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Major depressive disorder (MDD) is a heritable psychiatric disorder which is considered one of the 

leading causes of disability world-wide. Improved understanding of its genetic component could inform 

novel treatment developments, but so far, gaining functional insights from genome-wide association 

studies has been difficult. In this study, we sought to generate hypotheses about plausible mechanisms 

through which genetic variants could influence MDD using a novel approach. Considering the cis-

regions of protein coding genes as the loci of interest, we applied local genetic correlation analysis to 

study the genetic relationship between MDD and a range of brain, endocrine, and immune related 

endophenotypes across several modalities (tissue specific gene expression and splicing, regional brain 

volumes, and brain network connectivity). We identify significant genetic relations between MDD and 

endophenotypes within the cis-regions of multiple genes, and perform endophenotype specific 

enrichment analyses of the top associated genes. Our results offer potential mechanisms through which 

MDD related variants in these genomic regions could act, and convergent evidence from multiple 

endophenotypes implicate FLOT1 as a gene which may exhibit wide-ranging pleiotropic effects and be 

particularly interesting for functional follow-up. Here, we have illustrated how local genetic correlation 

analysis applied to lower level endophenotypes has the power to prioritise genes and functional paths 

which warrant further investigation for their possible role in MDD aetiology.   
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INTRODUCTION 

Major depressive disorder (MDD), or depression, is a common but debilitating psychiatric disorder 

characterised by symptoms such as persistent negative mood, anhedonia, lack of motivation, and 

sometimes suicidal ideation1. With an estimated lifetime prevalence of around 11%2, it is considered to 

be one of the leading causes of disability worldwide3, yet so far, first line treatment options for 

depression are of limited efficacy4,5.  

 Depression is influenced by a combination of genetic and environmental factors6, with the 

estimated heritability obtained from twin studies ranging from 30%-50%6 and the additive effects of 

common SNPs accounting for around ~3% of the variance in depression status7. The advent of large 

scale, unbiased investigation of the genetic component of depression in the form of genome-wide 

association studies (GWAS) was expected to provide substantial insights into the biological 

mechanisms that underlies it, yet discerning functionally relevant information and prioritising causal 

genes has proven difficult due to the highly polygenic nature of the disorder6,8.  

 To date, the largest GWAS meta-analysis of depression identified 178 genomic risk loci and 

biological processes related to for example nervous system development and neuronal signalling9. 

While the findings from gene-set enrichment analysis can provide additional biological information 

related to SNP and gene level results as a whole, such results are largely non-contextual, and what the 

association between depression and variants in a particular gene means for its aetiology is not always 

clear. One way of gaining functionally relevant information from GWAS, while also prioritising genes 

which may be likely causal, is to examine pleiotropy between depression and relevant endophenotypes. 

Integration of expression quantitative trait locus (eQTL) data is a relatively common approach10–13, but 

the pleiotropy between depression and regional brain volumes, or brain networks, has not yet been 

systematically examined on the gene level, nor across brain imaging and molecular endophenotypes 

simultaneously. Though doing so could provide important clues about the underlying biological 

mechanisms that govern depression.  

 Here, we rely on the currently largest publicly available GWAS summary statistics from Howard 

et al7, which represents a combination of broader self-report and clinically derived depression 

phenotypes. With this, we employ a novel strategy to extract functional information from the depression 

GWAS signal and prioritise relevant genes and endophenotypes via local genetic correlation. Using 

LAVA (Local Analysis of [co]Variant Association)14, we define our genomic loci as the cis-regions of all 

protein coding genes and, within these genes, evaluate the local genetic relationship between 

depression and endophenotypes across three modalities: tissue specific mRNA expression and splicing 

from 18 tissues, the volumes of 56 cortical and subcortical brain regions, as well as the structural and 

functional connectivity within 7 brain networks (see Fig. 1 for an overview). We look specifically for 

genes where we detect significant genetic correlations across multiple levels of function, as these genes 

might be particularly interesting for functional follow-up due to potential wide-ranging effects on the 

system. We also perform endophenotype specific enrichment analyses of the top 1% of analysed genes 
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for all endophenotypes separately with the aim of providing additional biological context to any detected 

gene-set associations. 

Our results show significant genetic correlations between MDD and endophenotypes across all 

analysed levels of function. The genetic correlations between depression and the tissue specific splicing 

and expression tended to be concentrated within the major histocompatibility complex (MHC) and 

involved almost all analysed tissues. From the regional brain volume analyses, we detected significant 

genetic correlations with brain regions primarily within and around the basal ganglia, but also some 

frontotemporal regions and cerebellar vermal lobules. Significant gene set associations were also 

based on the top genes from the analyses with the precentral gyrus, palladium, putamen, and the pars 

triangularis, which were related to cellular response to metal ions, growth regulation, triglyceride lipase 

activity, and hyaluronan metabolism. Finally, genetic correlations between depression and the structural 

connectivity within the visual network were also detected, and convergent evidence from multiple 

endophenotypes highlighted FLOT1 as a gene of particular interest due to the large number of 

associations detected in this region. 

 

 

Figure 1 Schematic overview of analysed endophenotypes. Considering the cis-regions of all protein coding 

genes as our genomic loci of interest, we sought to elucidate the function of the depression GWAS signal by 

detecting genic regions within which there is likely pleiotropy between depression and endophenotypes across 

three modalities: the expression and splicing of mRNA transcripts across brain, endocrine, and immune tissues, 

regional brain volumes, and functional and structural brain network connectivity. 

 

RESULTS  

Analysis procedure and overview. For all endophenotypes, we used LAVA14 to conduct local genetic 

correlation analyses with depression, testing the shared genetic signal at individual genomic loci. Locus 

boundaries were defined using the genomic coordinates of all protein coding genes (N = 18,380), 

adding 1 megabase windows around the gene transcription start sites to encompass the entire cis-

region (note that we chose to focus only on the cis-regions as opposed to the entire genome due to the 

lack of publicly available genome-wide eQTL data from GTEx).  

 To filter out non-associated loci which are not of interest for the genetic correlation analysis, we 

applied the univariate test in LAVA to evaluate the local heritability for all phenotypes and genes. Across 

all endophenotypes analysed in this study, we performed a total of 72,701 local bivariate genetic 

correlations analyses, resulting in a corrected statistical significance threshold of 6.88e-7 (.05 / 72,701). 

 Following the bivariate local genetic correlation analyses, we performed stratified gene-set 

enrichment analyses for all the individual endophenotypes separately, selecting the top 1% of 
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associated genes and evaluating whether these were over-represented within 7,246 MSigDB15 gene 

sets. This stratification allows the results to be interpretable in relation to the specific endophenotype, 

providing additional context to any detected gene-set associations.  

 

Molecular endophenotype analyses suggest MHC signal affects expression and splicing. To 

determine which of the GWAS depression signal could be accounted for by effects on gene expression 

and splicing in relevant tissues, we used data from the GTEx consortium (v8)16 to model the local 

genetic relationships with depression across 18 tissues related to the brain, endocrine, and immune 

systems (Fig. 1). We pre-selected tissues that we judged to be of greatest relevance to depression 

aetiology based on the existing literature, which has focused primarily on the brain17, but also implicated 

the endocrine (adrenal gland, pituitary, thyroid) and immune systems (whole blood, EBV cells)18. 

 Correcting for the number of bivariate local genetic correlation tests performed across all genes 

and endophenotypes in this study (p < 6.88e-7), we find a total of 19 significant associations with the 

expression of 18 genes across 6 tissues, as well as 36 significant associations with the splicing of 21 

genes across 14 tissues (Fig. 2a & 2b). Significant genetic correlations with depression from both the 

expression and splicing endophenotypes were primarily concentrated within the MHC, which is also the 

location of one of the major signal peaks in the analysed depression summary statistics (see Suppl. 

Fig. 1). Although there are two other peaks in the depression GWAS data with similar signal strengths 

on chromosome 1 and 5, no significant genetic correlations were found with the gene expression or 

splicing in these regions. This could be due to for example time specific regulatory effects, lack of power, 

or relevant risk variants not being present in a large enough subset of the GTEx sample. We note that 

while the MHC is a region home to complex and long-range linkage disequilibrium (LD), the LD between 

SNPs within a given gene is accounted for here (see Werme et al14 for more detail). However, long 

range SNP LD from beyond the gene cis-region are not, meaning that genetic effects from outside the 

analysed genes can confound the associations as well. We also note that some amount of overlap 

exists between adjacent genes, which too can lead to correlated results. 

 From both the splicing and expression analyses, two of the analysed genes harboured 

significant genetic associations in more than one tissue: CCHCR1 and FLOT1. CCHCR1 showed 

significant associations in two tissues (brain caudate & cells lymphocytes) while FLOT1 in as many as 

eleven (brain amygdala, brain caudate, brain cerebellar hemisphere, brain cerebellum, brain frontal 

cortex BA9, brain hypothalamus, brain nucleus accumbens, brain spinal cord, cells lymphocytes, 

pituitary, thyroid) (see Suppl. Table 1 for an overview of the exact splice variants significant for all 

detected genes).  

 Of all molecular endophenotype associations, the most significant genetic correlation with MDD 

was found for the chr6:30,740,798-30,741,190 splice variant of FLOT1 in the spinal cord (rg = .74, p = 

1.77e-16).  
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Figure 2 Overview of results from local genetic correlation analyses with gene expression and splicing 

across all 18 tissues. Panels A and B show the -log10 p-values for the local genetic correlations with gene 

expression and splicing respectively, scaled by the direction of the association (y-axis) and ordered according to 

chromosomal location (x-axis). Each point has been coloured according to tissue (see legend). Note that the 

individual splice variants have been omitted in panel B but are listed in Suppl. Table 1 along with a complete 

overview of all significant results from the expression and splicing analyses.  

 

Local genetic correlations with regional brain volumes implicate basal, frontotemporal, and 

cerebellar regions. Genome-wide association summary statistics for regional brain volumes were 

obtained from Zhao et al (2019)19. This data set contained GWAS summary statistics for a total of 56 

brain regions of which 45 were hemispheric homologous regions, which were analysed separately in 

the original study. Given the often substantial local genetic correlations that we observed for the 

homologous regions, we used a meta-analysis procedure to combine the local genetic signals for these 

regions in loci where the explained variance for their local rg exceeded .9, or the confidence intervals 

for its explained variance included 1 (see Methods for details).  

 Correcting for the total number of bivariate tests performed across all endophenotypes in this 

study (p < 6.88e-7), we found 37 significant local genetic correlations with the volumes of 14 brain 

regions (Fig. 3). Here, just over half of the brain regions with which significant genetic relationships with 

MDD were detected were located within or immediately adjacent to the basal ganglia (i.e. basal 

forebrain, brain stem, caudate, lateral ventricle, pallidum, putamen, thalamus, ventral diencephalon), 
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 Figure 3 Overview of results from local genetic correlation analyses with regional brain volumes. Panel A 

shows the results from all analysed genes and regions, with points representing the -log10 p-values scaled by the 

direction of the genetic correlations (y-axis), which have been ordered according to chromosomal location (x-axis). 

Note that for the purpose of readability, only the regions within which we detected at least one significant gene 

have been coloured, and lateralisation of hemispheric homologous regions is not indicated (but a detailed overview 

of all significant hits can be found in Suppl. Table 2). Panel B shows a graphical illustration of the regional brain 

volumes with at least one significant hit from the local genetic correlation analyses.  

 

an area often regarded as central to emotion processing and reinforcement learning20 which has been 

frequently implicated as a key area involved in the susceptibility to depression21 and other psychiatric 

disorders21,22.  

 Significant genetic correlations with MDD were also detected in two of the cerebellar vermal 

lobules [1/5 & 8/10], the lingual gyrus, the precentral gyrus, pars opercularis (part of the inferior frontal 

gyrus), and the transverse temporal gyrus (see Fig. 3B for a graphical illustration of all relevant brain 

regions). Though these regions have received comparatively little attention relative to the basal ganglia, 

they have also been implicated depression in the past23,24. Overall, the results presented here offer the 

hypothesis that the shared genetic signal within these gene cis-regions could potentially be a driving 

factor in the relationship between these brain regional volumes and MDD which has been shown in 

previous neuroimaging studies. But since the results from this study are merely observational, 

evaluation of this hypothesis using alternative methodologies is necessary before any such relationship 

can be confidently established. 

 Unlike the genetic correlations detected from the molecular endophenotype analyses, 

significant associations with the regional brain volumes tended to be more dispersed across the 

genome with no gene showing significant genetic correlation between depression and more than one 
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brain region. Thus, the genes tended to be more region specific as compared to the expression and 

splicing analyses where the same genes tended to show genetic correlation across multiple tissues.  

Additionally, within the MHC, which was the region with the greatest number of significant associations 

from the expression and splicing analyses, only six significant correlations were found (between MDD 

and the left thalamus specifically). Notably, however, these included the FLOT1 gene, which was the 

most frequently associated gene from the splicing and expression analyses (Fig. 2). 

 

Local genetic correlations with brain network connectivity highlight genes associated with 

stress hormone regulation and circadian rhythm. We used GWAS summary statistics for the 

connectivity within different brain networks from Tissink et al (2023)25 measured with resting-state 

functional MRI (functional) and diffusion-weighted MRI (structural) to evaluate whether the gene-level 

local genetic signal in depression is related to that of functional and structural brain network connectivity 

across seven networks (as well as the global connectivity for reference; see Fig. 4C). 

 

 

Figure 4 Overview of local genetic correlation analyses with functional and structural brain network 

connectivity. Panel A and B show the -log10 p-values from the genetic correlation analyses with the functional 

and structural network connectivity phenotypes respectively, scaled by the direction of effect (y-axis), and ordered 

according to chromosomal location (x-axis). Panel C shows an overview of the different brain regions related to 

each network, which have been differentiated by colour (see legend). 
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 Among all analyses, we only detected significant associations with the structural connectivity 

within the visual network (p < 6.88e-7; Fig. 4A, 4B), where the top associated genes, UTS2 and PER3, 

are known to be involved with functions such as stress hormone regulation and circadian rhythm26,27,28. 

That the visual network is the only network with significant hits is not consistent with the literature, which 

tends to implicate networks related to higher order cognition or emotional processing29 in MDD, such 

as the default mode network30, ventral attention network31, frontoparietal network32, and the limbic 

network32. Though we note that power for the connectivity endophenotypes was generally low 

compared to other analysed endophenotypes (as indicated by the lack of genome-wide significant 

SNPs), and that in the original GWASs, the structural connectivity in the visual network had the greatest 

number of detected genome-wide significant SNPs compared to all other network phenotypes25. As 

such, the result observed here could potentially reflect the differential power between the networks, 

which, as highlighted in the original study, may relate to the phenotype definition (which averages less 

variable unimodal network connectivity compared to more variable higher-order network connectivity). 

We do also emphasise that the multiple testing correction employed here is somewhat 

conservative as it does not account for neither the correlation between genes nor endophenotypes, and 

that we did observe several trend level associations with other networks as well. For example, there 

was an association within the ALMS1 gene between depression and the structural connectivity in the 

ventral attention network which was just above the corrected significance threshold (p = 2.00e-6). This 

was also true within the BORCS7 gene for the limbic network (p = 4.90e-06; structural), in the LTBR 

gene with the ventral attention network (p = 3.28e-6; functional), and in the AIG1 gene with the global 

functional connectivity (p = 9.90e-6; see Suppl. Table 3). However, it remains to be seen whether these 

will be reliably detected using summary statistics form more well powered data sets.  

 

Stratified enrichment analyses highlight brain region specific MDD gene sets. To examine gene 

sets that might account for the shared genetic component between depression and analysed 

endophenotypes, we conducted stratified gene-set enrichment analyses for all endophenotypes 

separately. This was done by selecting the top 1% of genes from the bivariate local genetic correlation 

analyses for all endophenotypes individually, and employing a Fisher's exact test to evaluate over-

representation within 7,246 MSigDB15 gene sets (see Methods for more detail).  

 Correcting for the total number of gene sets tested across all endophenotypes (p < .05 / 

28,959 = 1.73e-06), we detected 16 significant gene sets related to the top genetically correlated genes 

from 4 regional brain volume endophenotypes: precentral gyrus, pallidum, putamen, and pars 

triangularis (Table 1). 

 The most significant gene set was ‘cellular response to zinc ion’ for the precentral gyrus (OR 

= 4670.17; p = 3.9e-21). Here, the related genes all encode for metallothionein, which affect the cellular 

communication and signal transduction by binding to metal ions, such as zinc. All other gene sets 

detected for the precentral gyrus were also related to cellular response (in particular to metal ions) or 

regulation of growth. These results may suggest that the genetic liability in depression could be partially 
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attributed to altered cell signalling in the precentral gurus resulting in detectable morphological changes 

in this region (though experimental validation will be required in order to confirm this relationship).  

 
 
Table 1 Significant gene sets detected via enrichment analyses of top 1% genetically correlated 
genes, stratified by endophenotype 
 

Region Gene set OR P Genes 

Precentral 

GO_bp:go_cellular_response_to_zinc_ion 4670.17 3.90E-21 MT1E;MT1M;MT1A;MT1B;MT1F;MT1G;MT1H 

GO_bp:go_response_to_zinc_ion 914.93 1.10E-16 MT1E;MT1M;MT1A;MT1B;MT1F;MT1G;MT1H 

GO_bp:go_cellular_response_to_cadmium_ion 1787.03 3.40E-14 MT1E;MT1A;MT1F;MT1G;MT1H 

GO_bp:go_response_to_transition_metal_nanoparticle 319.21 1.40E-13 MT1E;MT1M;MT1A;MT1B;MT1F;MT1G;MT1H 

GO_bp:go_cellular_response_to_inorganic_substance 299.92 2.20E-13 MT1E;MT1M;MT1A;MT1B;MT1F;MT1G;MT1H 

GO_bp:go_negative_regulation_of_growth 194.75 4.20E-12 MT1E;MT1M;MT1A;MT1B;MT1F;MT1G;MT1H 

GO_bp:go_response_to_cadmium_ion 534 7.40E-12 MT1E;MT1A;MT1F;MT1G;MT1H 

GO_bp:go_response_to_metal_ion 136.19 4.60E-11 MT1E;MT1M;MT1A;MT1B;MT1F;MT1G;MT1H 

GO_bp:go_response_to_inorganic_substance 93.97 5.70E-10 MT1E;MT1M;MT1A;MT1B;MT1F;MT1G;MT1H 

GO_bp:go_regulation_of_growth 70.4 4.00E-09 MT1E;MT1M;MT1A;MT1B;MT1F;MT1G;MT1H 

GO_cc:go_perinuclear_region_of_cytoplasm 68.67 4.80E-09 MT1E;MT1M;MT1A;MT1B;MT1F;MT1G;MT1H 

GO_mf:go_zinc_ion_binding 37.92 2.30E-07 MT1E;MT1M;MT1A;MT1B;MT1F;MT1G;MT1H 

GO_mf:go_transition_metal_ion_binding 30.85 8.60E-07 MT1E;MT1M;MT1A;MT1B;MT1F;MT1G;MT1H 

Pallidum GO_mf:go_triglyceride_lipase_activity 584.38 6.80E-08 PNLIPRP3;PNLIP;PNLIPRP1 

Putamen GO_mf:go_triglyceride_lipase_activity 584.38 6.80E-08 PNLIPRP3;PNLIP;PNLIPRP1 

Pars 
triangularis 

GO_bp:go_hyaluronan_metabolic_process 408.94 2.10E-07 ITIH1;ITIH3;ITIH4 

bp = biological process, cc = cellular component, mf = molecular function 
 
 

 ’Triglyceride lipase activity’ was significant for both the pallidum and putamen, two regions 

that are part of the mesolimbic system which is associated with motivation and reward sensitivity. 

Relatedly, triglycerides are known to be metabolised within the mesocorticolimbic system and directly 

modulate sensitivity to rewards33,34, and it is possible that altered triglyceride activity within these 

regions might affect depression via an influence on reward processing. 

 Finally, ‘hyaluronan metabolic process’ was detected for the ‘pars triangularis’. Although this 

process has not been linked with depression in the past, hyaluronan is a major component of the 

extracellular matrix and plays an essential role in multiple cellular functions, including proliferation, 

migration, and neuronal plasticity, all of which are essential for normal brain functioning35,36. 

 While these analyses highlight gene sets that could potentially account for the genetic overlap 

between depression and these brain regions, a note of caution is necessary when interpreting these 

results. Given that we cannot correct for the correlation between genes, it is possible that the signal 

from proximally located genes could be confounded by LD, which could influence the enrichment in the 

event that those genes are also involved in the same gene sets. Genuine signal from proximally located 

genes does occur in reality however, particularly since genes with similar function may often be proximal 

to each other37, but without conditional analyses it is not possible to determine whether these results 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 9, 2023. ; https://doi.org/10.1101/2023.03.01.23286613doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.01.23286613
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

represent genuine findings or confounding. Nonetheless, these findings may still serve to generate 

actionable hypotheses about depression aetiology and prioritise gene sets that could be relevant for 

functional follow-up, specifically with a focus on the volumetric differences in these brain regions in 

relation to depression.  

 

Convergent evidence across molecular and neuroimaging modalities highlight FLOT1. We 

specifically looked for genes within which we found significant associations between depression and 

multiple endophenotypes as this could suggest potentially wide-ranging effects, making a gene 

particularly interesting for functional follow-up. From all analyses, the gene with the greatest number of 

significant associations was FLOT1, which was also the only gene where local genetic correlations 

were found on more than one level of function: the molecular level (FLOT1 mRNA expression and 

splicing) and the neuroimaging level (left thalamus volume). 

 Alternative splicing for FLOT1 mRNA transcripts were significantly genetically correlated with 

depression in 11 of the 18 analysed tissues (Table 2), with the most significant FLOT1 association of 

all found with a splice variant in the spinal cord (which also represented the most significant association 

across all endophenotype analyses in this study). Though the strongest genetic correlation estimate 

within the FLOT1 region was between depression and the volume of the left thalamus, for which the 

95% confidence intervals for the R2 also included 1, which is consistent with the notion that the genetic 

signal in this locus is entirely shared between MDD and thalamus volume (Table 2).  

 

Table 2 Significant associations detected within the FLOT1 cis-region (chr6:29,727,709-

31,727,709) 

Level Region / tissue Splice variant Rho R2 R2
lower R2

upper P 

Splicing 

Brain spinal cord 30740798:30741190 0.74 0.54 0.36 0.78 1.77e-16 

Brain cerebellar 30740798:30741190 0.61 0.38 0.22 0.59 8.23e-13 

Brain caudate 30741333:30741614 0.57 0.32 0.18 0.51 9.40e-13 

Brain cerebellar 30740798:30741614 -0.56 0.32 0.18 0.50 2.16e-12 

Brain amygdala 30740798:30741190 0.75 0.56 0.34 0.84 2.47e-12 

Brain frontal cortex b9 30741333:30741614 0.52 0.27 0.14 0.46 7.34e-10 

Brain hypothalamus 30740798:30741614 -0.55 0.30 0.15 0.51 8.42e-10 

Thyroid 30741333:30741614 0.53 0.28 0.13 0.50 2.87e-08 

Cells lymphocytes 30740798:30741614 -0.50 0.25 0.11 0.46 1.04e-07 

Brain cerebellum 30741867:30742147 -0.42 0.18 0.07 0.35 5.41e-07 

Brain nucleus accumbens 30740798:30741190 0.48 0.23 0.09 0.43 6.40e-07 

Expression 
Thyroid - -0.45 0.20 0.10 0.33 1.23e-10 

Pituitary - -0.68 0.46 0.23 0.77 2.59e-09 

Volume Thalamus (left) - 0.84 0.70 0.30 1.00 3.56e-07 

 

 As expression QTL summary statistics for the thalamus is not present in the GTEx data, we 

also used GAMBA38 to examine FLOT1 expression patterns based on data from the Allen Human Brain 
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Atlas39. Here, we found the thalamus is among the top ten brain regions with the highest level of FLOT1 

expression (see Suppl. Fig. 2 and Suppl. Table 4), though we note that no brain region showed a 

significantly higher expression level than expected by chance (p > .05). 

 Finally, we used StringDB40 to examine known and predicted interactions between FLOT1 and 

other proteins, which highlighted several transcripts of genes related to neuronal function, such as NGB 

(neuroglobin: involved in oxygen transport in the brain), APP (amyloid-beta A4 protein: triggers neuronal 

cell degeneration), and SLC6A3 (solute carrier family 6 member 3: sodium dependent dopamine 

transporter; see Suppl. Fig. 3 for more detail). 

 

DISCUSSION 

Depression is a heritable psychiatric disorder which represents one of the most significant disease 

burdens worldwide3. An improved understanding of its genetic component is integral to forming a 

clearer picture of its aetiology and developing effective treatments. But while extensive large-scale 

genetic association studies of depression have been performed, inferring function from GWAS results 

has been challenging, and so far, much of the biological mechanisms reflected in the genetic 

association signal remain elusive. 

 In this study, we have generated hypotheses on putative function of the depression GWAS 

signal in a novel manner, using local genetic correlation between depression and a range of molecular 

and brain imaging endophenotypes across different levels of function, with the purpose of elucidating 

relevant neurobiological paths through which depression variants could act. Considering the 1Mb cis 

region of genes as the loci of interest, we also perform endophenotype stratified gene-set enrichment 

analyses of the top 1% of genetically correlated genes, which provides additional context to any 

detected genetic correlations. 

 Using tissue specific gene expression and splicing endophenotypes, we show that the MDD 

GWAS signal peak located in the MHC is correlated with the genetically regulated expression and 

splicing of several genes, with FLOT1 representing the gene with the greatest number of significant 

associations of all (detected in a total of 11 tissues: brain amygdala, brain caudate, brain cerebellar 

hemisphere, brain cerebellum, brain frontal cortex BA9, brain hypothalamus, brain nucleus accumbens, 

brain spinal cord, cells lymphocytes, pituitary, thyroid).  

 Analyses with regional brain volume endophenotypes identified significant local genetic 

correlations between MDD and regions primarily within and around the basal ganglia (basal forebrain, 

brain stem, caudate, lateral ventricle, pallidum, putamen, thalamus, ventral diencephalon), but also with 

frontotemporal regions (lingual gyrus, precentral gyrus, pars opercularis, transverse temporal gyrus) 

and two cerebellar vermal lobules (1/5 & 8/10). The emphasis on the basal ganglia differs from the 

functional follow-up analyses from Howard et al.7 (the summary statistics analysed here represent a 

large subset from their study). Using cell type specific enrichment from the gene analysis results, they 

implicated only the cortex, anterior cingulate cortex, and the frontal cortex. Given the central role of the 

basal ganglia in previous depression literature, this suggests that integration of multiple sources of data 

may aid the discovery potentially relevant targets which may be missed using traditional enrichment 
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analysis. Though we emphasise that validation of our findings will be required in order to confirm a 

shared genetic aetiology between MDD and volumetric aberrations within these regions. 

 Further gene-based local genetic correlation analyses with the connectivity of seven brain 

networks identified four significant genetic correlations with the structural connectivity within the visual 

cortex within genes related to for example stress hormone regulation and circadian rhythm. Although 

higher order cognitive and emotional processing networks tend to be implicated in depression (such as 

the default mode, central executive, and ventral attention network), we note that power for all 

connectivity endophenotypes was generally low, and that these results are a likely consequence of the 

greater power of the visual network compared to the other networks.  

 In order to evaluate whether pleiotropic effects for any given endophenotype tended to be 

overrepresented within any gene sets, we performed stratified gene-set enrichment analyses of the top 

1% of genes from the genetic correlation analyses for all analysed endophenotypes separately. Results 

from these analyses highlighted gene sets related to cellular response to metal ions and growth 

regulation for the precentral gyrus, triglyceride lipase activity for the palladium and putamen, as well as 

hyaluronan metabolism for the pars triangularis. While experimental validation will be necessary to 

confirm these findings, stratification by genetic correlation with relevant endophenotypes offers a 

powerful approach to contextualising discovered gene set associations, providing a more detailed 

picture of its potential relevance in the aetiology of the disorder. 

 Finally, of special interest in this study was to look for genes within which we observed genetic 

relations between depression and several endophenotypes, particularly across multiple levels of 

function, as it strengthens the evidence for the involvement of any particular gene and may also 

implicate such genes as having wide-ranging effects, making them particularly interesting for functional 

follow-up or pharmaceutical targeting. Here, the FLOT1 gene stood out as the gene within which most 

significant associations were detected among all local genetic correlation analyses performed, and it 

was also the only gene where associations were found across two different modalities: molecular and 

neuroimaging (i.e. the FLOT1 expression and splicing in multiple tissues, as well as the volume of the 

left thalamus). 

 FLOT1 encodes a protein which is an integral membrane component of the caveola, and is 

likely a scaffolding protein involved in signal transduction41, vesicle trafficking42, and cell-cell 

adhesion43. Relatedly, it interacts directly with dopamine44 and serotonin transporters45 whose targets 

have been frequently implicated in depression46–48. Although FLOT1 has itself received little attention 

in depression aetiology (unlike the monoamines which it regulates), it was recently flagged in a 

transcriptome wide-association study (TWAS) of depression that used an independent Chinese sample 

in addition to the European GTEx sample analysed in this study10. One recent experimental mouse 

study also examined the influence of down-regulated FLOT1 expression in the hippocampus. There, 

decreased FLOT1 was shown to exacerbate depressive behaviours in response to chronic 

corticosterone exposure45, which provides a suggested mechanism through which FLOT1 variants 

might act in the context of MDD.  
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 While little is currently known about FLOT1 druggability, FLOT1 protein expression has been 

found to be responsive to exposure to valproic acid49, a drug which is frequently used to treat mood 

disorders (in particular bipolar disorder50). Efforts have also been made to target FLOT1 

pharmaceutically for the treatment of Alzheimer’s disease51, and since our results suggest that drugs 

targeting FLOT1 may be promising to explore further in depression treatment, it may be worthwhile to 

examine whether such drugs could be efficacious for MDD as well. 

 A number of limitations should be kept in mind while interpreting the findings of this study. 

Firstly, the reliance on observational GWAS data greatly impacts any claims about causality or direction 

of effect that can be made based on the results of this study alone. While one may intuitively interpret 

genetic correlations between a lower and higher order phenotype in the direction of complexity, reverse 

causality or mediation by unobserved confounders are always possible. Similarly, given the strong LD 

between genes, the genetic signal for different genes are often correlated, meaning that significant 

associations from multiple proximal genes are expected even in scenarios when the true genetic signal 

arises from a single gene. This is a common problem when dealing with genetic data, and though 

conditional models could help prioritise likely causal genes, these were not available at the moment. 

Furthermore, it is also not possible to conclude that the endophenotypes implicated are exclusively 

correlated with depression, given that depression shows genetic overlap with multiple other 

neuropsychiatric disorders and traits7,52,53. An additional consideration is that since Bonferroni 

correction was used to correct for multiple testing, the significance threshold employed should be 

somewhat conservative since the number of independent associations will in practice be fewer than the 

total number of analyses (both when considering the correlation between genes, but also the 

endophenotypes). The reliance on summary statistics of European samples (which was done to 

maximise sample size), also means that the generalisability of our findings may not extend to 

populations of non-European ancestry.  

 The final, but perhaps most important limitation concerns the heterogeneity of MDD. That is, 

while MDD was analysed as a single, unified construct, in reality it is heterogeneous and syndromic, 

likely consisting of multiple sub-groups which differ with respect to symptom presentation and 

aetiology54. Since this study relied on publicly available summary statistics, there was no opportunity to 

account for this in the current analyses. But though our findings do not reflect the heterogeneous nature 

of MDD, they may nonetheless be relevant for MDD as a whole as they could point towards underlying 

biology that could be targetable in at least a notable proportion of MDD cases.  

 In conclusion, this study has demonstrated a novel way in which local genetic correlation may 

be applied to attempt to elucidate the function of the genetic signal in depression, using publicly 

available GWAS summary statistics from a range of relevant endophenotypes. Although the results 

presented cannot be interpreted as definite proof of any potential implied mechanism or causal path, 

they have generated several concrete and testable hypotheses about the possible ways in which 

genetic variants could influence depression, providing an important contribution to the body of research 

that aims to uncover its complex aetiology. 
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METHODS 

Ethics statement. This study relied entirely on secondary analysis of publicly available summary 

statistics, for which ethical approval has been obtained by the primary researchers. 

 

LAVA overview. The LAVA method has been described in detail elsewhere14, but a brief overview is 

provided here. For a given locus, denote the standardized SNP genotype matrix for the locus as 𝑋, with 

𝑋 containing only SNPs for which summary statistics are available for all phenotypes to be analysed 

together. The genotype matrix is then projected onto its standardized principal components 𝑊 , 

selecting the first 𝐾 principal components, with 𝐾 the smallest number such that 𝑊 captured at least 

99% of the variance in 𝑋. In a modification to the original LAVA implementation, 𝐾 was subsequently 

constrained to be no greater than 80% of the smallest sample size of the phenotypes being analysed, 

which was necessary to maintain the stability of the parameter estimates when analysing the molecular 

data. 

 For each phenotype 𝑝, with phenotype variable 𝑌𝑝, LAVA then fits the multiple linear regression 

model 𝑌𝑝 = 𝑊𝛿𝑝 + 𝜀𝑝  if the phenotype is continuous (with 𝑌𝑝 standardized), or the equivalent multiple 

logistic regression model if the phenotype is binary. From this, the sampling distributions for the effect 

estimates 𝛿መ𝑝 are obtained, which serve as the basis for the remainder of the analysis. In practice, the 

parameters of these sampling distributions are estimated using GWAS summary statistics for each of 

the phenotypes, together with genotype reference data to estimate LD. For each principal component 

𝑗 , the vector 𝛿መ𝑗  of its estimated effects across phenotypes is assumed to be distributed as 

𝛿መ𝑗  ~ MVN൫𝛿𝑗, Σ෠൯. The matrix Σ෠ is the sampling covariance matrix, with diagonal elements equal to the 

sampling variance estimates 𝜎ො𝑝
2 obtained from the univariate regression for each phenotype 𝑝. The off-

diagonal elements reflect sampling covariance induced by possible sample overlap, which are 

computed using the intercepts from the corresponding bivariate LD score regression models55.

 Defining the local genetic component matrix 𝐺, with columns 𝐺𝑝 = 𝑊𝛿𝑝 for each phenotype, 

the aim of LAVA is to estimate and test the local genetic covariance matrix Ω = covሺ𝐺ሻ, with elements 

𝜔𝑝
2 = var൫𝐺𝑝൯ for each phenotype 𝑝, and 𝜔𝑝𝑞 = cov൫𝐺𝑝, 𝐺𝑞൯ for each pair 𝑝 and 𝑞. A method of moments 

estimator is used to obtain the corresponding estimate Ω෡ . Univariate tests are performed for each 

phenotype to evaluate the presence of genetic signal for each phenotype in the locus, testing 𝐻0: 𝜔𝑝
2 =

0.  

Bivariate tests of local genetic correlation between 𝑝 and 𝑞 are performed to evaluate genetic 

overlap in the locus, testing 𝐻0: 𝜔𝑝𝑞 = 0. The local genetic correlations are defined as 𝜌𝑝𝑞 =
𝜔𝑝𝑞

ට𝜔𝑝
2𝜔𝑞

2
, with 

the estimate 𝜌ො𝑝𝑞 =
𝜔ෝ 𝑝𝑞

ට𝜔ෝ 𝑝
2𝜔ෝ 𝑞

2
. Multivariate models for more than two phenotypes can similarly be evaluated, 

using transformations of Ω෡ to obtain multiple linear regression and partial correlation models for 𝐺. 
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Meta-analysis of local genetic components. The LAVA model was extended to implement a form of 

meta-analysis at the level of genetic components, allowing for the estimation and testing of genetic 

correlations of a composite genetic component 𝐺𝑀 with the genetic components of other phenotypes. 

This can be used to perform LAVA analysis for linear combinations of phenotypes, using only the 

summary statistics for those individual phenotypes. We present this model here for the special case 

where 𝐺𝑀 is a composite of the genetic components of two phenotypes, 𝐺1 and 𝐺2, correlated with that 

of a single other phenotype, 𝐺𝐷, but the framework generalized to arbitrary numbers of phenotypes. 

 The composite genetic component is specified as a weighted sum 𝐺𝑀 = 𝑤1𝐺1 + 𝑤2𝐺2 =

𝑤1𝑊𝛿1 + 𝑤2𝑊𝛿2 = 𝑊𝛿𝑀 , with weights 𝑤1  and 𝑤2  and with 𝛿𝑀 = 𝑤1𝛿1 + 𝑤2𝛿2 . This shows that this 

approach is essentially equivalent to meta-analysing the genetic effects before running the LAVA 

analysis, provided the same weights are used. Note that the absolute scaling of the weights does not 

matter, only the scaling of 𝑤1 relative to 𝑤2, since changes in absolute scaling will cancel out when 

computing genetic correlations of 𝐺𝑀 with any other phenotype. 

 The full local genetic covariance Ω for 𝐺1, 𝐺2 and 𝐺𝐷 can be defined and estimated using the 

standard LAVA model as outlined above, and this can be used to define and estimate the transformed 

genetic covariance matrix Ω∗ = ൬
𝜔𝑀

2 𝜔𝑀𝐷

𝜔𝐷𝑀 𝜔𝐷
2 ൰ . Since 𝐺𝑀  is a linear combination of 𝐺1  and 𝐺2 , the 

elements of  Ω∗  have the form 𝜔𝑀
2 = 𝑤1

2𝜔1
2 + 𝑤2

2𝜔2
2 + 2𝜔12  and 𝜔𝐷𝑀 = 𝜔𝑀𝐷 = 𝑤1𝜔1𝐷 + 𝑤2𝜔2𝐷 . The 

estimate Ω෡∗  can therefore be computed directly from Ω෡ , and the transformed sampling covariance 

matrix Σ෠∗ can be computed from the full Σ෠ in the same way. 

 Subsequent analysis proceeds in the same way as in the core LAVA model. An inverse-

variance weighting approach is used to set the weights, with 𝑤1 =
1

𝜎ෝ1
2 and 𝑤2 =

1

𝜎ෝ2
2. The meta-analysis 

procedure has been added to the LAVA R package and can be called via the ‘meta.analyse.locus()’ 

function (more detail can be found in the function manual). 

 

Summary statistics and genotype reference data. Summary statistics for depression were 

downloaded from the GWAS atlas (https://atlas.ctglab.nl)56, and represent the subset from the Howard 

et al. (2019)7 GWAS meta-analysis of depression excluding the 23andMe samples (N = 500,199). The 

cis-eQTL and cis-sQTL summary statistics were obtained from GTEx v8 

(https://gtexportal.org/home/datasets), and the brain volume GWAS summary statistics by Zhao et al. 

(2021)19 were downloaded from https://www.med.unc.edu/bigs2/data/gwas-summary-statistics/. 

Finally, the network connectivity GWAS summary statistics by Tissink et al. (2023) are available at 

https://ctg.cncr.nl/software/summary_statistics/.  

 All GWAS summary statistics are based on participants of European genetic ancestry, and we 

used genotype reference data from for the European subset of the 1000 Genomes (phase 3)57 sample 

for the estimation of SNP LD for the LAVA analyses. We filtered all summary statistics to SNPs having 

a minor allele frequency of at least .5% in the 1000 Genomes data in order to exclude SNPs with a very 

low frequency. 
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Local genetic correlation analysis with molecular phenotypes. In order to limit the number of 

performed tests downstream, and thus the multiple testing burden, we pre-selected GTEx tissues that 

we judged to be of greatest potential relevance to depression based on the existing literature, which 

has implicated primarily the brain9,17, but also the endocrine (adrenal gland, pituitary, thyroid) and 

immune systems (whole blood, EBV cells)18. As loci, we used the cis-region of all protein coding genes 

(N = 18,380), including all SNPs that were within one megabase of the gene transcription start site. 

For every tissue and type (i.e. gene expression or splicing), LAVA univariate tests were 

performed for both depression and the molecular phenotype. For each gene for which sufficient genetic 

signal was present for both (univariate p-values < 1e-4), the local bivariate genetic correlation of the 

molecular phenotype with depression was estimated and tested. The sampling correlations in the 

bivariate analyses were all assumed to be negligible, and the off-diagonal elements of Σ෠ were therefore 

set to zero. Bonferroni correction was used to account for multiple testing, correcting for the total number 

of local genetic correlations with depression tested across all bivariate local rg analyses in the paper 

(that is, including all molecular and brain imagining endophenotypes), resulting in a significance 

threshold of 0.05 / 72,701 = 6.88e-7.  

 

Local genetic correlation analysis with brain imaging phenotypes. For the LAVA analyses of the 

regional brain volume and network connectivity phenotypes, we again defined our loci as using all 

protein coding genes (N = 18,380), adding one megabase windows around the transcription start sites 

to obtain the entire cis-regions. As for the molecular phenotypes, for each brain phenotype univariate 

tests were performed for all genes, selecting genes for bivariate analysis if univariate p-values for both 

the brain phenotype and depression for that gene were lower than 1e-4.  

 For the regional brain volume phenotypes, an extra step was included to account for the 

potentially quite strong genetic correlations between the hemispheric homologous regions (i.e. regions 

for which there are corresponding but separate regions from both left and right hemispheres). For every 

homologous region and gene, if both the left and right hemisphere for that region were selected for 

bivariate analysis, the local genetic correlation 𝜌𝑙𝑟 between the two hemispheres was first computed for 

that region. If either 𝜌𝑙𝑟
2 > .9, or the 95% confidence interval of 𝜌𝑙𝑟

2  included 1, the genetic components 

of the two hemispheres were meta-analysed (see also Meta-analysis of genetic components above), 

and the local genetic correlation of this meta-analysed genetic component with that of depression was 

estimated and tested. Otherwise, local genetic correlations for that region with depression were 

analysed separately for the left and right hemisphere. 

 In the bivariate analyses, to account for sample overlap, LD score regression55 was used to 

obtain estimates of the sampling correlations between depression and the brain imaging phenotypes, 

as well as between the left and right hemisphere regional brain volumes for each region. These were 

provided to LAVA to set the off-diagonal elements of Σ෠. As with the molecular phenotypes, a Bonferroni-

corrected significance threshold of 0.05 / 72,701 = 6.88e-7 was used, correcting for the total number of 
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local genetic correlations tested across all genes and endophenotypes analysed in this study (i.e. both 

molecular and brain imaging). 

  

Endophenotype-stratified gene-set enrichment analysis. We examined whether the 

endophenotype-specific genes implicated through local rg analysis with depression were enriched within 

any biological annotated pathways, by conducting endophenotype-stratified gene-set enrichment 

analyses. Thus, for each analysed endophenotype separately, the top 1% of genes from local rg 

analyses with depression were subjected to a Fisher's exact test in order to evaluate over-

representation within 7,246 MSigDB v6.215. Bonferroni correction was used to account for multiple 

testing, correcting for the number of enrichment analyses performed across all phenotypes, resulting in 

a significance threshold of 0.05 / 28,959 = 1.73e-6 (note that for each endophenotype, only gene sets 

which included at least one evaluated gene from the local rg analyses were tested). 

 

Data availability. All analyses in this study relied on publicly available data from GWAS atlas 

https://atlas.ctglab.nl, GTEx https://gtexportal.org/home/datasets, brain volume GWAS 

https://www.med.unc.edu/bigs2/data/gwas-summary-statistics/, network connectivity GWAS 

https://ctg.cncr.nl/software/summary_statistics/, and MSigDB https://www.gsea-

msigdb.org/gsea/msigdb/collections.jsp. The locus file used for all the LAVA analyses can be 

downloaded from https://github.com/josefin-werme/lava-mdd-endo-2023. 

 

Code availability. Analysis scripts to generate the results in this manuscript are publicly available at 

https://github.com/josefin-werme/lava-mdd-endo-2023. The LAVA software is implemented as an R 

package (https://github.com/josefin-werme/lava) and contains the relevant functions used for the local 

rg analyses in this study. 
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