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Abstract 

 

Genetics as a science has roots in studying phenotypes of relatives, but molecular approaches 

facilitate direct measurements of genomic variation within individuals. Agricultural and human biomedical 

research are both emphasizing genotype-based instruments, like polygenic scores, as the future of breeding 

programs or precision medicine and genetic epidemiology.  However, unlike in agriculture, there is an 

emerging consensus that family variables act near independent of genotypes in models of human disease.  

To advance our understanding of this phenomenon, we use 2,066,057 family records of 99,645 genotyped 

probands from the iPSYCH2015 case-cohort study to show that state-of-the-field genotype- and phenotype-

based genetic instruments explain essentially independent components of liability to psychiatric disorders.  

We support these empirical results with novel theoretical analysis and simulations to describe, in a human 

biomedical context, parameters affecting current and future performance of the two approaches, their 

expected interrelationships, relative sample size efficiencies, and the striking consistency of observed 

results with expectations under simple additive, polygenic liability models of disease.  We conclude, at least 

for psychiatric disorders, that phenotype- and genotype-based genetic instruments are likely to be very 

noisy measures of the same underlying additive genetic liability, should be seen, in the near future, as 

complementary, and integrated to a greater extent going forward. 
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Introduction 

 

In the first decades of genetics as a science, the only approach for estimating genetic contributions 

to traits was by assessing phenotypes of relatives1,2, but now molecular approaches provide direct 

measures of individual genomes cheaply, efficiently, and at scale.  In agricultural applications, e.g., 

estimating breeding values of dairy cattle
3,4

, “genotype-based genetic instruments” derived from molecular 

data are proving so effective that “phenotype-based genetic instruments” obtained from pedigree records 

are becoming redundant3,5,6. At the same time, human biomedical research is emphasizing genotype-based 

instruments, polygenic scores (PGS)7, in precision medicine8–10 and genetic epidemiology11. Psychiatric 

research, in particular, with few well-validated biomarkers, may have special interest in genetic 

instruments, but these and other human biomedical applications take place in a very different context.  

Human biomedical studies tend to focus on binary disease outcomes, that mya be rarer, with more 

complex genetic architectures, and in much larger, more diverse, uncontrolled (i.e. human) populations
6
.  

Here, any subsequent focus on PGS to the exclusion of phenotype-based instruments may be based more 

on convenience and enthusiasm than the principles and evidence of agricultural sciences5,6,12,13.  There is a 

need to advance our understanding of if, how, and why phenotype-based and genotype-based genetic 

instruments complement each other in human biomedical research, and we aim to do so by combining 

theoretical analysis, simulations, and applications of state-of-the-field genotype- and phenotype-based 

genetic instruments in a unique psychiatric genetics data resource.   

Somewhat counterintuitively, human biomedical studies combining PGS and indicators of positive 

family history (FH) find them complementary: they have low correlations and contribute near 

independently to classification and prediction.  As examples in psychiatry, PGS and parental history for 

depression14, autism15, and schizophrenia16are near-independent in epidemiological models. More recent 

studies make similar observations for multiple others diseases
17,18

. Similar trends are found by studies using 

phenotype-based genetic instruments that combine genealogical records from registers into continuous 

liability scores. Studies using family genetic risk scores (FGRS; shared environment adjusted, kinship 

weighted sums of diagnoses in proband genealogies, e.g., 
19–21

) have reported a number of associations 

replicating or that have been replicated by studies using PGS (e.g.,22–25). Model-based estimates of liability 

from family records, liability threshold on family history (LT-FH)17 and Pearson-Aitken family genetic risk 

scores (PA-FGRS)22, have low correlations with PGS and contribute near-independently to classification. 

There is an emerging consensus that family variables act independently of genotypes in models of human 

disease.  Many intuit this as evidence that family variables reflect effects of shared environment but it is 
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currently unclear if these reports can be consistent with evidence of large additive genetic components in 

complex trait etiology26,27. 

 Studies that thoroughly explore expectations around relationships between genotype- and 

phenotype-based genetic instruments come more from agricultural sciences, while those focusing on 

human biomedicine are sparser or limited.  Expectations and strategies for estimating breeding values of 

dairy cattle, for example, from pedigree records and genotypes are mature, well-studied, and well-

described5,12,13. The focus on quantitative traits, controlled breeding, small effective populations, long  

haplotypes, reduced genetic diversity, and extensive pedigree records of many, often genotyped, relatives 

and multiple offspring may limit how well trends transfer to human studies6. In humans and agriculture 

alike, PGS can, in theory, explain all heritable disease risk when constructed from all causative variants and 

errorless effect sizes.  In practice, limited sets of marker genotypes and estimated allelic effects impose 

constraints.  The error in empirical PGS reduces with increasing heritability, coverage of marker genotypes, 

and size of the GWAS used to estimate allelic effects
7,28–30

, the rate of gain, however, may be slow and 

require large investments of resources.  On the other hand, epidemiological models often incorporate 

simple surveys of family history or sophisticated summaries of genealogical records from registeries31,32 into 

risk models, and others have derived breeding value-like genetic instruments for human studies33,34.  Few 

human studies, however, describe the two approaches together or focus on relative strengths and 

weaknesses35. Less have addressed if, how, or why genotype- and phenotype- based estimates are 

complementary or expectations for their interrelationships under etiological models. 

 In this work we describe the relationships among phenotype-based genetic instruments (FH and PA-

FGRS), genotype-based genetic instruments (PGS), and liability for five major psychiatric disorders.  We use 

data from two independent cohorts of the iPSYCH2015 case-cohort study that include diagnostic 

information for 99,645 genotyped probands (62,357 psychiatric cases, 37,288 controls) and 2,066,657 

relatives.  To do so, we show specific approaches are needed to avoid an unreported, potential bias when 

estimating liability-scale variance explained by FH and PA-FGRS. We support our results with derivations of 

novel theoretical expectations for accuracies and interrelationships of FH, PA-FGRS, and PGS and simulation 

experiments. We use both to provide interpretive context for current and future research combining such 

instruments, with a specific focus on settings representative of human biomedical research.  We consider 

parameters that affect utility, expectations for redundancy, and measures to compare relative efficiency 

with respect to, e.g., sample size.  We then assess the fit of our results to expectations under a simple, 

additive polygenic liability model for genetic inheritance. We ultimately propose that the lack of 

redundancy between PA-FGRS (or FH) and PGS in human biomedical research is consistent with the 

hypothesis that both are simply very noisy measures of a highly similar underlying genetic liability. Different 
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from trends in agriculture applications, we suggest that such instruments should be emphasized as 

complementary, at least over the near-term, and should be better-integrated going forward. 

 

Results 

 

Common equations for variance explained on the liability scale produce biased estimates for phenotype-

based genetic instruments. 

 

The variance explained by a genetic instrument in a regression model is often transformed to the 

liability scale to remove its dependence on case-control sampling and enable direct comparisons to 

estimates of heritability36,37.  The most frequently applied transformations (i.e., Lee et al37) were derived 

assuming one-stage case-control sampling (i.e., complete ascertainment) and well-behaved (i.e., Gaussian, 

exogenous) genetic instruments like PGS, but have not been evaluated assuming the more typical two-

stage case-control sampling applied in molecular genetics studies (i.e., sampling unrelated cases; akin to 

observing relatives conditional on their relationship to an affected proband as traditionally done in twin 

register studies
38

) and less well-behaved (i.e., non-Gaussian, endogenous) genetic instruments (e.g., FH, PA-

FGRS).  In simulations (Supplementary Information S1) we observe common transformations from variance 

explained by a linear model on the observed scale to the liability scale are biased for FH and PA-FGRS, but 

not for PGS (Figures 1A-C).  This resulted in overestimating the variance explained by more than 400% in 

some scenarios and produced bias in all scenarios where the trait prevalence was less than 50% (Figures 

1A-C).  Directly estimating variance explained on the liability scale using a weighted probit regression as 

described by Lee et al37 (Online Methods) reduced this bias under population sampling (Figure 1D) and 

complete case-control sampling (Figure 1E), but introduced a downward bias of as much as 50% when 

unrelated case-control sampling was applied (Figure 1F).  A weighted probit regression with two-stage 

sampling weights (Online Methods, Supplementary Information S1) to account for this second selection, 

namely, removing all but one member of a relative cluster, produces the most reliable estimates of 

variance explained on the liability scale, regardless of scenario (Figure 1G-I).  Caution should be used when 

interpreting scale-transformed variance components if sampling is complex (i.e., multi-stage) and 

instruments are not well-behaved (e.g., FH, PA-FGRS, or other liability scores); in these scenarios a direct 

approach with appropriate sampling weights should be preferred.  

 

Genotype- and phenotype-based genetic instruments explain nearly independent components of liability to 

psychiatric disorders  

 



6 

6 

 We estimated the variance in liability to five psychiatric disorders explained by combinations of 

polygenic scores (PGS), indicators of positive family-history (FH), and Pearson-Aitken Family Genetic Risk 

Scores (PA-FGRS) using weighted probit regression accounting for two-stage sampling in data from the 

iPSYCH2015 case-cohort39 (Online Methods; Figure 2; Supplementary Table S1, S2). Pseudo-R2 from logistic 

models are shown in Supplementary Figure S2.  PGS, FH, and PA-FGRS variables each explain significant 

liability-scale variance for each disorder, a result that replicates across two independent samples (Figure 

2A,B, orange, yellow, green bars). For all disorders, PA-FGRS explain more liability variance than FH (mean 

increase 30%, range 11% to 46%; Supplementary Table S2). The variance explained by PGS and PA-FGRS (or 

FH) is nearly the sum of variance explained by PGS and PA-FGRS (or FH) independently (Figure 2A,B, blue 

and purple; Supplementary Table S2). Including FH did not typically increase the variance explained of 

models including PA-FGRS and PGS (4th vs. 6th bars in each set, Figure 2A,B, Supplementary Table S2; 

exception: MDD in iPSYCH 2012). However, including PA-FGRS in models that with PGS and FH did generally 

result in small but significant increases in variance explained (5
th

 vs. 6
th

 bars in each set, Figure 2A,B, 

Supplementary Table S2; exceptions: BPD, SCZ). Similarly, estimated of odds ratios (OR) for PA-FGRS (or 

PGS) were not strongly reduced when adjusting for PGS (or PA-FGRS) (Figure 2C,D, Supplementary Table 

S3). Estimates of ORs for FH adjusting for PA-FGRS were reduced to a larger extent than when PA-FGRS 

adjusting for FH (Supplementary Figure S3-4, Supplementary Table S3).  Taken together, this suggests PA-

FGRS is a better instrument for capturing familial genetics than FH. Finally, we observe low correlations 

between PGS and PA-FGRS in random population samples (Pearson correlation coefficient (r), 0.03 to 0.09; 

Figure 2E,F) that were consistently, yet modestly, larger than between PGS and FH (r, 0.02 to 0.07), and 

much lower than between PA-FGRS and FH (r, 0.72 to 0.82, Supplementary Figures S5 and S6). Genotype-

based and phenotype-based genetic instruments complement each other in predictive models of 

psychiatric disorders, which is both useful for constructing more powerful risk assessments, but also may 

be counterintuitive as both purport to estimate a similar construct of genetic liability.  

 

The current, future, and asymptotic performance of PA-FGRS depends on pedigree structure and trait 

architecture 

 

 We derive novel expectations for the accuracy of PA-FGRS (  , ̂
  �    

, the correlation between the 

instrument,  ̂  �    , and the true genetic value,  ), as well as for the performance of PA-FGRS ( 2 , ̂
  �    

, the variance in 

liability explained or the squared correlation between the instrument and the total true liability value,  ) 

under a simple polygenic liability threshold model (Online Methods; Supplementary Information S2-6). We 

use these equations to describe how PA-FGRS relates to true liability, considering four hypothetical traits 
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(Figure 3A-F; Supplementary Figures S7-S15). First, PA-FGRS that do not incorporate phenotypes of the 

proband or offspring of the proband do not capture Mendelian segregation variance (i.e., between sibling 

genetic variance) as the input pedigree is identical for all unobserved full siblings without children
6
.  In this 

scenario, the maximum theoretical accuracy and performance of PA-FGRS (Figures 3A-B, dashed lines) is 

bounded by the between family genetic variance (i.e., half of the total genetic variance), and equal to that 

of the true mid-parental genetic value (gMPV;   , 
   

� √0.5,  2 , 
   

� 0.5  
2)6.  Full accuracy (  , ̂

  �    

� 1) and performance 

( 2 , ̂
  �    

�   
2) can be achieved, in theory, when a proband has multiple offspring from different mates (i.e., half-

sibling offspring or offspring that are half-siblings to each other; Figures 3C-D, dashed lines). Using simple, 

single-relative-class pedigrees we see that incorporating additional phenotypes of full siblings (Figure 3A,B) 

is less useful than phenotypes of such half-sibling offspring (Figure 3C,D). For plausible human pedigrees 

(<10) the accuracy and performance of PA-FGRS are well below theoretical maxima (Figure 3A-D, 

Supplementary Figures S7-S12).  Second, the expected accuracy and performance of PA-FGRS that use 

complex, extended pedigrees asymptote practically with four generations of records (i.e., with great-

grandparents and their descendants; Figure 3E-H). To compare the information in complex, arbitrarily sets 

of relatives, we define the number of full sibling equivalents (Nsibe; Online Methods; Figure 3I,J). For a 

simulated trait with a heritability of 0.7 and prevalence of 0.01, an Nsibe of 5 is achieved by ~1 monozygotic 

twin, ~4 half-sibling offspring, or approximately one entire great-grandparent founded pedigree with two 

children per generation (for other simulated trait architectures see, Supplementary Figures S16). While 

pedigree records are always more informative for common traits (e.g., Figure 3A-H, purple vs. orange lines), 

the trends in the Nsibe across traits (Supplementary Figures S16) show distant relatives (e.g., half-siblings or 

cousins, green or blue lines, respectively, Figure 3IJ) are relatively more predictive for rarer traits (i.e., 

correspond to higher Nsibe), while closer relatives (i.e., half-sibling offspring, yellow solid lines, Figure 3IJ) 

are relatively more important for common traits.  Simulations with shared (or “familial”) environmental 

contributions from siblings and parents show that PA-FGRS will incorporate confounded genetic and 

familial variance into predictions, slightly overperforming the level expected by genetics alone 

(Supplementary Figures S17-S20).  PA-FGRS will perform best for highly heritable, common traits and with 

many close relatives, but even in optimistic scenarios for human pedigrees (Nsibe=5) it can only explain a 

modest proportion of heritability. 

 

PA-FGRS is expected to outperform PGS when GWAS samples are small 

 

 Next, we compared the expected performance of PGS trained using GWAS of various sizes to PA-

FGRS with Nsibe = 1, 3, or 5 (Online Methods; Supplementary Information S7-8; Figure 4). PGS can, in theory, 
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achieve full accuracy (i.e.,   ,   =1) and performance (i.e.,  
2

 ,   �   
2) if incorporating all causative variants and 

errorless effect sizes, but training GWAS impose limits in practice. We estimate (Online Methods) that a 

PGS tagging a human common variant genome (i.e., capturing m=60,000 independent genetic factors6,29) 

accounting for half of the narrow sense heritability (i.e.,  
2

 ,   � 0.5  
2) is expected to perform as well as PA-

FGRS with Nsibe=1 if a population training GWAS has roughly N=65,000 (range of sample size estimates 

across simulated traits: 61,546 to 71,356; Figure 4A-D, Supplementary Table S4). The same PGS is expected 

to perform as well as PA-FGRS with Nsibe=3 and Nsibe=5, with population training GWAS of N=190,000 (range: 

176,047 to 214,070) and N=300,000 (range: 280,368 to 356,784), respectively (Figure 4A-D, Supplementary 

Table S4). Trait architecture (  
2 and prevalence) have smaller impacts on these relationships than features of 

the PGS instrument (e.g., m, the number of independent genetic factors covered, h
2

l,SNP/h
2
, the proportion 

of heritability captured by the markers, and p, an effective polygenicity parameter; Supplementary Figures 

S21-S23; Supplementary Table S4). For rarer traits, case-control sampling (c.c.; here, a maximally powered 

study of 50% cases and 50% controls) can increase performance of PGS substantially relative to PA-FGRS 

(e.g., Figure 4A). For more common traits, the difference between the PGS and PA-FGRS is less, even under 

case-control sampling (e.g., Figure 4D). Simulations including shared environmental contributions from 

siblings and parents suggest PGS do not incorporate simple models of confounded genetic and familial 

variance (Supplementary Figures S17-S20).  Minimal (Nsibe=1), realistic (Nsibe=3), and optimistic (Nsibe=5) PA-

FGRS can outperform within population PGS when training GWAS have modest sample sizes, with the 

relative performance of PA-FGRS being larger for more common traits. 

 

PA-FGRS is expected to complement PGS for at least the near future 

 

 Increasing performance of one instrument does not necessarily make other instruments redundant, 

as observed in Figure 1, even if they measure the same construct.  Under a simple polygenic liability model 

(Online Methods), PGS and PA-FGRS can be viewed as estimators of the same latent true genetic value, G, 

and the expected correlation, as well as joint and conditional performances, are simple functions of their 

accuracies (Figure 5, Supplementary Figure S24, Supplementary Information S9).  When the individual 

accuracies of PGS and PA-FGRS are modest, the correlation between the instruments is expected to be 

modest, even under models assuming no shared environment (Figure 5A-D). Because PA-FGRS has low 

accuracy in all considered scenarios, it will always show modest correlations with PGS (Supplementary 

Figures S25-S27). Modest correlations between PGS and PA-FGRS imply that, even as PGS training GWAS 

sample sizes grow, PA-FGRS should remain complementary to PGS (Figures 5E-H). This trend is stronger 

when trait prevalence is higher (e.g., Figure 5E vs Figure 5F) and when the PGS is limited due to, e.g., small 
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training GWAS or large contributions from non-tagged variants (i.e., when h2
SNP/h2 is low or m is high, Figure 

5, Supplementary Figures S28-30).  Simulating shared environmental contributions from siblings and 

parents demonstrates that confounded familial and genetic variance in PA-FGRS reduces its empirical 

correlation with PGS relative to expectations given its performance (Supplementary Figures S17-S20). Taken 

together, low accuracies of PGS and PA-FGRS suggest currently observed low to modest correlations 

between genotype- and phenotype-based genetic instruments are expected, even under an optimistically 

simple polygenic liability threshold model.  This trend should persist even as GWAS sample sizes grow.  

 

Expected and observed performance of genetic instruments are in alignment.   

 

 Finally, we compared the empirical performance of our instruments (Figure 1) to expectations 

under a simple polygenic liability model, given our input data (Online Methods; Figure 6; Supplementary 

Tables S5,S6). The iPSYCH proband pedigrees have roughly Nsibe = 1.63, 1.4, 1.61, 1.3, 1.76, for predicting 

ADHD, ASD, BPD, MDD, and SCZ, respectively (Online Methods; Supplementary Table S1). The modest 

empirical performances of PA-FGRS in our data (Figure 2AB) are broadly consistent with theoretical 

expectations, with the exception SCZ (Figure 6A; Supplementary Figure S31). Similarly, the empirical 

performances of PGS  in our data (Figure 2AB) are also broadly consistent with expectations, with the 

exception of ADHD (Figure 6B, Online Methods, Supplementary Table S5). The modest empirical 

correlations between PGS and FGRS (Figure 2EF) are larger than expected under our simplified generative 

model (Figure 6C). Our PA-FGRS (Observed Nsibe, 1.3 to 1.8, Supplementary Table S1) perform empirically as 

well in we estimate a PGS trained on population samples of 190,000 to 1,140,000 individuals from the same 

target population (Figure 6D, Supplementary Table S6). Our PGS (Observed NPop. GWAS, 100,000 to 2,100,000, 

Supplementary Table S1) perform empirically as well as we expect PA-FGRS constructed from pedigrees 

with Nsibe from 0.3 to 4.7 (Figure 6E, Supplementary Table S6).  In contrast with the expectations above, PGS 

requiring much larger than 65,000 sample training GWAS to achieve the performance of PA-FGRS with 

Nsibe=1 due to empirical h2
SNP/h2  trending much less than 0.5 and genetic correlations between training and 

target populations trending less than 1 (Supplementary Table S5). These results do not suggest large 

confounding by shared environment, as that would predict higher than expected performance of PA-FGRS 

and lower than expected correlation between PA-FGRS and PGS (Supplementary Figures S17-20). As such, 

low empirical correlations can be consistent with simple polygenic liability models of inheritance and PA-

FGS with only a few relatives can be as useful for predicting disease in practice as PGS constructed using 

extremely large GWAS, in practice. 
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Discussion  

 

For nearly a century, genetics relied almost exclusively on phenotypic records in related individuals 

to predict and describe the etiology of traits, but now there is a focus on direct assessment of molecular 

genotypes. Despite the successes of molecular genetics, our work suggests we should not discard as old 

fashioned, the potential for familial phenotypic records in modern genetic medicine and genetic 

epidemiology. Even as molecular focused GWAS grow to sample sizes in the millions, we expect that 

phenotype-based genetic instruments will be important, powerful, and useful tools.  They can complement 

PGS and other genotype-based instruments in prediction, classification, and description of disease etiology.  

Also, we emphasize that the lack of redundancy observed between PA-FGRS (or FH) and PGS here, and in 

similar studies, is not strong evidence for the presence of shared environmental effects.  In fact, our results 

fit very closely to expectations where PA-FGRS, FH, and PGS are simply highly noisy estimators of a highly 

similar underlying genetic liability.  We also stress that, in scenarios where financial resources, trait 

(genetic) architecture, or obtainable population sizes (e.g., isolated or marginalized populations with fewer 

than a million members) are limiting, opting to collect detailed familial records could, in fact, remain a more 

efficient approach for building best-in-practice genetic instruments. Continuing to develop methods, 

models, and data resources that allow us integration of phenotype- and genotype-based genetic 

instruments will remain relevant moving forward. 

Our study highlights that, at the present moment, we can obtain comparably accurate and 

performant estimates of genetic liability based on phenotypes of relatives and direct genomic variation for 

state-of-the-field PGS, albeit with some variability. For prototypical successes of psychiatric GWAS, bipolar 

disorder40 and schizophrenia41, which are rarer, highly heritable disorders with massive investments in 

powerful case-control GWAS (i.e., sample sizes equivalent to population sampling of over 1,500,000 

participants), we saw PGS outperform PA-FGRS in our data by ~70% on average. In absolute terms, 

however, this was less than 1% of variance in liability. This 1% of variance in liability (in our iPSYCH data) 

could be accounted for on sample size scales, by 1,000,000 individuals in a population GWAS, or, 

alternatively, one full sibling worth of phenotype records in a PA-FGRS. For ADHD, on the other hand, a 

moderately large but homogeneously ascertained GWAS was performed in the same population as the 

evaluation (i.e., restricted genetic ancestry population served by the Danish national healthcare system and 

ascertained via a single national register based research program) the implied sample size differences were 

less dramatic.  We similarly observed differences of 1% variance explained for ADHD instruments, but here 

this difference in sample size scales corresponds to ~100,000 individuals in GWAS or ~0.5 full sibling 

equivalents in PA-FGRS. As we demonstrate, many features of the trait architecture (the heritability, 
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population prevalence) and trait genetic architecture (proportion of the genome contributing risk) interact 

with aspects of the instruments (amount of pedigree information, size of training GWAS, number of 

included markers, proportion of trait heritability accounted for by the markers) in non-linear, and complex 

ways to determine the performance of both instruments. Here, for SCZ and ADHD in particular, PGS 

performance may be especially affected by test-training cohort heterogeneity. SCZ is a disorder where the 

large training GWAS was least representative of our iPSYCH test cohort (test-training genetic correlation of 

~0.45), whereas the GWAS for ADHD was performed within-population, eliminating this challenge (test-

training genetic correlation of ~1). Cross cohort differences in, at least, genetic ancestry42, ascertainment 

schema43, and phenotype quality44 are known to reduce genetic correlation among potential test-training 

pairs, and for PGS performance to improve efficiently as sample sizes grow, these challenges will need 

careful attention, whereas the within family nature of PA-FGRS mitigates some of this loss of efficiency. 

PA-FGRS and other similarly developed phenotype-based instruments are less sensitive to some 

known PGS pitfalls, as others have shown
17

, creating advantages with some open challenges. Incorporation 

of multi-generational pedigree information has unique challenges with room for methodological 

developments. For example, there are implicit ascertainment biases of individuals enrolled into any birth 

cohort - namely they were born and from two specific mates. It is known that issues of differential 

fertility
45,46

, survivorship to and following reproduction
47

, and mate choice
48,49

 complicate the estimation 

and interpretation of parameters core to our model, such as heritability. While the Danish civil registration 

system50 allows high quality follow-up on the Danish population, its initiation in 1968 means large portions 

of grand-parents of our probands were only followed for the end of their lives. Many great grand-parents 

are not observed at all, meaning we cannot identify relationships among grandparents to join their 

descendant lineages (i.e., more distant cousins can not be recovered). PA-FGRS is built on a mixture model 

to account for this early life censoring that performs well in simulations and practice, but could be further 

optimized. As we showed, constructing accurate genetic instruments from pedigree information is difficult 

when pedigrees are small, censored, and disorders are rare - we just do not observe enough affected 

relatives.  Methods that successfully augment the imputation of liability from other traits and measures51,52 

could be valuable.  In addition to methodological advances, obtaining detailed records for pedigrees for at 

least three generations, especially in isolated, marginalized, or small populations, could be powerful. 

The near independence of our genotype- and phenotype-based genetic instruments is consistent 

with observations made in prior studies22. We show that at current sample sizes, even when both 

instruments estimate the same, simple additive genetic liability, low correlations and nearly independent 

contributions to classification are expected. This is important because, e.g., little difference between 

marginal and mutually adjusted odds ratios, nearly independent contributions to classification, etc., can not 
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be taken as evidence that these instruments represent different underlying constructs.  This is supported 

by the general consistency of empirical results with expectations, and where inconsistencies were 

observed, they were different than what would be expected under confounding of shared environment. 

Still, our results should not be taken as claims that shared environmental effects are identically 0. Rather, 

we suggest that a simpler or first-order explanation is that these are two very, very noisy instruments that 

probe a highly similar underlying construct of additive genetic liability. For phenotypes such as educational 

attainment, where larger and especially complex familial effects exist53,54, more complicated inferences 

may be required. In previous work, we have proposed corrections for scenarios with large contributions 

from shared environment, namely, constructing PA-FGRS after removing close (e.g., first degree) relatives22 

or applying a post-hoc shrinkage to resulting FGRS to correct for variance inflation
21,22,55

. Future work could 

estimate PA-FGRS summing more complicated covariances for pedigree liability values to explicitly model 

shared environment, indirect genetic effects, or misspecified population assumptions due to, e.g., 

assortative mating.     

We also highlight two important challenges with current applications of genotype- and phenotype-

based genetic instruments. Firstly, the most commonly used scale-transformation, fitting a linear model to 

binary outcomes and transforming the observed scale variance explained to a liability scale37, was highly 

biased for phenotype-based instruments in simulations (both for family history indicators and PA-FGRS) and 

would have resulted in qualitatively different empirical results. Caution should be used when interpreting 

scale-transformed variance components if sampling is complex (i.e., multi-stage) and instruments are not 

well-behaved (e.g., FH, PA-FGRS, or other liability scores).  In these scenarios a direct approach, such as 

weighted probit models proposed by Lee et al37, with appropriate multi-stage sampling weights should be 

preferred.  Second, the expectation that PGS and PA-FGRS (or FH) have low correlations arising from poor 

marginal accuracies (i.e., are highly noisy measures of their underlying constructs) implies that adjusting, 

e.g., PGS for FH or vice versa, does not provide meaningful control for the contribution of additive genetics. 

Substantial residual genetic confounding should be expected after such adjustments. Models that consider 

or make adjustments for the expected amount of noise in an instrument56, a quantity that could be 

estimated with reasonable accuracy given our results, could be considered.  

Our study should be viewed in light of some important limitations.  First, even though our familial 

records are incomplete, we may still be optimistic in terms of how powerful our phenotype-based-

instruments could be in the clinic. Our prediction experiments leverage all familial information available at 

the end of follow-up, but that may be different than what is available at first hospital contact (i.e., an older 

sibling will not have access to a future onset of disease in a younger sibling; childrens’ diagnoses may not 

be observed for parental onset). In iPSYCH, which is relatively young, this may be less of an issue than for 
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an older cohort such as the UKBiobank. Predictive studies should carefully attend to such “conditioning on 

the future” to better mimic timing of real clinical assessments or risk-screening. Second, the phenotype 

information available through national registers may be qualitatively different or limited relative to a 

clinical setting where different instruments are administered to patients directly. Third, even though we 

have large genealogical records in iPSYCH, heterogeneity in diagnosis quality over time or across regions 

and missing relatives could limit the informativeness of the familial diagnoses. Fourth, and related, PA-FGRS 

is derived under a simple, additive liability model, which has been the predominant model for dichotomous 

traits in genetics for nearly a century, but future work could extend both sensitivity analysis of current 

instruments or the instruments themselves to better incorporate secondary components of , e.g., non-

additive or shared environmental variance.   

Genetics as a field is rooted in resemblance among relatives and even as molecular techniques 

provide increasingly deep and specific access to variability across the genomes of millions of individuals, 

incorporating these foundational sources of data is expected to play a continued, critical role in describing 

genetic liability for complex traits and disorders. 
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Online Methods 

 

iPSYCH2015 Case-Cohort Study 

 

The Lundbeck Foundation initiative for Integrative Psychiatric Research (iPSYCH)1,2 samples 

singleton births between 1981 and 2008, alive on their first birthday, with mothers residing in Denmark 

(N=1,657,449). The iPSYCH 2012 case-cohort includes 86,189 individuals (30,000 random population 

controls; 57,377 psychiatric cases)1, while the the iPSYCH 2015i case-cohort includes an independent 

56,233 individuals (19,982 random population controls; 36,741 psychiatric cases)1,2.  Taken together, these 

two components make up the iPSYCH 2015 case-cohort study.  DNA was taken from dried blood spots 

housed at the Danish Neonatal Screening Biobank3. The Infinium PsychChip v1.0 array (2012) or the Global 

Screening Array v2 (2015i) were used for genotyping. Register based diagnoses are made by licensed 

practitioners during in- or out- patient specialty care (diagnoses or treatments assigned in primary care are 

not included) and are obtained from the Danish Psychiatric Central Research Register (PCRR)4 and the 

Danish National Patient Register (DNPR)5.  Unique identifiers of the Danish Civil Registration System6 

enables linkage across population registers, to parental identifiers, and to the neonatal blood spots.  The 

use of this data follows standards of the Danish Scientific Ethics Committee, the Danish Health Data 

Authority, the Danish Data Protection Agency, and the Danish Neonatal Screening Biobank Steering 

Committee. Data access was via secure portals in accordance with Danish data protection guidelines set by 

the Danish Data Protection Agency, the Danish Health Data Authority, and Statistics Denmark. 

 Imputation and quality control of genotypes followed custom, mirrored protocols 7.  BEAGLEv5.18,9 

was used to phase and impute the data in conjunction with reference haplotypes from the Haplotype 

Reference Consortium v1.1 (HRC)10.  SNPs were checked for missing data across SNPs and individuals, 

deviations from Hardy-Weinberg equilibrium in controls, abnormal heterozygosity,  minor allele frequency 

(MAF), batch artifacts, and imputation quality.  7,649,999 imputed allele dosages were retained for 

analysis. Samples were checked for genotype-phenotype sex discordance and abnormal heterozygosity.  

KING
11

 was used to estimate kinship and ensure no second degree or higher relatives remained within 

either cohort or across cohorts.  The smartpca module of EIGENSOFT12 was used to estimate PCs and a 

classifier was used to remove individuals distant from those with parents and four grandparents born in 

Denmark.  For this study, in particular, we defined the following disorders according to ICD-10 codes 

associated with at least one registered treatment: major depressive disorder (MDD; F32-3),  bipolar 

disorder (BPD; F31), schizophrenia (SCZ; F20), autism spectrum disorders (ASD; F84, F84.1, F84.5, or F84.9), 

and attention deficit hyperactivity disorder (ADHD; F90.0).  In total, we retain, in iPSYCH 2012 24,266 
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random probands, 14,970 ADHD probands, 12,101 ASD probands, 1581 BPD probands, 18238 MDD 

probands, 2624 SCZ probands, and in iPSYCH 2015i 15,381 random probands, 7499 ADHD probands, 5600 

ASD probands, 1141 BPD probands, 8668 MDD probands, 2721 SCZ probands.  

 

iPSYCH 2015 case-cohort genealogies 

 

Details of the iPSYCH 2015 case-cohort genealogy are described elsewhere 13 and were constructed 

following previous work 14.  Briefly, 2,066,657 unique relatives were obtained using mother-father-offspring 

linkages for the 141,26515 (before QC) genotyped probands.  A population graph was constructed using 

kinship2
16

 and FamAgg
15

 packages for R with edges defined by recorded trios.   Relatedness coefficients are 

estimated by summing unique paths between two individuals, weighted by (0.5)^(number of edges in the 

path)17.  Same-sex twins were given kinship of 0.375 and maternal siblings with missing paternal records 

were given kinship of 0.25 according to prior analysis 
13

. 

Diagnoses made between 1968 and 1994 are limited to in-patient contacts and ICD-8 codes and 

were assigned to disorder labels to match ICD-10 groups as follows: major depressive disorder (MDD; 

296.09, 296.29, 298.09, or 300.49,  but not 296.19, 296.39, or 298.19),  bipolar disorder (BPD; 296.19, 

296.39, or 298.19), schizophrenia (SCZ; 295.x9, excluding 295.79), autism spectrum disorders (ASD; 299.01-

299.04), and attention deficit hyperactivity disorder (ADHD; 308.01)1.  FH variables were defined as having 

at least one affected parent, half sibling, or full sibling.  

Narrow sense heritability (h
2
) for each psychiatric disorder was estimated using relatives in the 

genealogies of the random population sample.  To account for cohort effects, we selected 250,057 sibling 

pairs in these genealogies such that both siblings were born in the same decade (either, 1960-1970, 1970-

1980, 1980-1990, 1990-2000, 2000-2010).  We then estimated the sib-pair tetrachoric correlation for each 

disorder within each decade, combining the estimates in an inverse variance weighted meta-analysis.  The 

meta-analyzed tetrachoric correlation and it’s standard deviation were divided by the sibling kinship (0.5) 

to give an estimate of h2 and compute 95% confidence intervals. 

 

A simple, additive polygenic liability threshold model 

 

 Our approach is based on a simple additive polygenic liability threshold model, which is tractable, 

useful, and commonly employed.  Briefly, We assume that for a fully observed individual   their binary 

disease status,   ,  is the result of a latent, normally distributed liability,   .     is expressed when    is above a 

critical threshold,  , that is the upper tail standard normal quantile corresponding to the lifetime prevalence 
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of the disease, Kpop.

 

 

 

 

 

The liability  is the sum of a genetic value, , and an environmental deviation, , and we assume no G-E

interactions and no contributions from familial environment.  is an additive function of genetic factors, ,

with true allelic average effects, , and explains h
2
 proportion of population variance in L.  The genetic

value may itself have two components, a GWAS related SNP component, , explaining h
2
SNP proportion of

variance in liability, and genetic residual, explaining h
2
 - h

2
SNP that may represent incomplete linkage or non-

GWAS SNP genetic factors. 

 

Computing Pearson-Aitken Family Genetic Risk Scores (PA-FGRS) 

 

PA-FGRS estimates the genetic component of latent disease liability under assumptions of a

modified polygenic liability threshold model that relaxes the assumption above that individuals are fully

observed by defining   

 

 

 

where  is the cumulative incidence of the disease in the age window during which individual i was

observed. The key difference from above, is that, here, the probability of a true disease status  being

observed (i.e., that  = 1) is related to the proportion of the lifetime incidence for which an individual

was observed.  As a result, we model the expected liabilities of cases and controls as mixtures of truncated

normals such that observed controls are treated as a probabilistic mixture of a true case and a true control. 

PA-FGRS estimates the genetic component of latent disease liability under this model for a

proband, p,  from the observed disease statues of their  relatives, , a modified relatedness matrix, ,

describing the relationship between trait liability in relatives and genetic liability of the proband, and
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known parameters, , such as the age of each relative at the end of follow up, and the age-specific

incidence of the trait. 

 

 

 

 

  

where is the relatedness coefficient between the proband and their i-th relative.  Briefly, we estimate 

according to the Pearson-Aitken (PA) selection formula to provide a direct, efficient, and highly accurate

solution for an estimator that otherwise requires expensive resampling or numerical integration techniques

13
.   

Our PA approach proceeds as follows.  First, the vector of mean expected liabilities for all relatives,

, and the expected covariance among liabilities of relatives, , are initialized to expectations in the

population assuming no observations have been made: and .  Then,  and  are updated

iteratively, conditioning on each relative  in sequence.  At each step, the current expected liability

of the selected relative, , is updated to a conditional expectation, , based on the current estimate, the

observed disease status of the relative, and other known parameters. 

 

 

   

with , the PDF of the standard normal distribution, , the CDF of the standard normal distribution,

, and  if  or  1 if . All remaining (i.e., unselected) liabilities are

then updated conditional on the updated liability of the selected relative.  

 

 

 

This can be thought of as propagating a non-linear (i.e., liability threshold model appropriate) weighting of

the observed disease status of the selected relative into the expected liabilities of their genetic relatives,

including the proband. 
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Similarly, the liability covariance, �, is updated at each step by first updating the variance of the 

mean expected liability for the selected relative, and then the rest of the covariance conditional on this 

updated variance for the selected relative. 
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The procedure is repeated until only the proband remains unselected (i.e., proband liability has been 

conditioned on all relatives). For further details see Krebs et al 13 and Supplementary Information.  We 

computed these PA-FGRS for individuals from the iPSYCH 2012 and iPSYCH 2015i cohorts separately 

(Supplementary Table S1) using trait parameters described in Supplementary Table S5.
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Computing polygenic scores (PGS) 

 

 PGS approximate the genetic value under the polygenic liability threshold model by 

substituting a set of observed SNP marker genotypes ( ̂) for an individual, i, for the unknown 

generative genetic factors (X), and using transformations of per allele effect estimates from a 

training GWAS (��) as a surrogate for true allelic effects (�). 

 

 ̂ ,   � ∑ 
 �1  ̂  ̂     

 

We computed PGS combining imputed dosages with ��  estimated using SBayesR to update 

results provided by large GWAS.  For SBayesR we followed the developer recommendations 

using provided UKBiobank LD matrix estimated for 2.8 million SNPs and with parameters: 

gamma=0.0,0.01,01,1, pi=0.95,0.02,0.02,0.01, burn-in=5000, chain-length=25000, exclude-

mhc, impute-n. For BPD 18, MDD 19, and SCZ 20 we use large published GWAS that are 

independent of iPSYCH. For ADHD and ASD we use the results of mixed effects model GWAS 21 

from the complementary iPSYCH cohort (e.g., beta from GWAS in iPSYCH 2015i for PGS in 

iPSYCH 2012). 

 

Statistical model fitting to iPSYCH data 

 

Variance in liability explained by combinations of genetic instruments was estimated 

with weighted multivariate generalized linear models incorporating a probit link function.  A 

baseline model included age, gender, and the first ten principal components of an estimated 

genetic relatedness matrix with subsequent models including combinations of PGS, FH, and 

PA-FGRS.   The liability scale variance for each model was estimated according to Lee et al 22  

as, 
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�
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where ��	
�������  is a vector of coefficients from the inverse probability weighted probit 

regression of the disease status on the matrix of covariates �. For the weighting, two-stage 

sampling weights were computed as the product of the case-control sampling weights suggest 

by Lee et al 22 (unit weights in controls and 
���������

���������
 in cases) and a second, study specific, 
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probability weight to reflect selection out of the sample due to relatedness pruning 

(Supplementary Note S1). ��, a random subset of � such that � �� �
��.   

Reported liability variance explained is after subtracting that of a baseline covariates 

only model.  Empirical p-values were used to test for significance of changes in liability 

variance explained of nested models as the proportion of times out of 100,000 that the 

empirical change associated with adding a variable to a model was larger than adding a 

randomly permutation of the variable.  Significance adjusted to p < 0.05/110 model contrasts = 

4.55 x 10-4.  Unadjusted and adjusted odds ratios (OR) were estimated using multivariate 

generalized linear models with a logit link function.   Pearson’s correlations among genetic 

instruments were estimated in the random subcohort of each iPSYCH cohort and not adjusted 

for covariates. 

 

Estimating the expected Accuracy of Pearson-Aitken Family Genetic Risk Scores (PA-FGRS) 

 

Exact Solution. The expected accuracy of our PA-FGRS estimator was derived fully in the 

Supplementary Information and is defined as the product of the inverse of the heritability and 

the variance of the unbiased estimator   ̂  �    , 

 

    � ,  ̂  �    � � ��  
2��1 � 

 �1
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where D is     -variate thresholded gaussian, and the conditional expectation of G is the PA 

estimator above.  Where � 1 ,  2, . . . ,   � is  the set of  � � 
   
�2possible configurations of disease in the 

selected pedigree.  For pedigrees with relatively few numbers of relatives we can solve this by 

a explicit calculation of the      -variate integral over the   configurations (see code availability for 

our function fgrs_accuracy( …, method=”pa” ,estimate= “theory”) ), but for larger pedigrees it 

is intractable.  This full solution is used for the FGRS expectation results presented in Figures 2-

4. 

 

Linearly Approximated Solution. Alternatively, one may use more tractable expectations of 

accuracy from a linear estimator (i.e., expected breeding value) in place of the full liability scale 

estimator PA-FGRS, similarly defined as the product of the inverse of the heritability and the 

variance of  ̂      ,   
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with   being a 1 x nrel vector describing the expected covariance between the proband genetic 

liability and the true disease status of the i-th relative such that    �    �  ,   � �   
2     � � .  P is an nrel x nrel 

matrix describing the expected covariance in disease status among the relatives, which can be 

approximated such that    , � �    �  ,   �   � �2   2   �1 �   
2

    
2

2
 and    , � �    �  � �     �1 �     �, following Golan et al 

23. Here,     is the relatedness coefficient between the proband, p, and their i-th relative,     is 

relatedness coefficient between the i-th and j-th relatives, and   is the liability threshold value, 

 �  
�1�1 �     �.  We show these approximation to be a good approximation of the full solution in 

smaller pedigrees (Supplementary Figures S11 and S12) and use these formulas to compute 

the expected accuracy of PA-FGRS for iPSYCH pedigrees as presented in Figure 6.   When 

individuals are not fully observed, we use  ̃ �    �  ,   � �   

    

  
2     � � and  ̃ where and  ̃  , � �   �1 �   � and 

 ̃  , �   � �2   2   �1 �   
2
    
2

2
     

    
2
 to estimate this accuracy as, 

 

    � ,  ̂      � � "�  
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Linearly Approximated Number of Full Sibling Equivalents. In the special case of pedigree 

containing one relative type (e.g., Full siblings of the proband), this linear approximation 

reduces to, 

 

    � ,  ̂      �  #       
2

    �1 �     �
 � �2  

2
� �    � 1�  �1 �     

2 2

2

 

 

Here,    is the relatedness coefficient between the relatives and the proband,    is the relatedness 

coefficient among the relatives which may be different than    (e.g., as for half-sibling offspring 

where   =0.5,   =0.25).  To derive the       for any predictor, we set this equation equation to its 

observed or expected accuracy, which for an empirical predictor can be recovered its 

performance as 	  
2/  

2, and solve this equation for the value of      when   �   � 0.5. This 

approximation was used to estimate       for iPSYCH pedigrees, simulated pedigrees, and to equate 

observed PGS sample size to equivalent PA-FGRS      .    

 

Estimating the accuracy of polygenic scores (PGS) 

 

The expected accuracy of polygenic scores has been described elsewhere by, e.g., Wu 

et al 
24

, Daetwyleer et al 
25

, and Dudbrige 
26

 under related, but not identical assumptions (see 
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Supplementary Information).  We use the formulas from Wu et al 
24

 to estimate the expected 

squared accuracy of a PGS as 

  

 

 

 

where M is the effective number of independent markers. Shrinkage based estimators can gain 

power in the context of non-infinitesimal models (e.g., ldpred 
27

) and we can evaluate, 

 

 

 

where a non-standardized Gaussian ,  and with , , and . 

 

Expected correlation between PA-FGRS and PGS 

 

Under a simple liability framework as we propose, the   and  are statistically independent 

conditional on the true genetic value (G)
28

. In this scenario, the expected correlation is 

 

  

 

Where 
 
and  are the liability variance explained by the estimated genetic values and  is the 

liability scale heritability.    

 

Expected joint performance of PA-FGRS and PGS 

 

The expected semi-partial accuracy in liability of the PA-FGRS, or expected correlation 

between the PA-FGRS and liability after accounting for the PGS, can be written as, 

 

  

 

which allows us to predict the expected joint performance of a PGS and PA-FGRS fit in the 

same model as, 
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Comparisons of expected and observed performance 

 

Expected performance and relationships of genetic instruments depends on both 

assumed and estimated trait parameters that are described in Supplementary Table S5.  The 

expected performance of PA-FGRS in iPYSCH were computed using the mean of the linear 

approximation for the expected accuracy of PA-FGRS for each iPSYCH pedigree using known 

values for   
2 and     . 

The expected performance of the PGS in iPSYCH were calculated by first estimating, 

using the non-shrinkage estimator, the expected squared accuracy of the PGS in the training 

sample following the expectations of the non-shrinkage estimator above assuming M=60,000, 

and using training sample parameters Ncase, Ncontrols,   ,   
2,     .  The expected out of population test 

sample performance  (i.e., in iPSYCH) was then estimated as,  

 

  ,   
2  �     � ̂   ,  �     

2 �   ,     ,      
2 �   ,   ,      

2 

 

where   ,     ,      
2 is the squared genetic correlation between the phenotype as defined in the training 

GWAS and in iPSYCH, and   ,   ,      
2 is the SNP-based heritability for the iPSYCH trait. 

The expected correlation between the observed PGS and PA-FGRS were estimated as 

above using provided values for   
2. 

The population GWAS sample size expected to result in a PGS with performance equal 

to that of the empirical PA-FGRS instruments, was calculated by setting the non-shrinkage 

based estimator above equal to the observed value for squared accuracy of the PA-FGRs, (i.e., 

  ,  �    
2  /   2) and solving for    assuming  �     .  The calculations assumed the training GWAS was 

performed in the same population that the PGS was applied within (i.e.,   ,   ,    
2 �   ,   ,     

2 and   ,     ,     = 1), that 

m=60,000 and known     . 

 The pedigree       expected to result in a PA-FGRS with performance equal to that of the 

empirical PGS instruments, was calculated by setting the linear approximation estimator for 

full sibling pedigrees above equal to the observed value for squared accuracy of the PGS, (i.e., 

  ,   
2 /   ,   2) and solving for      assuming      and   

2. 

 

Code availability 
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PA-FGRS, predicted performance, and simulations are implemented in R code available at 

https://github.com/BioPsyk/PAFGRS. 
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Figure 1. Common estimates of variance explained on the liability scale are biased for 

phenotype-based genetic instruments.  In a simulated population of families, we compare 

different strategies for estimating liability scale variance explained by PGS, FH, and PA-FGRS, 

under different sampling schemes.  The dashed line in each plot represents the ratio of 

estimated to true liability scale variance explained where values deviating from 1 indicate 

biased estimates.  Transforming variance explained from the observed scale (A,B,C) is only 

appropriate for PGS, but produces biased estimates for FH and PA-FGRS across nearly all 

sampling and trait configurations tested.  Directly estimating liability scale variance using a 

weighted probit regression to account for one-stage case-control sampling (D,E,F) corrects for 

this bias, but overcorrects when two-stage sampling (e.g., pruning of relatives) is applied (F).  

The most robust estimates were found by directly estimating liability scale variance with a 

weighted probit regression that accounts for the two-stage sampling associated with case 

oversampling followed by relatedness pruning (G,H,I).  When estimating variance explained on 

the liability scale for phenotype-based instruments, accounting for sampling beyond case-

control proportion may be critical.  Confidence intervals are generally narrower than and thus 

contained within each circle.  PGS, polygenic score; FH, indicator of first-degree family history; 

PA-FGRS, Pearson-Aitken Family Genetic Risk Score; R
2

liab, Liability scale variance explained; K, 

lifetime prevalence; h
2
, narrow-sense heritability.
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Figure 2. Genotype- and phenotype-based genetic instruments explain nearly independent components of liability to psychiatric disorders.   

 

Multiple genetic instruments, alone and in combination, explain variance on the liability scale for five major psychiatric disorders after accounting for 

covariates.  The liability variance explained by each instrument alone and in combination are shown for each of five disorders in two independent 

cohorts, (A) the iPSYCH2012 cohort and (B) the iPSYCH2015i cohort.  Increases in variance explained associated with adding each variable to each 

model was tested via permutations and all were significant after Bonferroni correction (p < 0.05/110 = 4.55 x 10
-4

) unless annotated with n.s.. The 

unadjusted (solid line) and adjusted (dashed line) OR for PGS and PA-FGRS in logistic models are similar for all disorders in both the (C) iPSYCH2012 

and (D) iPSYCH2015i cohorts. Pearson correlations among PGS and PA-FGRS instruments are modest, in general, but slightly larger within disorder for 

both the (E) iPSYCH2012 and (F) iPSYCH2015i random population sub-cohorts. ADHD, Attention deficit hyperactivity disorder; ASD, autism spectrum 

disorder; BPD, bipolar disorder; MDD, major depressive disorder; SCZ, schizophrenia; PGS, polygenic scores; FH, family history indicators; PA-FGRS, 

Pearson-Aitken Family Genetic Risk Scores;  n.s., no significant difference; OR, odds ratio; adj., adjustment; s.d., standard deviation.
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Figure 3. The expected and asymptotic accuracy and performance of PA-FGRS depend on 

pedigree structure, trait architecture, and realistic bounds on numbers of observed relatives. 

 

The expected accuracy of PA-FGRS (  , ̂
 ��    

) from records of increasing numbers of full siblings (A) 

varies by trait h
2
 and prev. with a theoretical asymptote at √0.5 � 0.71 (dashed line), however, for 

realistic bounds on the number of full siblings (NFull sibliings < 10) the observed accuracy is expected 

to be well below this asymptotic value.  There is a corresponding variability in expected 

performance of full sibling PA-FGRS ( 2 ,  ̂
      

) (B) which can reach a theoretical asymptote of 

 
2
   � 

 , ̂
  �    

2 � � 0.5 
2 but in realistic scenarios (NFull sibliings < 10) the observed performance is 

correspondingly lower than the theoretical asymptote.  PA-FGRS using records of half-sibling 

offspring show the same trends in terms of variability in accuracy (C) and performance (D) by h
2
 

and prev., but these, uniquely, have much higher theoretical asymptotes at 1 and  2, respectively. 

With realistic numbers of relatives, the accuracy and performance, however, are similarly 

expected to be below the asymptote.  Complex, multi-generation pedigrees of different depth that 

assume one (E,F) or two (G,H) children per mate pair are bounded in accuracy (E,G) and 

performance (F,H) by the same principles.  Here, practical asymptotes occur at approximately four 

generations of pedigree depth and these levels are well below theoretical maxima (the same as 

depicted in A,B).  The expected accuracy of a PA-FGRS based on records from any arbitrary set of 

relatives can be equated to that of a PA-FGRS incorporating only full sibling records to provide a 

per-pedigree metric, the number of full sibling equivalents (Nsibe), that can be used to compare 

pedigrees and provide benchmark estimates of accuracy, (I,J).  Relative to full siblings, distant 

relatives are more important or rare traits (I) and close relatives are more important for common 

traits (J). PA-FGRS, Pearson-Aitken Family Genetic Risk Scores; h
2
, narrow-sense heritability;   , ̂���    

, 

PA-FGRS accuracy;  2 ,  ̂
 ��    

, PA-FGRS performance; prev, lifetime prevalence; l, Liability; Nsibe, Number 

of full sibling equivalents; Rel., Relatives; Sib., Siblings; Equiv., Equivalents; MZ, Monozygotic; 

Offsp., Offspring; gen., generation 
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Figure 4. PA-FGRS are expected to outperform PGS unless training GWAS are large.   

 

The expected performance of PGS will vary as a function of , prevalence, and training GWAS

sample size (A,B,C,D).  Here, we assume trait  in the test sample is equal to  in the training

GWAS, the  between the test and training sample is 1, the number of markers in the PGS is

m=60,000, and the effective proportion of causal markers is p=1.  The expected performance of

PA-FGRS with Nsibe=1,3, or 5 (dashed lines) is not dependent on a training sample and therefore

outperform PGS when large GWAS are unavailable.  Across these simulated traits, the size of a

population sampled training GWAS needed to achieve performance equal to PA-FGRS with

Nsibe=1,3, or 5 are qualitatively similar (x-axis value where solid and dashed lines intersect), but PA-

FGRS do relatively better for common traits (dashed lines vs.  in A,B vs C,D). PA-FGRS, Pearson-

Aitken Family Genetic Risk Scores; PGS, polygenic score; h
2
, narrow-sense heritability; , SNP

heritability; , genetic correlation; prev, lifetime prevalence; Nsibe, number of full sibling

equivalents; c.c., case-control sampling; pop., population sampling.
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Figure 5. PA-FGRS are expected to complement PGS at current sample sizes and in the near 

future 

 

The expected correlation between PGS and PA-FGRS (A-D) and the expected joint performance of 

PGS and PA-FGRS (E-H) varies as a function of     
2, prevalence, and training GWAS sample size.  The 

expected correlation between the two instruments (A-D) will remain modest, even once PGS 

approach maximum performance, especially for rare traits (A,B). These modest correlations imply 

the expected joint performance of PGS and PA-FGRS (E-H, dashed lines) is higher than PGS alone 

(E-H, solid lines).  This effect is larger when PGS training GWAS are smaller and when traits are 

more common, where higher expected correlations are offset by the higher performance of PA-

FGRS (EF vs. GH). Here, we assume that the trait     
2 in the test sample is equal to     

2 in the training 

GWAS, the    between the test and training sample is one, the number of markers in the PGS is 

m=60,000, and the effective proportion of causal markers is p=1.  PA-FGRS, Pearson-Aitken Family 

Genetic Risk Scores; PGS, polygenic score;     
2, SNP heritability;   , genetic correlation; prev, lifetime 

prevalence; c.c., case-control sampling; pop., population sampling. 
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Figure 6.  Observed performance of genetic instruments is generally in alignment with 

expectations assuming simple polygenic liability models.  (A) The observed performance of PA-

FGRS is broadly consistent with expectations from theory under a simple additive polygenic model, 

given the       of the observed pedigrees,  �
2, prev., and modeling choices for handling censoring and 

generational cohort effects. (B) The observed performance of PGS is likewise broadly consistent 

with expectations from theory, given estimated parameters for      
2 in the test sample,     

2 in the 

training GWAS,    between the test and training sample, and assumed parameters for prev., the 

number of independent factors comprising the PGS (m=60,000), and the effective proportion of 

causal markers (p=1). (C) The observed correlations between PGS and PA-FGRS are modest, but in 

fact larger than predicted by a simple additive polygenic liability model with chosen   
2.  (D) The 

empirical performance of the 10 PA-FGRS (with       ≈ 1.3 to 1.77) is estimated to equal the 

performance of a PGS trained in very large samples from the same population (N ≈ 190,000 to 

1,140,000; assuming     
2 test =     

2 train,    test-trait = 1). (E) The empirical performance of the 10 PGS 

(training GWAS with     .          . ≈ 150,000 to 2,100,000) is expected to equal the performance of PA-FGRS 

with       ≈ 0.3 to 4.7. PA-FGRS, Pearson-Aitken family genetic risk scores; PGS, polygenic score; Liab., 

liability; Sib., sibling; Equiv., Equivalence;  ADHD, Attention deficit hyperactivity disorder; ASD, 

autism spectrum disorder; BPD, bipolar disorder; MDD, major depressive disorder; SCZ, 

schizophrenia;  �
2, narrow-sense heritability;     

2, SNP heritability; prev., lifetime prevalence;   , genetic 

correlation;  ���	, Number of siblings equivalent to pedigree;     .    , equivalent N assuming a population 

sampling GWAS. 

 


