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Abstract 

Study Objectives: Several stress-related mental disorders are characterized by disturbed sleep, but 

objective sleep biomarkers are not routinely examined in psychiatric patients. We examined the use of 

wearable-based sleep biomarkers in a psychiatric sample with headband electroencephalography 

(EEG) including pulse photoplethysmography (PPG), with an additional focus on microstructural 

elements as especially the shift from low to high frequencies appears relevant for several stress-related 

mental disorders (cortical hyperarousal).  

Methods: We acquired 483 nights and could analyze 372 nights of sufficient quality from 83 healthy 

participants and those with a confirmed stress-related mental disorder (anxiety-affective spectrum). 

We analyzed the data with respect to macrostructural and microstructural characteristics according to 

the newly described spectral slope fitting over the whole frequency spectrum.  

Results: The headbands were accepted well by patients and the data quality was sufficient for most 

nights. The macrostructural analyses revealed trends for significance regarding sleep continuity but not 

sleep depth variables. The spectral analyses yielded no between-group differences except for a group × 

age interaction, with the normal age-related decline in the low versus high frequency power ratio 

flattening in the patient group. PPG analyses showed that the mean heart rate was higher in the patient 

group in pre-sleep epochs, a difference that reduced during sleep and dissipated at wakefulness.  

Conclusions: Wearable devices that record EEG and/or PPG could be used over multiple nights to 

assess relevant markers such as sleep fragmentation, cortical hyperarousal, and sympathetic drive 

throughout the sleep–wake cycle in patients with stress-related mental disorders. 

Keywords: stress-related mental disorders, EEG-headband, PPG, home-based measurement, qEEG 

analysis, hyperarousal, wearable 
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Introduction 

Several stress-related mental disorders are characterized by disturbed sleep. Major depressive disorder 

has insomnia as one of the core symptoms in its diagnosis [1], with polysomnographic studies 

revealing reduced sleep continuity, sleep depth, and alterations in rapid eye movement (REM) sleep 

characteristics such as duration, latency, and the density of eye movements [2]. Moreover, several 

studies have noted subjective and objective sleep difficulties in anxiety disorders [2,3], whereas post-

traumatic stress disorder (PTSD) has subjectively reported insomnia and nightmares in its diagnosis 

[1], with similar objective alterations in sleep continuity and depth and REM sleep characteristics 

dependent on age groups [4] and other confounds [5]. Additionally, at the microstructural level, the 

reduction of power in the lower (delta) frequencies[6,7] and, potentially, a shift from low to high 

spectral frequencies (also referred to as cortical hyperarousal) [8] appear relevant for several stress-

related mental disorders. 

Disrupted sleep therefore appears to express partial dysfunction in deep-brain circuitry associated with 

both sleep and emotion regulation. This includes but is not limited to limbic and paralimbic circuitry, 

the hypothalamus, and multiple arousal-related brainstem regions [9,10]. Moreover, several sleep 

disorders such as sleep disordered breathing and restless legs / periodic limb movement disorder are 

more prevalent in psychiatric samples than in the general population, indicative of these sleep 

disorders being a risk factor to develop mental disorders (or increased symptomatology) after exposure 

to chronic stressors or traumatic events [11].  

This is of importance for biomarker search in psychiatry because no biomarkers with clinical utility 

have yet been identified for stress-related mental disorders, whereas sleep can provide a multitude of 

potentially relevant macro- and microstructural biomarkers of interest, including cortical hyperarousal. 

However, due to limited availability of sleep laboratories in psychiatric clinics (or practices), sleep is 

not routinely assessed in psychiatric patients, except for in a subjective manner by questionnaires or 

clinical interviews. Instead of objective sleep quality, several sleep disorders are diagnosed exclusively 

based on subjective sleep quality, such as insomnia and nightmares [1].  
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Furthermore, these objective measurements in laboratory/hospital settings are scarce and usually 

limited to one or two assessment nights. The ecological validity of such laboratory settings is 

questionable and may not veridically capture the sleep complaints that participants experience in their 

home environment. In fact, sleep complaints such as nightmares in people with PTSD are rarely 

observed in the laboratory [12] or even when measured with classic polysomnography in their clinic 

beds [13], which is in sharp contrast with self-reports. Studies employing multiple nights in the home 

environment have been more successful in, for example, capturing nightmares [12,14], indicating that 

more recording nights are needed to adapt to measurement bias and to capture natural sleep profiles. 

This may be why macrostructural elements generally do not show such impressive effect sizes in 

between-group comparisons of psychiatric patients with healthy participants. 

The availability of wrist wearables that incorporate heart rate and headband electroencephalography 

(EEG) in the home environment [15] now opens up the possibility to measure such sleep biomarkers 

in clinical samples [16,17], with wristwatch wearables showing decent accuracy in sleep versus wake 

classifications in clinical samples [18], without the same problems as actigraphy alone (low specificity 

for sleep [19]) and promising sleep staging in healthy participants [20]. Headband EEG provides 

hypnogram data with considerable overlap with standard polysomnography, except for some over- or 

underestimations of wakefulness dependent on the device [21]. 

We examined the use of wearable sleep biomarkers in a psychiatric sample with headband EEG 

including PPG, with an additional focus on microstructural elements such as cortical hyperarousal. 

Our hypotheses were that, in line with previous research, we would observe some macrostructural 

differences between healthy controls and psychiatric patients of moderate size (reduced sleep 

continuity and depth). With more temporally fine-grained analyses relating to spectral power and heart 

rate (variability), we anticipated further unhealthy sleep characteristics to manifest in a reduced 

proportion of low versus high frequency power in the EEG in non-rapid eye movement (NREM) sleep, 

as well as increased heart rate and reduced heart rate variability throughout sleep in individuals with a 

confirmed stress-related mental disorder.  
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Methods and Materials 

Participants 

Participants were part of a larger transdiagnostic study currently running at the Max Planck Institute of 

Psychiatry called the Biological Classification of Mental Disorders (BeCOME) study (registered on 

ClinicalTrials.gov: NCT03984084). Unmedicated outpatients with stress-related mental disorders 

(primarily affective and anxiety disorders) and healthy controls between the ages of 18 and 65 years 

are recruited at the intake procedure at the clinic. Clinical diagnoses of such stress-related mental 

disorders are verified with the Munich-Composite International Diagnostic Interview (DIAX / M-

CIDI), and together with in-depth physiological, imaging, and omics assessment biologically serve the 

overarching goal of identifying biologically informed subtypes of patients in a transdiagnostic manner. 

As part of this study protocol, participants are asked to take an EEG headband home at the first 

appointment and wear it for 1–2 weeks before returning for two days of extensive testing.  

To date, 483 nights have been collected, with the number of nights per participant varying between 1 

and 17 with a mean of 4.5 nights (SD = 2.7). Around 85% of participants slept 2–9 consecutive nights 

with the headband. In all of the following analyses, only nights with a minimum record quality of 70% 

(percentage of the night recording that can be scored according to the automated Dreem analysis 

software) were included, which resulted in 372 nights (Figure 1).  

One participant had to be excluded because of missing data (no age information). Finally, 371 nights 

from 83 participants were included in our analyses (see Table 1 for distributions) with an average age 

of 33.5 years (Mpatient = 33.9, SDpatient = 14.7, Mcontrol = 33.1, SDcontrol = 13.7). 

All participants provided a written informed consent and had been reimbursed for their participation. 

The study protocol was in line with the Declaration of Helsinki [22] and was approved by the local 

ethics committee (reference number: 350 – 14). 

Data acquisition 

Sleep data was collected with the Dreem 2 headband (Dreem, Paris, France), a wireless EEG headband 

with six conductive high-consistency silicone rubber (dry) EEG sensors at locations Fp1, Fp2(ground), 
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F7, F8, O1, O2 with sampling frequency of 250 Hz. These sensors are referenced to each other 

resulting in the following seven channels: F7-O1, F8-O2, Fp1-F8, F8-F7, Fp1-O1, Fp1-O2, Fp1-F7. 

Each headband has a three-dimensional axis linear accelerometer measuring movement, position, and 

breathing frequency and a pulse sensor in LED reflective solution measuring heart rate (both with a 

sampling rate of 50 Hz). The headbands were handed out on the first day of the study. After a short 

introduction to the wearable device, nightly recordings were started and finished by the participants 

(by pushing the start/stop button on the headband). Around 1–2 weeks later, they returned the 

headbands to the laboratory on the second day of the two-day testing period, and data was uploaded to 

the server via Wi-Fi. 

 

Sleep macrostructure and spectral analysis 

Sleep stages and conventional macrostructural parameters were scored and calculated by Dreem’s own 

automatic algorithm [23]. To verify the validity of this algorithm, half of our recordings were 

manually examined and, where necessary, rescored by two trained scorers. Sensitivity, specificity, and 

accuracy were calculated for each traditional stage separately (see Supplementary Table S1), resulting 

in an overall accuracy of 92%. For us, this sufficed to use the traditional macrostructure, sleep-related 

variables per night, which were summarized for each participant by taking the median value over all 

recorded nights. NREM stage 1 was left out from the calculation because only 0.6% of the scored 

epochs belonged to this category based on Dreem’s automatic scoring. 

For spectral analyses, raw data was first bandpass filtered between 1 Hz and 40 Hz with a fourth order 

for the high-pass and a tenth order for the low-pass filter. The data was additionally filtered with a 

notch filter (tenth order with 48–52 Hz cut-off, to suppress line noise, which was so strong in a few 

nights that even bandpass filtering could not completely remove it). After filtering, artifact correction 

was performed by in-house MATLAB (version R2021b, MathWorks Inc., Natick, MA) scripts. This 

comprised an automated algorithm to identify two of the most common artifact categories 

characteristic of Dreem 2 recordings (for details, see Supplementary Figure S1). The first category can 

be described as large amplitude artifacts, most likely the result of movement, electrode displacement, 

reduction in impedance, or device disconnection. To identify these artifacts, a sleep phase specific, 
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flexible threshold was computed for each recording as a certain quantile of the distribution of all 

amplitudes in the given sleep phase. The quantile was chosen according to the characteristics of each 

phase. For NREM stage 2, the 99.5th quantile was chosen, the highest among all sleep phases, to avoid 

the detection of sleep spindles. Conversely, the quantile was lowered to the 95th for the wake phase, as 

the proportion of artifactual signal was believed to be much higher in this phase. Lastly, for slow-wave 

sleep (SWS) and REM, the 99th quantile was sufficient. Note that we did not analyze REM sleep as 

eye movement detection algorithms would first have to be developed. The filtered signal was divided 

into 4 s epochs with a 50% overlap, and every epoch that surpassed the given threshold at any of its 

time points was marked as an artifact. The second category comprised cardiac artifacts. Due to the 

position and nature of the dry sensors on the headband, the electrodes on the frontal band often shifted 

onto one of the vessels on the forehead and the signal became tainted with periodically appearing 

artifactual waves. Since pulse artifacts are time-locked to the heartbeat of the participant, information 

obtained from the PPG sensor was used to better identify these artifacts. First, PPG peaks were 

detected and mean RR intervals were calculated for each 12 s 50% overlapping window of the PPG 

signal. Second, cross correlations (i.e., the correlation of the signal with itself) were calculated in the 

same epoch basis on the EEG channels for different temporal phase delays. Even though cross 

correlations always show the maximum peak for lag time 0, in the case of cardiac artifacts, further 

periodical peaks from the alignment of the pulses in the EEG may appear. An epoch was marked as an 

artifact when the second largest peak in the cross correlation was located within a lag of +/−100 ms 

around the pulse detected on the PPG and the amplitude of this peak was higher than 0.4 (maximum 

peak = 1). Artifacts were marked on each channel separately, and 4 s epochs containing an artifact on 

any of the channels were excluded from all spectral analyses. This conservative combined method 

resulted in an average of 59% of clean data in the control group and 53% of clean data in the patient 

group to be used for further spectral analyses (see performance of individual and combined filters in 

Supplementary Figure S2). 

Artifact-free, 50% overlapping, 4 s epochs were Hanning-tapered and short-time fast Fourier 

transformed to extract spectral features. To avoid redundancy and increase statistical power by 

reducing the number of variables, specific spectral features were calculated based on the 
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recommendations of Bódizs and colleagues [24]. For each night, spectral power was calculated 

between 1 Hz and 30 Hz (sampling frequency of the device was 250 Hz). NREM spectral power was 

averaged throughout the night and log-log transformed to allow the fitting of a linear regression. Low-

frequency spectral power values were interpolated to ensure equidistant frequency steps, and a linear 

fit was performed on each night in the 2–30 Hz range. However, during NREM sleep, alpha and sigma 

(sleep spindle) frequencies could entail large peaks, which may confound the fit of the linear 

regression. Therefore, these frequency bands (6–18 Hz) were excluded from the fitting, as 

recommended by [24]. Furthermore, from the frequency range of 9–18 Hz, maximum spectral peak 

amplitude and frequency was extracted to characterize spindle activity during the night. To verify 

whether our data acquired with the EEG headband showed similar quantitative spectral power profiles 

to those in the literature, we attempted to replicate the results published by Bódizs and colleagues [24]. 

Similar to Bódizs et al., our sample showed an age-related significant decline in spectral peak 

amplitude on most of the channels (−.216 < r < −.202, .04 < p < .06) and no age-related difference in 

spindle spectral peak frequency (−.096 < r < −.075, .388 < p < .503). However, in contrast to the 

previous study, in our sample there was no significant flattening of NREM spectral slope with age on 

any of the channels (.022 < r < .097, .381 < p < .845). Correlations between these three variables and 

age on the two long-range channels (F7-O1, F8-O2) are presented in Supplementary Figure S3. 

Finally, the overnight ascending gradient of NREM slopes was calculated per night. First, the above 

described linear fitting process was run on every individual 4 s epoch, resulting in as many slope and 

intercept values as the (artifact-corrected) night had epochs. Thereafter, a linear regression was fitted 

to the slopes and intercepts of all NREM epochs (see Figure 2) to acquire information about the 

gradient change and dynamicity of NREM spectral components throughout the whole night. The 

overnight ascending gradient was computed for each night and summarized per participant with the 

median value over nights. Outliers +/−3 times the median absolute deviation were excluded from the 

analysis for each channel separately. 

 

Photoplethysmography analysis 
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PPG data was high-pass filtered at 0.2 Hz (eighth-order filter) smoothed with a moving mean window 

of 0.2 s and z-transformed to standardize the variance.  

To find the peaks in the PPG data, we used the findpeaks function in MATLAB with a peak width 

between 0.1 s and 3 s, and optimized the peak location by finding maxima within a window of 0.2 s 

around the original peaks. If no peak was detected during 2 s with this method, we assumed there was 

a missing peak. Then, the findpeaks function was re-run in that window on the second derivative of 

the signal, after filtering the first derivative with a low-pass filter at 1 Hz, to better detect change 

points at a temporal resolution that was not too high. After this, the difference between consecutive 

peaks is the RR interval, and the root mean square of these successive differences (RMSSD) was 

computed for 20 s epochs. 

 

Statistical analyses 

Statistical analyses were performed with MATLAB (version 9.11.0.1769968 (R2021b)) and JASP 

[25]. Normality of the variables was assessed by a Shapiro–Wilk test, as well as skewness and kurtosis 

of data distribution. Macrostructural differences between patients and controls were calculated by 

independent samples t-tests or Mann–Whitney U tests (if the assumption of normality was violated). 

To control for multiple comparisons, the Benjamini–Hochberg procedure was used to estimate false 

discovery rate (FDR). Group dependent spectral slope differences were examined by an analysis of 

covariance (ANCOVA) with age as a covariate. Differences related to mean heart rate and heart rate 

variability (RMSSD) across wakefulness and sleep stages were examined by repeated measures 

analysis of variance (rmANOVA) models. Original (uncorrected) degrees of freedom and corrected p 

values (if applicable) are reported. 
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Results 

Sleep architecture 

Table 2 summarizes all sleep fragmentation related markers and test statistics. Patients showed trends 

for an overall increase in the amount of awakenings (unadjusted p = .053) and for a higher number of 

stage transitions (unadjusted p = .082) during nocturnal sleep when compared with controls. There was 

a nominally significant decrease in the overall sleep efficiency (unadjusted p = .043) in the patient 

group when compared with the controls. All of the abovementioned differences were no longer 

significant after correction for multiple comparisons. No other sleep architecture related parameters 

were significantly different across the groups or showed any interaction with age as a covariate (e.g., 

F(1,79) = 0.26, p = 0.613 for the group × age interaction for SWS duration). 

 

Overnight ascending gradient 

Group differences in the overnight dynamicity of NREM sleep were investigated by an ANCOVA. 

Neither the group nor the effect of age were significant on any of our analyzed channels (Group: F7-

O1 – F1,74 = .0136, p = .908; F8-O2 – F1,68 = 0.90, p = .346; Age: F7-O1 – F1,74 = 2.31, p = .133; F8-O2 

– F1,68 = .03, p = .852). Nonetheless, there was a significant group × age interaction for both the F7-O1 

(F1,74 = 6.71, p = .012) and F8-O2 (F1,68 = 4.13, p = .046) channels (see Figure 3), showing the 

expected flattening of overnight NREM slopes with age in the control group, and a fairly stable if not 

slightly increasing overnight ascending gradient with age in the patient group. 

 

Heart rate and heart rate variability 

First, a 2 × 3 rmANOVA was performed to examine differences in heart rate, where the group 

(control, patient) was the between-subject factor and the phase (pre-sleep wakefulness, sleep, post-

sleep wakefulness) the within-subject factor. Here, we observed a significant effect of phase (F2 = 

3.67, p = .03), no effect of group (F1 = 1.24, p = .27), and crucially, a significant group × phase 

interaction (F1,2 = 3.12, p = .05) that was driven by robust differences in mean heart rate in pre-sleep 

wakefulness (higher for patients) that became less pronounced in sleep and post-sleep wakefulness 

(see Figure 4a). This effect was not confounded by activity, because although activity also has a 
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significant effect of phase (not of group) and group × phase interaction, this was in the other direction 

with robust differences in post-sleep wakefulness (see Supplementary Figure S4). Zooming in on the 

sleep stages and wake after sleep onset (WASO) with an explorative 2 × 4 rmANOVA did not reveal 

any significant main effects or interaction, with marginally increased heart rate values in patients 

throughout sleep stages and WASO (see Figure 4b). For RMSSD, neither the main effects (F1,81 < .09, 

p > .76, ηp
2 < .001) nor the interaction (F1,81 = .05, p = .82, ηp

2 < .001) was significant.  
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Discussion  

We evaluated the utility of wearable headband EEG in a sample of healthy participants and 

unmedicated patients with stress-related mental disorders. To what extent could such headband (and 

wristwatch) wearables serve as measurement devices for sleep depth and fragmentation, sleep 

disorders, and transdiagnostic factors related to affective symptomatology such as cortical 

hyperarousal? 

First, most of the participating patients seemed to manage well wearing the headband EEG for at least 

two nights, most for around two to nine nights. This might be because they had mild to moderate 

symptom intensities, and inpatients with more severe symptomatology may react differently. 

However, the headbands were better accepted than we anticipated at the start. Second, the data quality 

of the headband EEG surpassed our expectations by providing data of sufficient quality on a majority 

of nights in a majority of patients, not only for macrostructural analyses but also for more fine-grained 

spectral analyses of multiple epochs (robust to a rigorous artifact correction procedure). Third, our 

macrostructural results are largely in line with the scientific literature [26], that is, there were no large 

effects and only a few small to moderate nominally significant differences for macrostructural 

variables relating to sleep efficiency. This appears trivial, but suggests that sleep researchers have not 

missed any large effects in the last few decades due to potential context effects of the sleep [27,28] 

laboratory; instead, focusing on the second night as is typical in psychiatric sleep research seems to be 

a valid methodological solution. Severe first-night effects might still be relevant for more specific 

populations such as individuals with insomnia [27] and/or PTSD [29], who for instance report fewer 

nightmares in the sleep laboratory, potentially representing an expression of reduced sleep-related 

anxiety in the sleep laboratory. 

Our spectral analyses revealed that the ratio of low versus high frequency power, characterized by the 

beta of the linear fit of the log-transformed 1/f power slope, did not differ between the groups. Instead, 

the age-related decline in this ratio [24] associated with reduced slow-wave power and sleep amount 

declined less in the patient sample. Patients had an apparent reduced ratio (less low-frequency, more 

high-frequency power) at a younger age than healthy participants and less of a decline with age. 

However, these observations are cross-sectional in nature and warrant replication in longitudinal data. 
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For our spectral analyses, we decided not to focus on analyzing the relevant frequency bands 

separately, because of false positive inflation and because the beta of the linear fit incorporated more 

relevant information than, for example, analyzing delta power alone. However, our results are in line 

with reported slow-wave power in the sleep of individuals with stress-related mental disorders, 

specifically with PTSD and depression [26]. We restricted our analyses to NREM sleep because REM 

sleep artifact detection requires more attention and clearer separation in the EEG traces of what is an 

eye movement and what is not. This calls for the development of more specific REM detection 

algorithms that are trained on frontal EEG electrodes with simultaneous electrooculography and can 

then be transferred to such data. For now, this restricts our spectral analyses to NREM, whereas REM 

sleep instability variables could be of particular relevance to this population [30]. 

This also raises the question to what extent our patients experienced insomnia, which is a common 

symptom of depression, with around 20% of people with depression having an Insomnia Severity 

Index score of 15 or above [31]. This is associated with increased depression severity, anxiety 

symptoms, and reduced activity levels [32]. However, we could not formally diagnose our participants 

with insomnia on the basis of an interview on their subjective reports. Naturally, we do have the actual 

data of sleep latency and WASO, the objective insomnia measures, and analyzed those (e.g., there 

were 10 participants with a sleep latency of 30 minutes or more in at least one night), but the literature 

suggests a great discrepancy between objective and subjective insomnia variables that prevents 

estimation of the prevalence of insomnia on the basis of objective sleep variables [33]. We believe, 

however, that sleep wearables such as headbands and wristwatches that combine actigraphy with heart 

rate will allow a more objective monitoring of sleep latency and WASO and have the potential to 

bring insomnia diagnostics back to sleep medicine. Moreover, we observed that three healthy controls 

and five patients had a median of six or more SWS-to-wake transitions per night, which could be a 

sign of more organic sleep problems relating to sleep apnea or periodic limb movements. This 

suggests that in a psychiatric patient sample, with depressed inpatients having surprisingly high 

prevalence of sleep apnea [34], headbands in combination with breathing-related wearables [35] might 

be used as an initial screening device for optimized decisions on who is referred to full 

polysomnography in the clinical sleep laboratory.  
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This then brings us to our heart rate and activity analyses, which revealed a group × time interaction 

for mean heart rate. One explanation would be an upregulation of sympathetic compared with 

parasympathetic activity before falling asleep, perhaps in apprehension of the upcoming night (related 

to a fear of sleep [36] in PTSD, but a milder variant in stressed participants), which reduces during but 

remains present throughout sleep. An alternative explanation is that because there appeared marginally 

increased differences throughout the sleep stages, this might reflect a more general reduced physical 

condition in the patients, which would be in line with the literature on reduced activity in people with 

stress-related mental disorders, something that can be reliably detected with actigraphy [37]. However, 

this explanation cannot account for a decline in the differences at post-sleep, which seems to point 

more in the direction of a homeostatic process. The heart rate variability measures did not reveal any 

effects of interest, but our metric, the most commonly used – the RMSSD – is highly susceptible to 

noise in the data. Peaks in the PPG have a lower kurtosis than peaks in the electrocardiograph (ECG), 

easily adding some additional milliseconds of variation to the peak-to-peak differences, and flattened 

peaks also occur and could lead to a missing peak of additional variation in the peak timing. This is 

also why pulse rate variability from PPG is a different metric than heart rate variability from the ECG 

[38], and there is still a debate about what is the most artifact-resistant way to analyze heart rate 

variability in sleep. RMSSD is probably not going to win it.  

Further limitations include the restriction of spectral analyses to NREM sleep until REM algorithms 

have been properly trained and openly shared, the cross-sectional nature of the data in the light of the 

group × age interactions, and the lack of formal insomnia diagnoses based on subjective data. We 

could confirm the mental disorders of patients, and the absence of disorders in healthy participants in 

our sample, but the sample itself was too small, and the overlap among mental disorders too high, to 

analyze the data for subgroups (e.g., major depressive disorder (MDD) without an anxiety disorder, 

MDD with an anxiety disorder, anxiety disorder without MDD). Finally, we do not know the ground 

truth of true sleep in our sample, as we do not have 1–2 nights with polysomnography in the sleep 

laboratory. Although the accuracy of the headband EEG compared with our raters was high, a recent 

study reported that the Dreem headband appears to underestimate wakefulness and overestimate 

NREM 1/NREM 2 [21]. Given that sleep continuity related variables showed nominally significant 
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group differences in our work, such a systematic bias in the detection of wakefulness versus light sleep 

could be a confound. However, we do not claim any epidemiological ground truth in the amount of 

hours slept or WASO minutes, but instead focused on group differences that should have the same 

systematic bias given the similarity in sleep patterns. However, whether the systematic bias is actually 

the same for both groups is still an assumption, and further research should address the question of to 

what extent differences in activity might affect detection of wakefulness in both headband-based and 

wrist-based wearables.  

In conclusion, the headbands were accepted well by people with stress-related mental disorders, and 

the data quality was sufficient for macro- and microstructural analyses of a majority of nights in a 

majority of participants. As in previous research, we did not observe large macrostructural between-

group effects except for those related to fragmented sleep. More temporally fine-grained analyses 

revealed differences in age-related changes in the low versus high frequency power ratio and in nightly 

activity and mean heart rate. Our results imply that wearable devices that record EEG and/or PPG can 

be used over multiple nights to assess sleep depth and fragmentation, cortical hyperarousal, and 

sympathetic drive throughout the sleep–wake cycle in a sample of people with stress-related mental 

disorders.  
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Figure Titles / Captions 

 

Figure 1. Dreem record quality of all recorded nights (in a consecutive manner) for each 

participant. Record quality index shows what percentage of the night is still scorable on at least one 

channel during one recording. On this heatmap, green represents a high record quality and red a low 

record quality. The first quality assurance step was based on these record quality measurements. 
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Figure 2. Example of the overnight ascending gradient over one night of a participant. The slope 

and intercept values of each 4 s epoch are presented on the first two subplots for comparison with the 

hypnogram of the same night represented on the third subplot. The overnight dynamicity of slopes and 

intercepts are further smoothed by a 2000 s moving mean for better visualization. The red dashed line 

represents the linear regression of the NREM slopes (i.e., the overnight ascending gradient). Slopes 

and intercepts were highly anti-correlated throughout all nights. 
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Figure 3. Age-related group differences in the NREM overnight ascending gradient on channels 

F7-O1 and F8-O2. Light gray circles represent the control group and dark gray squares the patient 

group. Lines indicate the fit of the generalized linear models with 95% confidence intervals. 
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Figure 4. Mean heart rate (HR) differences between controls and patients. (a) Mean heart rate 

during pre-sleep wakefulness (up to 5 min), sleep, and post-sleep wakefulness (up to 5 min). (b) Mean 

heart rate during different sleep stages during the night. Light gray dots represent control participants, 

dark gray squares represent patients, and whiskers represent the standard error of the mean. Heart rates 

are in beats per minutes (bpm). REM = rapid-eye movement, NREM2 = non rapid-eye movement 

stage 2, SWS = slow-wave sleep, WASO = wake after sleep onset 
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Tables 

 

Table1. Distribution of the included number of participants and nights after exclusion and 

quality check. 

 Participant (#) Night (#) 

 Female Male Sum Female Male Sum 

Patient 33 14 47 134 77 211 

Control 26 10 36 107 53 160 

Sum 59 24 83 241 130 371 
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Table 2. Sleep architecture related markers in patients and controls 

P values corresponding to one-sided t-tests and Mann–Whitney U tests are corrected for multiple 

comparisons (Benjamini–Hochberg correction). WASO = wake after sleep onset, SWS = slow-wave 

sleep; + significant before at p < 0.05, but not significant after FDR correction.  

 

 

Patient  

(N = 47) 

 

CTL  

(N = 36) 

 

Independent samples t-test / 

Mann – Whitney U test 

 

Mean SD Mean SD 
t81 or U 

value 
p value 

Sleep latency (min) 20.4 29.9 14.6 9.7 742.5 .413 

Sleep efficiency (%) 88.9 7.1 90.8 5.5 1033 .318+ 

Awakenings (#) 22.8 8.3 20.1 6.6 -1.636 .318+ 

WASO (min) 29.3 28.1 24.1 19.3 738 .413 

NREM stage 2 (min) 190.4 45.9 185.4 44.1 776.5 .526 

NREM stage 2 (%) 47.2 7.7 47.2 7.8 877 .748 

SWS (min) 90.7 25.9 87.1 22.9 -.671 .748 

SWS (%) 23.1 6.9 22.7 5.5 -.331 .748 

REM (min) 113.9 31.4 112.5 36.4 -.181 .734 

REM (%) 28.5 6.3 29.3 8.7 885.5 .748 

Stage transitions (#) 76.7 21.8 70.4 18.2 -1.405 .328 

SWS stage transitions 

(#) 

7.4 2.8 7.8 2.7 .663 .748 
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