Pal, Oliver, Nair, Kayalvizhi, Samson, Deshmukh, Bassi, Sandeep, Mandloi, Di Paolo, Muthane, Das, Peterson, Sandmann, Gupta, Ramprasad

Drafting of manuscript: Andrews, Kukkle, Menon, Di Paolo, Sandmann, Gupta, Ramprasad

Critical revision of manuscript for important intellectual content: Andrews, Kukkle, Menon, Di Paolo, Sandmann, Gupta, Ramprasad

Statistical analysis: Andrews, Kukkle, Menon, Geetha, Oliver, Nair, Kayalvizhi, Samson, Deshmukh, Bassi, Sandeep, Mandloi, Sandmann, Gupta

Administrative, technical, or material support: Andrews, Kukkle, Menon, Peterson, Sandmann, Gupta, Ramprasad

Conflict of Interest Disclosures

Andrews, Di Paolo, and Sandmann are employees of Denali Therapeutics. Menon, Geetha, Murugan, Oliver, Nair, Kayalvizhi, Samson, Deshmukh, Bassi, Sandeep, Mandloi, Peterson, Gupta, and Ramprasad are current or former employees of MedGenome Labs.
References

18. Wall JD, Stawiski EW, Ratan A, et al. The GenomeAsia 100K Project enables genetic discoveries...

57. Sheth J, Pancholi D, Mistri M, et al. Biochemical and molecular characterization of adult patients with type I Gaucher disease and carrier frequency analysis of Leu444Pro - a common Gaucher disease

Figure legends

Figure 1 Study overview. A total of 674 PD patients, derived from the PRAI cohort, had some form of genetic data. Of this group, 659 patients had available SARGAM (genotyping array) data. NGS data consisted of 92 subjects with WGS data and 576 subjects with WES data, which were merged together to effectively create WES data on 668 samples (see Materials and Methods). A total of 1,376 control subjects were used after ancestry-matched to PD cases; these subjects were derived from WGS samples from GAsPh2. 5 major analyses were completed, each of which included common (MAF > 5%) and/or rare variants (MAF > 1%) and different genetic data types from cases and/or controls.
Figure 2 PD Diagnosis GWAS results and concordance of SNCA region signals in South Asian and European populations (A) Manhattan plot for PD diagnosis in the joint PRAI (PD cases) - GAsPh2 (controls) cohort for PD diagnosis. Lighter dashed line indicates suggestive significance (p = 1E-5) and darker dashed line indicates genome-wide significance (p = 5E-8). (B) Regional association plots in SNCA region for South Asian cohort in current study (top panel) and Europeans (International Parkinson’s Disease Genomics Consortium, “IPDGC”, second panel from top) from Nalls et al². Points are colored by r² value in study cohort and 1000 Genomes European samples, respectively. Also plotted are chromatin interaction loops identified in microglia, neurons, and oligodendrocytes³⁹ in this region and overlapping a SNP reaching suggestive significance from the current study. (C) + (D) Comparison of PRAI-GAsPh2 cohort and SNCA region signals via p-value (C) and effect size and direction (via log odds ratio; D).

Figure 3 Diagnostic pipeline results (A) Distribution of mutation type in known PD–related genes, by diagnostic group and familial/sporadic PD status. (B) Distribution of genes affected by pathogenic variants, by diagnostic group and familial/sporadic PD status. (C) Number of pathogenic deletions affecting different PRKN exons.

Figure 4 Polygenic risk scores and their integration with diagnostic categories (A) Distributions of ancestry-normalized PRSs in PD cases and controls. (B) Odds ratios for disease in PRS-defined deciles in the control group, relative to deciles 5 and 6. (C) Distribution of PRSs in controls and diagnostic pipeline-defined categories for PD cases.

Figure 5 Gene burden analyses of rare variants (A) Number of genes available for analysis as a function of the number of carriers (across cases and controls), for several different definitions of a qualifying variant (QV). Genes with carrier count ≥ 5 were included in gene burden testing. LoF-only analysis not performed due to low number of genes available that met the minimum carrier count threshold. (B) QQ-plot displaying results of gene burden studies across QV criteria. Methods and plots adapted from previous gene burden analysis of Alzheimer’s Disease⁴¹.
<table>
<thead>
<tr>
<th>Study design</th>
<th>Common variation (MAF > 5%) studies</th>
<th>Rare variation (MAF < 1%) studies</th>
</tr>
</thead>
<tbody>
<tr>
<td># Subjects</td>
<td>Collected data</td>
<td>PD Diagnosis GWAS</td>
</tr>
<tr>
<td>PRAI:</td>
<td>Genotyping Array (SARGAM) N = 659</td>
<td>✔</td>
</tr>
<tr>
<td>Parkinson’s</td>
<td>WGS (N = 92)</td>
<td></td>
</tr>
<tr>
<td>Disease N = 674</td>
<td>WES (N = 576)</td>
<td></td>
</tr>
<tr>
<td>GAsPh2:</td>
<td>WGS N = 1376</td>
<td>✔</td>
</tr>
<tr>
<td>Controls N = 1376</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRAI: Parkinson Research Alliance of India
GAsPh2: GenomeAsia Phase 2

PRAI: Parkinson’s Disease
GAsPh2: Controls

CC-BY-NC-ND 4.0 International license

It is made available under a (which was not certified by peer review)
SNCA region

A 3D visualization of the SNCA region showing the genomic coordinates of SNCA and CCDC85A, with a chromosome bar plot displaying the -log10(p-value) across chromosomes 1 to 22. The plot highlights the significant SNCA association marked by black dots.

B

A radar chart comparing the expression levels across different cell types (Microglia, Neurons, Oligodendrocytes) for the PRAI Cohort (N = 1,878) and the IPDGC (N ≈ 1.5M) for South Asian and European populations. The chart uses color coding to indicate the significance levels.

C

A scatter plot showing the relationship between -log10(p-value) and log OR, with a focus on SNP rs356182 in the SNCA region. The plot includes a heat map and a Z-score distribution.

D

A correlation plot depicting the association between log OR and log PRAI, highlighting significant GWAS signals from the PRAI cohort and IPDGC. The plot includes different colored markers (None, GW sig. IPDGC only, GW sig. PRAI & IPDGC) to indicate the significance levels of each SNP.

Notes:

- **PRAI Cohort (N = 1,878)**
- **South Asian**
- **IPDGC (N ≈ 1.5M)**
- **European**

- **Microglia**
- **Neurons**
- **Oligodendrocytes**

- **Nott et al. CNS PLAC-seq**

License: CC-BY-NC-ND 4.0 International