Traces of pubertal brain development and health revealed through domain adapted brain network fusion

Dominik Kraft ${ }^{1}$, Dag Alnæs²,3, Tobias Kaufmann¹, 2,4

${ }^{1}$ Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
${ }^{2}$ Norwegian Centre for Mental Disorders Research, University of Oslo and Oslo University Hospital, Oslo, Norway
${ }^{3}$ Kristiania University College, Oslo, Norway
${ }^{4}$ German Center for Mental Health (DZPG), Germany

Address for correspondence:
Dominik Kraft, Dr. Dominik.Kraft@med.uni-tuebingen.de

Tobias Kaufmann, Prof. Dr.
Tobias.Kaufmann@med.uni-tuebingen.de

Department of Psychiatry and Psychotherapy
Tübingen Center for Mental Health
University of Tübingen
Tübingen, Germany
\qquad Major changes marked in green color

Supporting Information

Supplementary Figures:

Supplementary Fig. 1: Correlation between raw features and first brain embedding for HBN

Supplementary Fig. 2: Associations between brain embeddings and puberty, both in cross-sectional and longitudinal data of the ABCD cohort

Supplementary Fig. 3: Distribution of Δ brain embedding in the ABCD sample stratified for sex and pubertal categories derived from caregivers` reports at 1 year follow-up.

Supplementary Fig. 4: Associations between brain embeddings and dimensional psychopathology, both in cross-sectional and longitudinal data of the ABCD cohort

Supplementary Fig. 5: Distribution of puberty ratings in the ABCD sample stratified for sex, timepoints, and respondent

Supplementary Fig. 6: Distribution of psychopathology measures in the HBN sample as total counts and percentages stratified for sex

Supplementary Tables:

Supplementary Table 1: Association results for ABCD models
Supplementary Table 2: Association results for HBN models
Supplementary Table 3: Pubertal category conversion scheme
Supplementary Table 4: Frequencies of pubertal categories in the ABCD sample.
Supplementary Table 5: Frequencies of psychopathology measures in the HBN sample.

Supplementary Figures

volume

baseline: area

baseline: volume

follow-up: area

follow-up: volume

Supplementary Fig. 1: Correlation between raw brain features and first brain embedding. Correlation values indicate Pearson correlation coefficients. Visualization was performed with ggseg (version 1.6.5 ${ }^{1}$) in R (version 4.2.3). Since algebraic signs of the embeddings might be positive or negative (i.e., akin to an eigenvector), we multiplied negative correlations by (-1) to derive at comparable patterns across cohorts. Spin permutation testing with 5000 iterations indicated significant correlations between brain maps of the ABCD and HBN dataset (all $r>0.64$, all $p<0.0004$). Permutations were performed using the ENIGMA Toolbox (version 2.0.3, ${ }^{2}$).

predicted embedding
Supplementary Fig. 2: Associations between brain embeddings and puberty, both in cross-sectional and longitudinal data of the $A B C D$ cohort. First two columns in A) and B) refer to associations between predicted brain embeddings and the respective pubertal score (PDS mean) per timepoint. Δ refers to the association between the Δ brain embedding and the \triangle PDS mean score. Annotations refer to effect sizes from the linear models and highlighted cells with dashed lines indicate significant results. Linear models were performed in similar vein to the puberty models in the main manuscript but were expanded with Body Mass Index (BMI), Socioeconomic Status (SES), and race/ethnicity as covariates: we ran two cross-sectional models with age, SES, BMI, and race/ethnicity as covariates. Of note for SES there was only baseline data available. Additionally, we ran a longitudinal model in which the delta measures of the brain embedding, the change PDS score and the age and BMI difference between both timepoints were integrated. Moreover, baseline SES and race/ethnicity was added as covariate without a change score. $\mathrm{BMI}=($ height (lb) / height (in)) x 703. Height and weight measures were averaged across two measurements. BMI smaller than 10 or higher than 50 were excluded after manual inspection. Race/ethnicity (ABCD variable acspsw03) refers to 5 different levels: White, Black, Hispanic, Asian, other. Other includes individuals identifying as multiracial and/or belonging to a race/ethnicity with too few members in the sample. For SES variables (i.e., parental education and total family income), "refuse to answer" and "don't know" where encoded as "NaN". SES variables were transformed via rank-based inverse normal transformation and averaged resulting in a single SES status variable. Exact p-values and effect sizes can be found in Supplementary Table 1.

Supplementary Fig. 3: Distribution of Δ brain embedding in the ABCD sample stratified for sex and pubertal categories derived from caregivers` reports at 1 year follow-up. The figure shows the same pattern as Figure 3 (youth report), except that it was based on data from the caregivers` report. Vertical dashed lines indicate the mean Δ brain embedding per group. Note that for the caregiver report there were not enough males in the 'postpubertal' category to allow for density plotting.

caregiver report

predicted embedding

Supplementary Fig. 4: Associations between brain embeddings and dimensional psychopathology, both in cross-sectional and longitudinal data of the ABCD cohort. First two columns refer to associations between predicted embeddings and the respective psychopathology (CBCL Total) per timepoint. Δ refers to the association between the Δ embedding and the $\triangle C B C L$ score. Annotations refer to effect sizes from linear models and hashed cells indicate non-significant results. Linear models were performed in similar vein to the puberty analyses in the main manuscript: cross-sectional models were calculated with age and site as covariate and the longitudinal model was complemented with site and Δ age between both timepoints. Exact p-values and effect sizes can be found in Supplementary Table 1.

Supplementary Fig. 5: Distribution of puberty ratings in the ABCD sample stratified for sex, timepoints, and respondent (Panel A-D). Solid lines indicate caregiver and dashed line indicate youth reports. Higher correlation values between puberty ratings at follow-up indicate better alignment between reports from different sources. Panel E and F refer to changes in puberty scores (i.e., $\triangle P D S$) for males and females. All plots only show data from participants for which data from both timepoints was available. $r=$ Pearson correlation coefficient.

Supplementary Fig. 6: Distribution of psychopathology measures in the HBN sample as total counts and percentages stratified for sex. Diagnoses were grouped into six distinct categories following ${ }^{3}$. ADHD $=$ Attention Deficit Hyperactivity Disorder, ASD=Autism Spectrum Disorder, ND= Neurodevelopmental Disorder

Supplementary Tables

Supplementary Table 1: Association results for ABCD models.

	sex	IV	b	p	η^{2}
Puberty					
cross-sectional					
embedding ${ }_{\text {baseline }} \sim P D S+$ age + site					
caregiver	female	PDS	-0.342	6.88×10^{-16}	0.021
		age	0.001	0.623	7.00×10^{-5}
	male	PDS	-0.358	5.53×10^{-10}	0.011
		age	-0.007	0.010	0.002

		BMI	0.01	0.15	0.0004
		age	-0.007	0.09	0.002
	males	PDS	0.03	0.62	0.0001
		SES	0.17	1.47×10^{-6}	0.01
		BMI	0.009	0.22	0.0002
		age	-0.01	9.45×10^{-5}	0.007
embeddin	rs \sim PDS	+ site	+ SES	thnicity	
caregiver	females	PDS	-0.09	0.02	0.002
		SES	0.20	2.28×10^{-11}	0.02
		BMI	-0.002	0.73	0.002
		age	-0.008	0.01	0.006
	males	PDS	-0.006	0.89	1×10^{-5}
		SES	0.21	5.42×10^{-12}	0.01
		BMI	0.0009	0.84	0.0002
		age	-0.01	0.0005	0.004
youth	females	PDS	-0.07	0.059	0.001
		SES	0.18	1.08×10^{-8}	0.01
		BMI	-0.006	0.20	0.003
		age	-0.007	0.032	0.004
	males	PDS	0.001	0.98	0.0
		SES	0.20	2.28×10^{-11}	0.01
		BMI	0.001	0.77	0.0001
		age	-0.01	2.35×10^{-5}	0.005
Iongitudinal					
Δ embedding $\sim \Delta P D S+$ age + site $\triangle B M I+$ SES + race/ethnicity					
caregiver	females	\triangle PDS	-0.06	2.51×10^{-9}	0.014
		SES	0.01	0.21	0.0004
		$\Delta \mathrm{BMI}$	0.002	0.51	0.0
		Δ age	-0.02	1.31×10^{-7}	0.012
	males	$\Delta \mathrm{PDS}$	0.01	0.38	0.0002

		SES	-0.006	0.43	0.0002
		$\triangle \mathrm{BMI}$	-0.003	0.19	0.0005
		$\Delta \mathrm{age}$	-0.01	0.001	0.004
youth	females	\triangle PDS	-0.08	4.02×10^{-8}	0.03
		SES	0.005	0.72	0.0
		$\Delta \mathrm{BMI}$	-0.005	0.15	0.003
		$\Delta \mathrm{age}$	-0.01	0.02	0.008
	males	\triangle PDS	0.004	0.71	8×10^{-5}
		SES	0.006	0.52	0.0002
		$\triangle \mathrm{BMI}$	0.0003	0.90	0.0
		$\Delta \mathrm{age}$	-0.01	0.009	0.004
caregiver	females	\triangle PDS	-0.06	9.60×10^{-9}	0.013
		SES	0.005	0.56	4×10^{-5}
		$\Delta \mathrm{BMI}$	0.003	0.26	0.0001
		BMI	-0.01	1.70×10^{-7}	0.012
		$\Delta \mathrm{age}$	-0.02	4.75×10^{-8}	0.012
	males	\triangle PDS	0.01	0.21	0.0005
		SES	-0.009	0.23	0.0004
		$\Delta \mathrm{BMI}$	-0.002	0.23	0.0004
		BMI	-0.005	0.0003	0.0039
		$\Delta \mathrm{age}$	-0.01	0.001	0.0036
youth	females	\triangle PDS	-0.08	1.18×10^{-7}	0.026
		SES	-0.001	0.93	0.0002
		$\triangle \mathrm{BMI}$	-0.004	0.22	0.002
		BMI	-0.007	0.002	0.012
		$\Delta \mathrm{age}$	-0.01	0.02	0.008
	males	\triangle PDS	0.009	0.37	0.0004
		SES	0.002	0.85	2×10^{-5}
		$\triangle \mathrm{BMI}$	0.001	0.64	0.0001

		BMI	-0.007	1.67×10^{-5}	0.01
		-age	-0.01	0.008	0.004
Δ embedding $\sim \triangle P D S+P D S_{\text {baseline }}+$ dage + site $\triangle B M I+B M l_{\text {baseline }}+S E S+$ race/ethnicity					
caregiver	females	\triangle PDS	-0.08	1.49×10^{-15}	0.024
		PDS	-0.13	2.06×10^{-25}	0.030
		SES	-0.004	0.63	4×10^{-5}
		$\Delta \mathrm{BMI}$	0.006	0.008	0.0001
		BMI	-0.002	0.29	0.012
		-age	-0.02	1.61×10^{-7}	0.013
	males	\triangle PDS	0.01	0.24	0.0005
		PDS	-0.004	0.78	0.0001
		SES	-0.009	0.23	0.0004
		$\Delta \mathrm{BMI}$	-0.002	0.23	0.0004
		BMI	-0.004	0.0004	0.004
		$\Delta \mathrm{age}$	-0.01	0.0007	0.004
youth	females	\triangle PDS	-0.10	3.78×10^{-11}	0.04
		PDS	-0.09	$1.66 \times 10-6$	0.007
		SES	-0.006	0.65	0.0002
		$\Delta \mathrm{BMI}$	-0.003	0.49	0.0025
		BMI	-0.003	0.15	0.013
		Δ age	-0-01	0.04	0.0086
	males	\triangle PDS	0.01	0.24	0.0008
		PDS	0.01	0.41	3×10^{-5}
		SES	0.002	0.83	2×10^{-5}
		$\Delta \mathrm{BMI}$	0.001	0.63	0.0001
		BMI	-0.008	1.20×10^{-5}	0.01
		Δ age	-0.01	0.008	0.0038
psychopathology					
embedding ${ }_{\text {baseline }} \sim$ CBCL_Total + age + site					
caregiver	females	CBCL	-0.005	2.86×10^{-5}	0.005

		age	-0.004	0.10	0.0008
	males	CBCL	-0.007	8.42×10^{-8}	0.01
		age	-0.009	0.001	0.003
Embedding2years ~ CBCL_Total + age + site					
caregiver	females	CBCL	-0.004	0.002	0.004
		age	-0.001	0.002	0.003
	males	CBCL	-0.006	2.34×10^{-6}	0.006
		age	-0.009	0.002	0.003
caregiver	females	$\triangle \mathrm{CBCL}$	-0.002	0.50	0.0002
		Δ age	-0.17	1.73×10^{-9}	0.01
	males	$\triangle \mathrm{CBCL}$	-0.001	0.005	0.002
		$\Delta \mathrm{age}$	-0.01	0.0001	0.004

Note: All models included scan site as covariate of no interest, thus site is not included in the table above for clarity. Additionally race/ethnicity is also not included for clarity. Bonferroni-corrected $\alpha_{\text {puberty: }} 0.05 / 12=0.004$, $\alpha_{\text {psychopathology: }} 0.05 / 6=0.008$. IV $=$ independent variable, $\eta^{2}=$ partial eta squared, $C B C L=$ Child Behavior Check List. Δ refers to differences in the respective variable between baseline and 2-years follow up.

Supplementary Table 2: Association results for HBN models.

	sex	IV	\mathbf{l}		
psychopathology sum of diagnoses	\mathbf{p}	η^{2}			
embedding ~ sum of diagnoses + age + site					
	female	diagnosessum	.07	.007	.007
		age	-.02	.08	.004
	male	diagnosessum	.04	.05	.001
		age	-.051	1.04×10^{-8}	.022

embedding \sim sum of diagnoses + PDS + age + site				
female	diagnoses ${ }_{\text {sum }}$. 074	. 01	. 010
	PDS	. 166	. 07	3.00×10^{-5}
	age	-. 057	. 012	. 011
male	diagnoses ${ }_{\text {sum }}$. 037	. 101	. 002
	PDS	. 051	. 499	. 010
	age	-. 061	. 0008	. 010
embedding \sim sum of diagnoses + PDS + diag:PDS + age + site				
females	diagnoses ${ }_{\text {sum }}$. 10	. 19	. 010
	PDS	. 19	. 13	3.00×10^{-5}
	diag:PDS	-. 01	. 75	. 0005
	age	-. 056	. 014	. 010
male	diagnoses ${ }_{\text {sum }}$. 012	. 819	. 002
	PDS	. 012	. 912	. 010
	diag:PDS	. 013	. 598	. 0003
	age	-. 061	. 0008	. 010
psychopathology CBCL Total Score				
embedding \sim CBCL_Total + age + site				
female	CBCL	0.004	0.008	0.01
	age	-0.007	0.59	0.0005
male	CBCL	0.002	0.06	0.004
	age	-0.05	5.98×10^{-7}	0.02

	male	PDS	0.07	0.68	0.003
		age	0.20	0.07	0.01
embedding ~ PDS + age ${ }_{\text {follow-up-matched }}+$ site					
	female	PDS	-0.01	0.95	0.0018
		age	0.11	0.26	0.01
	male	PDS	-0.12	0.37	0.015
		age	-0.17	0.07	0.013

Note: All models included scan site as covariate of no interest, thus site is not included in the table above for clarity. Bonferroni-corrected $\alpha: 0.05 / 2=0.025$, IV $=$ independent variable, $\eta^{2}=$ partial eta squared. CBCL $=$ Child Behavior Checklist. Diag/CBCL:PDS refers to interaction term between diagnosissum / CBCL and PDS.

Supplementary Table 3: Pubertal category conversion scheme

sex	conversion scheme	pubertal category
female	premenarcheal + pubertal score $=2$	prepubertal
	premenarcheal + pubertal score $=3$	early pubertal
	premenarcheal + pubertal score $>=3$	mid pubertal
	postmenarcheal + pubertal score $<=7$	late pubertal
male	postmenarcheal + pubertal score $=8$	postpubertal
	pubertal score $=3$	prepubertal
	pubertal score $>=4$ and $<=5$	early pubertal
	pubertal score $>=6$ and $<=8$	mid pubertal
	pubertal score $>=9$ and $<=11$	late pubertal

	pubertal score $=12$	postpubertal

Note: Pubertal score refers to the Pubertal Category Score, which depicts the sum of three/two PDS items for male and female, respectively. Male: pubic + facial hair growth + voice deepening. Female: pubic hair growth + breast development. Conversion follows the ABCD variables 'pds_p_ss_female_category' and 'pds_p_ss_male_category'.

Supplementary Table 4: Frequencies of pubertal categories in the ABCD sample.

Pubertal Category	Caregiver Report		Youth Report	
baseline visit				
	male $(N=4045)$	female $(N=3487)$	male $(N=3761)$	female $(\mathrm{N}=2562)$
prepubertal	$\begin{aligned} & \mathrm{n}=\quad 2907 \\ & (71,9 \%) \end{aligned}$	$\begin{aligned} & \mathrm{n}=\quad 1129 \\ & (32,4 \%) \end{aligned}$	$\begin{array}{ll} \mathrm{n}= & 1134 \\ (30,2 \%) & \end{array}$	$\begin{aligned} & n=679 \\ & (26,5 \%) \end{aligned}$
early pubertal	$\begin{aligned} & \mathrm{n}=\quad 932 \\ & (23.0 \%) \end{aligned}$	$\begin{aligned} & \mathrm{n}=\quad 818 \\ & (23,5 \%) \end{aligned}$	$\begin{array}{ll} n= & 1783 \\ (47,4 \%) & \end{array}$	$\begin{array}{ll} \mathrm{n}= & 697 \\ (27,2 \%) \end{array}$
mid pubertal	$\begin{array}{ll} \mathrm{n}= & 184 \\ (4.5 \%) & \end{array}$	$\begin{aligned} & n= \\ & 1441(41,3 \%) \end{aligned}$	$\begin{array}{ll} \mathrm{n}= & 779 \\ (20,7 \%) & \end{array}$	$\begin{array}{ll} n= & 1097 \\ (42,8 \%) & \end{array}$
late pubertal	$\mathrm{n}=20$ (<1\%)	$n=86$ (2\%)	$\mathrm{n}=57$ (1,5\%)	$n=82$ (3\%)
postpubertal	$\mathrm{n}=2(<1 \%)$	$\mathrm{n}=4(<1 \%)$	$\mathrm{n}=8(<1 \%)$	$\mathrm{n}=7$ (<1\%)
2 years follow up visit				
	male $(\mathrm{N}=3970)$	female $(N=3378)$	male $(\mathrm{N}=4095)$	female $(N=3299)$

prepubertal	$\begin{aligned} & n=\quad 1448 \\ & (36,5 \%) \end{aligned}$	$\begin{array}{ll} n= & 147 \\ (4,4 \%) & \end{array}$	$\begin{array}{ll} \mathrm{n}= & 878 \\ (21,4 \%) & \end{array}$	$\mathrm{n}=162$ (4,9\%)
early pubertal	$\begin{aligned} & \mathrm{n}=\quad 1490 \\ & (37,5 \%) \end{aligned}$	$\begin{array}{\|ll} n= & 323 \\ (9,5 \%) & \end{array}$	$\begin{array}{ll} \mathrm{n}= & 1715 \\ (41,9 \%) & \end{array}$	$\begin{array}{ll} \mathrm{n}= & 360 \\ (10,9 \%) & \end{array}$
mid pubertal	$\begin{array}{ll} \mathrm{n}= & 834 \\ (21 \%) & \end{array}$	$\begin{aligned} & n=1601 \\ & (47,4 \%) \end{aligned}$	$\begin{array}{ll} n= & 1342 \\ (32,8 \%) & \end{array}$	$\begin{array}{ll} n= & 1563 \\ (47,4 \%) & \end{array}$
late pubertal	$\begin{array}{ll} \mathrm{n}= & 194 \\ (4,9 \%) & \end{array}$	$\begin{array}{ll} n= & 1249 \\ (37 \%) & \end{array}$	$\mathrm{n}=155$ (3,8\%)	$\begin{array}{ll} \mathrm{n}= & 1166 \\ (35,3 \%) & \end{array}$
postpubertal	$\mathrm{n}=4(<1 \%)$	$\mathrm{n}=58$ (1,7\%)	$\mathrm{n}=5$ (<1\%)	$\mathrm{n}=48$ (1,5\%)

Supplementary Table 5: Frequencies of psychopathology measures in the HBN sample.

	male (N=1487)	
Number of diagnoses		
1	$\mathrm{n}=384(25,8 \%)$	$\mathrm{n}=202(25,8 \%)$
2	$\mathrm{n}=420(28,2 \%)$	$\mathrm{n}=231(27,2 \%)$
3	$\mathrm{n}=300(20,2 \%)$	$\mathrm{n}=163(20,8 \%)$
4	$\mathrm{n}=175(11,8 \%)$	$\mathrm{n}=98(12,5 \%)$
5	$\mathrm{n}=107(7,2 \%)$	$\mathrm{n}=56(3,8 \%)$
6	$\mathrm{n}=31(2,1 \%)$	$\mathrm{n}=31(4,0 \%)$
7	$\mathrm{n}=3(<1 \%)$	$\mathrm{n}=16(2,0 \%)$
8	$\mathrm{n}=4(<1 \%)$	$\mathrm{n}=3(<1 \%)$
9	$2.71(1.62)$	-
10		-
mean (SD)	$\mathrm{n}=787(52,9 \%)$	$\mathrm{n}=305(38,9 \%)$
Primary Diagnosis		
ADHD		

ASD	$\mathrm{n}=144(9,7 \%)$	$\mathrm{n}=25(3,2 \%)$
Anxiety	$\mathrm{n}=190(12,8 \%)$	$\mathrm{n}=196(25,0 \%)$
Mood	$\mathrm{n}=48(3,2 \%)$	$\mathrm{n}=62(7,9 \%)$
Other Disorder	$\mathrm{n}=68(4,6 \%)$	$\mathrm{n}=33(4,2 \%)$
Other ND	$\mathrm{n}=250(16,8 \%)$	$\mathrm{n}=163(20,8 \%)$
CBCL Total	$\mathrm{n}=1269$	$\mathrm{n}=635$
mean (SD)	$43,93(25,99)$	$42,60(25,39)$

Note: ADHD= Attention Deficit Hyperactivity Disorder, ASD= Autism Spectrum Disorder, ND= Neurodevelopmental Disorder; SD = standard deviation.

Supplementary References

1. Mowinckel, A. M. \& Vidal-Piñeiro, D. Visualization of Brain Statistics With R Packages ggseg and ggseg3d. Adv. Methods Pract. Psychol. Sci. 3, 466-483 (2020).
2. Larivière, S. et al. The ENIGMA Toolbox: multiscale neural contextualization of multisite neuroimaging datasets. Nat. Methods 18, 698-700 (2021).
3. Voldsbekk, I. et al. Delineating disorder-general and disorder-specific dimensions of psychopathology from functional brain networks in a developmental clinical sample. http://medrxiv.org/lookup/doi/10.1101/2023.03.31.23288009
doi:10.1101/2023.03.31.23288009.
