Researching COVID to enhance recovery (RECOVER) adult study protocol: Rationale, objectives, and design

Short title: RECOVER Adult Cohort Protocol

Authors:

Leora I. Horwitz1*; Tanayott Thaweethai2; Shari B. Brosnahan3; Mine S. Cicek4; Megan L. Fitzgerald5; Jason D. Goldman6; Rachel Hess7; S. L. Hodder 8; Vanessa L. Jacoby9; Michael R. Jordan10; Jerry A. Krishnan11; Adeyinka O. Laiyemo12; Torri D. Metz13; Lauren Nichols14; Rachel E. Patzer15; Anisha Sekar5; Nora G. Singer16; Lauren E. Stiles17; Barbara S. Taylor18; Shifa Ahmed2; Heather A. Algren19; Khamal Anglin20; Harvey Hsu21; Hassan Ashktorab12; Ingrid V. Bassett22; Brahmcetna Bedi23; Nahid Bhadelia24; Christian Bime25; Marie-Abele C. Bind2; Lora J. Black26; Andra L. Blomkalns27; Hassan Brim28; Mario Castro29; James Chan2; Alexander W. Charney30; Benjamin K. Chen31; Li Qing Chen32; Peter Chen33; David Chestek34; Lori B. Chibnik35; Dominic C. Chow36; Helen Y. Chu37; Rebecca G. Clifton38; Shelby Collins23; Maged M. Costantine39; Sushma K. Cribbs23; Steven G. Deeks40; John D. Dickinson41; Sarah E. Donohue42; Matthew S. Durstenfeld43; Ivette F. Emery44; Kristine M. Erlandson45; Julio C. Facelli46; Rachael Farah-Abraham47; Alok V. Finn48; Melinda S. Fischer18; Valerie J. Flaherman49; Judges Fleurimont50; Vivian Fonseca51; Emily J. Gallagher52; Jennifer C. Gander53; Maria Laura Gennaro54; Kelly S. Gibson55; Minjoung Go56; Steven N. Goodman57; Joey P. Granger58; Frank L. Greenway59; John W. Hafner60; Jenny E. Han61; Michelle S. Harkins62; Kristine S.P. Hauser53; James R. Heath64; Carla R. Hernandez 65; On Ho66; Matthew K. Hoffman67; Susan E. Hoover26; Carol R. Horowitz68; Harvey Hsu69; Priscilla Y. Hsu40; Brenna L. Hughes70; Prasanna Jagannathan56; Judith A. James71; Janice John72; Sarah Jolley73; S. E. Judd74; Joy J. Juskowich75; Diane G. Kanjilal76; Elizabeth W. Karlson77; Stuart D. Katz78; J. Daniel Kelly40; Sara W. Kelly79; Arthur Y. Kim76; John P. Kirwan80; Kenneth S. Knox69; Andre Kumar56; Michelle F. Lamendola-Essel78; Margaret Lanca81; Joyce K. Lee-Iannotti82; R. Craig Lefebvre83; Bruce D. Levy84; Janet Y. Lin34; Brian P. Logarbo, Jr. 85; Jennifer K. Logue86; Michele T. Longo87; Carlos A. Luciano88; Karen Lutrick89; Shahdi K. Malakooti90; Gail Mallett91; Gabrielle Maranga1; Jai G. Marathe92; Vincent C. Marconi93; Gailen D. Marshall94; Christopher F. Martin47; Jeffrey N. Martin95; Heidi T. May96; Grace A. McComsey97; Dylan McDonald37; Hector Mendez-Figueroa98; Lucio Miele99; Murray A. Mittleman100; Sindhu Mohandas101; Christian Mouchati90; Janet M. Mullington102; Girish N Nadkarni103; Erica R. Nahin78; Robert B. Neuman104; Lisa T. Newman105; Amber Nguyen2; Janko Z. Nikolich106; Igho Ofotokun47; Princess U. Ogbovu107; Anna Palatnik108; Kristy T.S. Palomares109; Tanyalak Parimon33; Samuel Parry110; Sairam Parthasarathy25; Thomas F. Patterson111; Ann Pearman90; Michael J. Peluso112; Priscilla Pemu113; Christian M. Pettker114; Beth A. Plunkett115; Kristen Pogreba-Brown116; Athena Poppas117; J. Zachary Porterfield118; John G. Quigley119; Davin...
K. Quinn120; Hengameh Raissy121; Candida J. Rebello122; Uma M. Reddy123; Rebecca Reece75; Harrison T. Reeder2; Franz P. Rischard124; Johana M. Rosas78; Clifford J. Rosen44; Nadine G. Rouphael129; Dwight J. Rouse125; Adam M. Ruff29; Christina Saint Jean1; Grecio J. Sandoval38; Jorge L. Santana126; Shannon M. Schlater127; Frank C. Sciurba128; Caitlin Selvaggi2; Sudha Seshadri129; Howard D. Sesso130; Dimpy P. Shah131; Eyal Shemesh132; Zaki A. Sherif133; Daniel J. Shinnick2; Hyagriv N. Simhan134; Upinder Singh135; Amber Sowles13; Vignesh Subbian136; Jun Sun11; Mehul S. Sutlar137; Larissa J. Teunis138; John M. Thorp, Jr.139; Amberly Ticotsky72; Alan T. N. Tita140; Robin Tragus141; Katherine R. Tuttle142; Alfredo E. Urdaneta27; P. J. Utz135; Timothy M. VanWagoner143; Andrew Vasey41; Suzanne D. Vernon144; Crystal Vidal1; Tiffany Walker23; Honorine D. Ward145; David E. Warren146; Ryan M. Weeks147; Steven J. Weiner38; Jordan C. Weyer148; Jennifer L. Wheeler148; Sidney W. Whiteheart149; Zanthia Wiley47; Natasha J. Williams150; Juan P. Wisnivesky103; John C. Wood151; Lynn M. Yee152; Natalie M. Young19; Sokratis N. Zisis97; Andrea S. Foulkes2

Affiliations:

1 Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
2 Department of Biostatistics, Massachusetts General Hospital, Boston, MA, USA
3 Division of Pulmonary Critical Care and Sleep Medicine, NYU Langone Health, New York, NY, USA
4 Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
5 Patient Led Research Collaboration on COVID-19, Washington, DC, USA
6 Division of Infectious Diseases, Providence Swedish Medical Center, Seattle, WA, USA
7 Department of Population Health Sciences and Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
8 Department of Medicine, West Virginia University, Morgantown, WV, USA
9 Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
10 Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Medford, MA, USA
11 Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
12 Department of Medicine, Howard University, Washington DC, USA
13 Department of Obstetrics and Gynecology, University of Utah Health, Salt Lake City, UT, USA
14 Body Politic COVID-19 Support Group, Boston, MA, USA
15 Department of Medicine and Surgery, Health Services Research Center, Emory University School of Medicine, Atlanta, GA, USA
16 Department of Medicine and Rheumatology, The MetroHealth Medical Center, Cleveland, OH, USA
17 Department of Neurology, Stony Brook University Renaissance School of Medicine, Stony Brook, NY, USA
18 Department of Medicine, Division of Infectious Diseases and Infectious Diseases, Long School of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
Swedish Center for Research and Innovation, Providence Swedish Medical Center, Seattle, WA, USA
Department of Epidemiology and Biostatistics, University of California at San Francisco Institute of Global Health Sciences, San Francisco, San Francisco, CA, USA
College of Science and Health, Department of Health Sciences, DePaul University, Chicago, IL, USA
Medical Practice Evaluation Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
Department of Medicine, Emory University, Atlanta, GA, USA
Center for Emerging Infectious Diseases Policy and Research, Boston University School of Medicine, Boston, MA, USA
Department of Medicine, University of Arizona, Tucson, AZ, USA
Department of Clinical Research, Sanford Research, Sioux Falls, SD, USA
Department of Emergency Medicine, Stanford University, Stanford, CA, USA
Department of Pathology, Howard University, Washington, DC, USA
Division of Pulmonary and Critical Care, University of Kansas Medical Center, Kansas City, KS, USA
Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
Department of Emergency Medicine, University of Illinois Chicago, Chicago, IL, USA
Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
Department of Medicine, University of Hawaii at Manoa John A. Burns School of Medicine, Honolulu, HI, USA
Department of Allergy & Infectious Diseases, University of Washington, Seattle, WA, USA
Department of Biostatistics, George Washington University, Washington DC, USA
Department of Obstetrics and Gynecology, The Ohio State University Hospital, Columbus, OH, USA
Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
Department of Research Services, University of Illinois College of Medicine, Peoria, IL, USA
Department of Medicine, Division of Cardiology at Zuckerberg San Francisco General, University of California San Francisco, San Francisco, CA
MaineHealth Institute for Research, MaineHealth, Scarborough, ME, USA
Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
Department of Biomedical Informatics and Clinical and Translational Science Institute, University of Utah, Salt Lake City, UT, USA
Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
Department of Pathology, CVPath Institute, Gaithersburg, MD, USA
Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
Mile Square Health Center, University of Illinois Chicago, University of Illinois Chicago, IL, USA
Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
Department of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
Center for Research and Evaluation, Kaiser Permanente of Georgia, Atlanta, GA, USA
Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
Mile Square Health Center, University of Illinois Chicago, University of Illinois Chicago, IL, USA
Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
Department of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
Center for Research and Evaluation, Kaiser Permanente of Georgia, Atlanta, GA, USA
Department of Public Health Research Institute and Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
Department of Obstetrics and Gynecology, MetroHealth System, Cleveland, OH, USA
Department of Medicine, Stanford University, Stanford, CA, USA
Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
Department of Physiology & Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
Clinical Trials, Pennington Biomedical Research Center, Baton Rouge, LA, USA
Department of Emergency Medicine, OSF Saint Francis Medical Center, Peoria, IL, USA
Department of Pulmonary and Critical Care, Emory University School of Medicine, Atlanta, GA, USA
Department of Internal Medicine University of New Mexico, Health Science Center, Albuquerque, NM, USA
Clinical Research Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
Department of Bioengineering, Institute for Systems Biology, Seattle, WA, USA
Clinical Research Center, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
Seattle Children's Therapeutics, Seattle, WA, USA
Department of Obstetrics and Gynecology, Christiana Care Health Services, Newark, DE, USA
Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
Department of Internal Medicine, University of Arizona, Phoenix, AZ, USA
Department of Obstetrics and Gynecology, Duke University, Durham, NC, USA
Department of Arthritis & Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
Department of Family Medicine, Cambridge Health Alliance, Cambridge, MA, USA
Department of Pulmonary and Critical Care Medicine, University of Colorado, Aurora, CO, USA
Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
Department of Medicine, Division of Infectious Diseases, West Virginia School of Medicine, Morgantown, WV, USA
Department of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
77 Department of Medicine, Harvard Medical School, Boston, MA, USA
78 Department of Medicine, NYU Langone Health, New York, NY, USA
79 Department of Pediatrics & Department of Research Services, University of Illinois College of Medicine, Peoria, IL, USA
80 Department Integrated Physiology and Molecular Medicine, Pennington Biomedical Research Center, Baton Rouge, LA, USA
81 Department of Psychiatry, Harvard Medical School, MA, USA
82 Department of Internal Medicine and Neurology, University of Arizona College of Medicine Phoenix, Phoenix, AZ, USA
83 Communications Practice Area, RTI International, Research Triangle Park, NC, USA
84 Department of Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA
85 Tulane Center for Clinical Research, Tulane University School of Medicine, New Orleans, LA, USA
86 Department of Medicine, University of Washington, Seattle, WA, USA
87 Tulane Center for Clinical Neurosciences, Tulane School of Medicine New Orleans, LA, USA
88 Department of Neurology, University of Puerto Rico School of Medicine, San Juan, PR, USA
89 Department of Family & Community Medicine, University of Arizona, College of Medicine – Tucson, AZ, USA
90 Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
91 Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL, USA
92 Department of Medicine, Section of Infectious Diseases, Boston University Medical Center, Boston, MA, USA
93 Department of Medicine, Infectious Diseases and Department of Global Health, Emory University School of Medicine, Atlanta, GA, USA
94 Department of Medicine, University of Mississippi Medical Center, Jackson MS, USA
95 Department of Epidemiology and Biostatistics, University of California, San Francisco; San Francisco, California, CA, USA
96 Department of Cardiology, Intermountain Medical Center, Salt Lake City, UT, USA
97 Department of Medicine, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
98 Department of Obstetrics, Gynecology and Reproductive Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
99 Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
100 Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
101 Department of Infectious Diseases, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
102 Department of Neurology and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
Division of Cardiology, Kaiser Permanente of Georgia, Atlanta, GA, USA
Department of Social, Statistical and Environmental Sciences, RTI International, Research Triangle Park, NC, USA
Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
Division of Pediatric Allergy, Immunology, and Rheumatology, University Hospitals Rainbow Babies and Children's Hospital, Cleveland, Ohio, USA
Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Saint Peter's University Hospital, New Brunswick, NJ, USA
Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
Department of Medicine, Department of Infectious Disease, University of Texas Health, San Antonio, TX, USA
Division of HIV, Infectious Disease, and Global Medicine, University of California, San Francisco, CA, USA
Department of Medicine, Morehouse School of Medicine, Atlanta, GA, USA
Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
Department of Obstetrics and Gynecology, NorthShore University Health System, Evanston, IL, USA
Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, USA
Division of Cardiology, Warren Alpert Medical School of Brown University, Providence RI, USA
Department of Internal Medicine, Division of Infectious Diseases, University of Kentucky, Lexington, KY, USA
Department of Medicine, Division of Hematology/Oncology, University of Illinois Chicago, Chicago, IL, USA
Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
Department of Pediatrics, University of New Mexico, Health Sciences Center, Albuquerque, NM, USA
Department of Nutrition and Chronic Disease, Pennington Biomedical Research Center, Baton Rouge, LA, USA
Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
Department of Pulmonary and Critical Care, University of Arizona, Tucson, AZ, USA
Department of Obstetrics and Gynecology, Brown University, Providence, RI, USA
Department of Medicine, University of Puerto Rico, San Juan, PR, USA
Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
Department of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA

Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Sciences Center San Antonio, San Antonio, TX, USA

Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, USA

Department of Population Health Sciences, Mays Cancer Center, University of Texas Health, San Antonio, TX, USA

Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA

Department of Biochemistry & Molecular Biology, Howard University College of Medicine, Washington DC, USA

Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

Department of Internal Medicine, Stanford University, Stanford, CA, USA

Department of Biomedical Engineering, Department of Systems and Industrial Engineering, University of Arizona College of Engineering, Tucson, AZ, USA

Department of Pediatrics; Emory Vaccine Center, Emory University, Atlanta, GA, USA

Health Services Research Center, Emory University, Atlanta, GA, USA

Department of Obstetrics and Gynecology, University of North Carolina Chapel Hill, Chapel Hill, NC, USA

Department of Obstetrics and Gynecology and Center for Women's Reproductive Health, University of Alabama at Birmingham, Birmingham, AL, USA

Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA

Department of Medicine, Division of Nephrology, University of Washington School of Medicine, Spokane, WA, USA

Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA

Department of Research, Bateman Horne Center, Salt Lake City, UT, USA

Department of Medicine, Tufts Medical Center, Boston, MA, USA

Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA

Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, USA

Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA

Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA

Institute for Excellence in Health Equity, NYU Grossman School of Medicine, New York, NY, USA

Department of Pediatrics and Radiology, Children's Hospital of Los Angeles, Los Angeles, CA, USA

Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
* Corresponding author

Email: Leora.Horwitz@nyulangone.org (LH)

Membership of the RECOVER Initiative is provided in the Supporting Information.

Registration: NCT05172024
Abstract

Importance: SARS-CoV-2 infection can result in ongoing, relapsing, or new symptoms or other health effects after the acute phase of infection; termed post-acute sequelae of SARS-CoV-2 infection (PASC), or long COVID. The characteristics, prevalence, trajectory and mechanisms of PASC are ill-defined. The objectives of the Researching COVID to Enhance Recovery (RECOVER) Multi-site Observational Study of PASC in Adults (RECOVER-Adult) are to: (1) characterize PASC prevalence; (2) characterize the symptoms, organ dysfunction, natural history, and distinct phenotypes of PASC; (3) identify demographic, social and clinical risk factors for PASC onset and recovery; and (4) define the biological mechanisms underlying PASC pathogenesis.

Methods: RECOVER-Adult is a combined prospective/retrospective cohort currently planned to enroll 14,880 adults aged ≥18 years. Eligible participants either must meet WHO criteria for suspected, probable, or confirmed infection; or must have evidence of no prior infection. Recruitment occurs at 86 sites in 33 U.S. states, Washington, DC and Puerto Rico, via facility- and community-based outreach. Participants complete quarterly questionnaires about symptoms, social determinants, vaccination status, and interim SARS-CoV-2 infections. In addition, participants contribute biospecimens and undergo physical and laboratory examinations at approximately 0, 90 and 180 days from infection or negative test date, and yearly thereafter. Some participants undergo additional testing based on specific criteria or random sampling. Patient representatives provide input on all study processes. The primary study outcome is onset of PASC, measured by signs and symptoms. A paradigm for identifying PASC cases will be
defined and updated using supervised and unsupervised learning approaches with cross-validation. Logistic regression and proportional hazards regression will be conducted to investigate associations between risk factors, onset, and resolution of PASC symptoms.

Discussion: RECOVER-Adult is the first national, prospective, longitudinal cohort of PASC among US adults. Results of this study are intended to inform public health, spur clinical trials, and expand treatment options.
Introduction

Hundreds of millions of people worldwide have been infected with the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2).[1] Many have experienced ongoing, relapsing, or new symptoms or other health effects occurring after the acute phase of infection, termed post-acute sequelae of SARS-CoV-2 infection (PASC), or long COVID. While more than 200 symptoms have been associated with PASC,[2] there are no agreed upon criteria for the diagnosis of PASC, and estimates of PASC incidence and prevalence vary widely.[3-9]

The pathophysiology underlying PASC remains incompletely understood.[10, 11] Various mechanisms have been proposed, including viral persistence,[12-17] microvascular clotting and platelet dysregulation,[18-21] tissue damage from initial infection,[22, 23] inflammation and immune dysregulation,[17, 24-31] reactivation of other latent viral infections (e.g., Epstein-Barr virus),[17, 32, 33] microbial translocation and dysbiosis,[34, 35] and/or impacts of pandemic-related disruptions on health.[36-38] Further characterization of PASC clinical manifestations and underlying pathophysiologic mechanisms could facilitate identification and investigation of preventive and therapeutic interventions.
Materials and Methods

Objectives

The National Institutes of Health (NIH) initiative “Researching COVID to Enhance Recovery (RECOVER) Multi-site Observational Study of Post-Acute Sequelae of SARS-CoV-2 Infection in Adults” (RECOVER-Adult) is intended to: (1) characterize the incidence and prevalence of PASC; (2) characterize the spectrum of clinical symptoms, subclinical organ dysfunction, natural history, and distinct phenotypes identified as PASC; (3) identify demographic, social determinants of health (SDoH), and clinical risk factors for PASC and PASC recovery, and (4) define the biological mechanisms underlying pathogenesis of PASC. This report describes the study design of the RECOVER-Adult study.

Study Design

RECOVER is an ambidirectional (combined retrospective and prospective) longitudinal cohort study that includes people infected or uninfected with SARS-CoV-2. Participants may be enrolled at the time of SARS-CoV-2 infection or a negative test (for uninfected group) and followed prospectively; or, may be enrolled after SARS-CoV-2 infection or a negative test, asked retrospectively about symptoms since infection or a negative test, and then followed prospectively. Participants may be followed until October 2025. An embedded cohort study of pregnant people will provide longitudinal follow-up of the birthing parent and offspring. The protocol for the pregnancy cohort is reported separately [39]. In addition, a series of nested case-control studies will be performed among participants with and without select symptoms or
findings, who will undergo more intensive radiographic imaging, physiologic assessment, and tissue collection.

Protocol development

The protocol was developed and refined in a collaborative process involving site and core investigators, patient representatives and caregivers, and NIH staff (see S1 Fig for timeline and details). Patient representatives were recruited from COVID advocacy organizations such as the Patient-Led Research Collaborative, Survivor Corps, and Long COVID Families; patient organizations with expertise in post-viral syndromes; grass-roots activist organizations; and through nominations by enrolling sites. All patient representatives were compensated for their time. Refinements to the protocol continue to be made in response to participant and site feedback, new scientific evidence, and interim results.

Study organizational structure and study management

The study infrastructure includes four cores: (1) the Clinical Science Core (CSC) at New York University (NYU) Grossman School of Medicine oversees study sites and provides scientific leadership in collaboration with the site Principal Investigators, (2) the Data Resource Core (DRC) at Massachusetts General Hospital and Brigham and Women’s Hospital provides scientific and statistical leadership, and handles data management and storage, (3) the PASC Biorepository Core (PBC) at Mayo Clinic manages biospecimens obtained from study sites, and (4) the Administrative Coordinating Center (ACC) at RTI International (RTI) provides operational and administrative support; collectively these form the Core Operations Group. The four cores are supported by six Oversight Committees that oversee RECOVER-wide activities.
including publications, ancillary studies, clinical trial interventions selection, quality assurance, and study design. Twelve pathobiology task forces provide content-specific input. All RECOVER cohort studies receive inputs from the National Community Engagement Group composed of patient and community representatives; and are overseen by a Steering Committee composed of core and hub principal investigators, patient representatives and NIH program leadership; an Executive Committee composed of NIH Institute leaders, patient representatives and other federal leadership; and an Observational Study Monitoring Board (OSMB) (S2 Fig).[40]

Study setting and participating sites

RECOVER-Adult is designed as a hub and spoke model, with 16 hubs collectively overseeing 86 enrolling sites in the United States (U.S.) located in 33 states plus Washington, DC and Puerto Rico (S1 Table). Enrolling sites include hospitals, health centers, and community organizations drawing participants primarily from their surrounding communities. Two sites are mobile health vans enrolling in rural communities far from health centers. One hub is enrolling participants remotely across the country, with study procedures conducted through home visits and biospecimen collection at local laboratories.

Eligibility Criteria

Participants are eligible for RECOVER if they are at least 18 years old, have reached the age of majority in their state of residence, are not incarcerated, and are not terminally ill. Individuals with or without history of SARS-CoV-2 infection are eligible. Infected individuals must have
suspected, probable, or confirmed SARS-CoV-2 infection as defined by World Health Organization (WHO) criteria[41] (see Table 1), or positive SARS-CoV-2 infection-specific antibody testing. Uninfected individuals must not meet any WHO criteria for infection and must have a documented negative SARS-CoV-2 nucleic acid and antibody test result (Table 1).

Table 1: Definition of infected and uninfected categories used in RECOVER-Adult.

Changes from WHO definition are indicated in italics.

<table>
<thead>
<tr>
<th>WHO category</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspected</td>
<td>Acute onset of fever and cough OR acute onset of any three or more of the following signs or symptoms: fever, cough, general weakness/fatigue, headache, myalgia, sore throat, coryza, dyspnea, anorexia/nausea/vomiting, diarrhea, altered mental status. AND at least one of: 1. Residing or working in an area with a high risk of transmission of virus: closed residential settings, humanitarian settings such as camp and camp-like settings for displaced persons; anytime within the 14 days before symptom onset; OR 2. Residing or travel to an area with community transmission* anytime within the 14 days before symptom onset; OR 3. Working in any health care setting, including within health facilities and within households or within the community; anytime within the 14 days before symptom onset. AND Did not have a negative test for SARS-CoV-2 at the time of suspected infection.</td>
</tr>
<tr>
<td>Severe acute respiratory illness: acute respiratory infection with history of fever or measured fever of ≥38°C; and cough; with onset within the last 10 days; and requires hospitalization AND Did not have a negative test for SARS-CoV-2 at the time of suspected infection.</td>
<td></td>
</tr>
<tr>
<td>A positive SARS-CoV-2 Antigen-RDT who is asymptomatic or meets some but not all clinical or epidemiologic criteria AND</td>
<td></td>
</tr>
<tr>
<td>WHO category</td>
<td>Criteria</td>
</tr>
<tr>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>WHO</td>
<td>Criteria</td>
</tr>
<tr>
<td></td>
<td>Did not have a negative test for SARS-CoV-2 at the time of suspected infection.</td>
</tr>
<tr>
<td>Probable</td>
<td>A patient who meets clinical criteria for suspected SARS-CoV-2 AND is a contact of a probable or confirmed case or linked to a COVID-19 cluster AND Did not have a negative test for SARS-CoV-2 at the time of suspected infection.</td>
</tr>
<tr>
<td></td>
<td>A patient who meets clinical criteria for suspected SARS-CoV-2 AND has chest imaging showing findings suggestive of COVID-19 disease AND Did not have a negative test for SARS-CoV-2 at the time of suspected infection.</td>
</tr>
<tr>
<td></td>
<td>A person with recent onset of anosmia (loss of smell) or ageusia (loss of taste) in the absence of any other identified cause AND Did not have a negative test for SARS-CoV-2 at the time of suspected infection.</td>
</tr>
<tr>
<td>Confirmed</td>
<td>Any person with a positive Nucleic Acid Amplification Test (NAAT)</td>
</tr>
<tr>
<td></td>
<td>Any person with a positive SARS-CoV-2 Antigen-RDT (including home-administered rapid test) AND meeting either the probable case definition or one of the first two suspected criteria</td>
</tr>
<tr>
<td></td>
<td>An asymptomatic person with a positive SARS-CoV-2 Antigen-RDT (including home-administered rapid test) who is a contact of a probable or confirmed case</td>
</tr>
<tr>
<td></td>
<td>Any person with a positive SARS-CoV-2 nucleocapsid protein antibody test OR a positive SARS-CoV-2 spike protein antibody test IF not vaccinated</td>
</tr>
<tr>
<td>Uninfected</td>
<td>Does not meet WHO criteria for a suspected, probable, or confirmed case of SARS-CoV-2 infection AND Has negative NAAT SARS-CoV-2 testing from a respiratory specimen performed at the time of enrollment/screening AND Has a negative SARS-CoV-2 nucleocapsid protein antibody and spike protein antibody test (if not vaccinated) performed at the time of enrollment AND Lives in the same communities or recruited from the same sources as those in the SARS-CoV-2 infected cohort</td>
</tr>
</tbody>
</table>

Individuals who were pregnant at the time of a SARS-CoV-2 infection and had a live birth, or who are pregnant at the time of enrollment in RECOVER, are only eligible to enroll in the
pregnancy cohort of the adult study. Their offspring are eligible for enrollment into the congenital exposure cohort of the RECOVER pediatric study. Individuals who were pregnant at the time of a SARS-CoV-2 infection and had a pregnancy loss or termination prior to 20 weeks’ gestation, are eligible to enroll in either the pregnancy or the adult main cohort.

Sample size

Sample size determinations were performed for both aggregate and subgroup analyses based on characteristics such as age, sex, race/ethnicity, pregnancy, and vaccination status. The current version of the protocol targets enrollment of 12,200 participants with history of SARS-CoV-2 infection and 2,680 participants without history of SARS-CoV-2 infection (total of 14,880). Sample size targets are further specified by duration of time between infection (or negative test) and enrollment, and by pregnancy status (*Table 2*). Based on 90% power and a type-1 error rate of 0.01, the minimum detectable effect size for the difference in risk of PASC or a PASC symptom between participants with and without infection is 3.1% (6.4% in a 25% subgroup), assuming the risk among participants without infection is 15%. When restricting to acute infected and uninfected participants only, the minimum detectable risk difference is 4.7% (10.0% in a 25% subgroup). In logistic regression analyses investigating whether an infected participant develops PASC, the minimum detectable odds ratio for a risk factor is 1.22 (1.46 in a 25% subgroup), assuming 25% of all infected participants develop PASC and that the risk factor prevalence among participants who do not develop PASC is 20%. Finally, assuming that 50% of infected participants who develop PASC recover from it during follow-up, the minimum detectable odds ratio for the association between a risk factor and recovering from PASC is 1.40.
(1.90 in a 25% subgroup), assuming the risk factor has 20% prevalence among participants who do not recover from PASC.

Table 2: Sample size targets, by enrollment category

<table>
<thead>
<tr>
<th>Enrollment category</th>
<th>Target sample size, by subgroup</th>
<th>Target sample size, by time since infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infected, enrolled within 30 days of infection, not pregnant (“acute” infected)</td>
<td>4,714</td>
<td>5,000</td>
</tr>
<tr>
<td>Infected, enrolled within 30 days of infection, pregnant at time of infection (“acute” infected)</td>
<td>286</td>
<td></td>
</tr>
<tr>
<td>Infected, enrolled >30 days after infection, not pregnant (“post-acute” infected)</td>
<td>5,619</td>
<td>7,200</td>
</tr>
<tr>
<td>Infected, enrolled >30 days after infection, pregnant at time of infection (“post-acute” infected)</td>
<td>1,581</td>
<td></td>
</tr>
<tr>
<td>Uninfected, enrolled within 30 days of negative test, not pregnant (“acute” uninfected)</td>
<td>1,141</td>
<td>1,200</td>
</tr>
<tr>
<td>Uninfected, enrolled within 30 days of negative test, pregnant (“acute” uninfected)</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Uninfected, enrolled >30 days from negative test, not pregnant (“post-acute” uninfected)</td>
<td>1,106</td>
<td>1,480</td>
</tr>
<tr>
<td>Uninfected, enrolled >30 days from negative test, pregnant (“post-acute” uninfected)</td>
<td>374</td>
<td></td>
</tr>
</tbody>
</table>

Sample size targets for race/ethnicity are intended to match the distribution of SARS-CoV-2 infection in the U.S. as of June 2021: 16% non-Hispanic Black; 27% Hispanic, 4% non-Hispanic Asian, American Indian/Alaska Native or Native Hawaiian/Other Pacific Islander; and 53% non-Hispanic White.[42]
Recruitment

Participants are recruited through outreach to patients cared for at the enrolling site, community outreach, use of public health test lists, and self-referrals from the RECOVER website (https://recovercovid.org). For participants without SARS-CoV-2 infection, sites are asked to draw from similar communities, demographics, and sites of care as those recruiting infected participants. Enrollment is tracked by enrollment category, race/ethnicity, sex, residence in rural or medically underserved areas, hospitalization status at time of initial infection, and referral source to allow for real time adjustments in enrollment to match protocol targets.

Assessments

The RECOVER-Adult schedule of assessments includes: surveys, collection of biologic specimens, physical examinations, laboratory tests, radiologic studies, and invasive procedures to measure study outcomes. The schedule starts at the time of first infection or at the negative test date ("index date"); follow-up visits are conducted at 90-day intervals for a maximum of 4 years. All participants undergo the same assessments at baseline enrollment. Thereafter, participants follow the assessment schedule corresponding to the appropriate time point relative to the index date. For example, participants who are enrolled 90 days after infection follow the 180-day assessment schedule at their first follow-up visit (Figure). Participants may remain in the study if they have missed a visit; after three missed visits they may be considered lost to follow-up, in which case no further information is obtained.

Figure: Schedule of assessments

Surveys
Participants complete surveys at 90-day intervals throughout the study. On enrollment, data are collected on demographics, SDoH, disability, characteristics of the initial SARS-CoV-2 infection (if applicable), pregnancy (if applicable), vaccination status, comorbidities, medications, and PASC symptoms. Subsequently, at 90-day intervals, data are collected on interim infections, time-varying social determinants, vaccinations, comorbidities, medications and symptoms. The PASC symptom survey was developed for RECOVER and includes an overall quality of life instrument (PROMIS-10) and screening for core symptoms (43 for biological males and 46 for biological females) drawn from existing literature plus input from patient representatives and investigators. Questions about depression, anxiety, post-traumatic stress disorder (PTSD), and grief are also included. Report of a symptom may trigger additional questions about that symptom. Wherever possible, pre-existing validated survey instruments are used. Details of survey instruments can be found at https://recovercovid.org/protocols and in S2 Table.

In-person assessments

Office-based assessments are performed on all participants at enrollment, at 180 days after index date, and then at yearly increments thereafter. These include: height, weight, waist circumference, seated vitals (heart rate, blood pressure, oxygen saturation), 30 second sit-to-stand, and a 10 minute active stand test during which heart rate and blood pressure are measured at 1, 3, 5 and 10 minute intervals (S3 Table).

Laboratory assessments

A core set of laboratory studies are obtained on all participants at enrollment, at 90 and 180 days after the index date (S3 Table). After 180 days, abnormal laboratory tests from the most recent prior visit are repeated annually. At enrollment only, participants enrolled as uninfected
undergo SARS-CoV-2 PCR testing and SARS-CoV-2 antibody testing (nucleocapsid for all, and spike only for unvaccinated). These core studies are performed at each site in Clinical Laboratory Improvement Amendments of 1988 (CLIA)-certified laboratories.

Biospecimens

At enrollment, at 90 and 180 days after the index date, and then annually, participants are asked to provide blood and nasopharyngeal/nasal swab biospecimens for storage (Table 3). Saliva is collected once upon enrollment for genetic analysis. Urine and stool are collected biannually. Biospecimens are not collected from participants who decline use of samples for future research.

Table 3: Tier 1 Biospecimen Collection and Processing Summary

<table>
<thead>
<tr>
<th>Collected Specimen</th>
<th>Quantity</th>
<th>Biobanked Specimen Type</th>
<th>Number of Aliquots</th>
<th>Aliquot Volume</th>
<th>Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasopharyngeal or nasal swab*</td>
<td>1</td>
<td>Nasal Cells</td>
<td>NA</td>
<td>1</td>
<td>Processed locally within 1 hour; frozen to -90°C to -65°C; batch shipped on dry ice</td>
</tr>
<tr>
<td>Blood in serum separator tube</td>
<td>2 x 8.5 ml</td>
<td>Serum</td>
<td>10</td>
<td>1 ml</td>
<td>Centrifuged locally, refrigerated, shipped at refrigerated temperature on day of collection</td>
</tr>
<tr>
<td>Blood in cell preparation tube (CPT)**</td>
<td>4 x 8 ml</td>
<td>Peripheral Blood Mononuclear Cells (PBMCs)</td>
<td>8 x PBMCs (target cell count minimum 5 million cells/mL)</td>
<td>1 ml</td>
<td>Processed locally within 1 hour; frozen to -90°C to -65°C; batch shipped on dry ice</td>
</tr>
<tr>
<td>Blood in sodium citrate tube**</td>
<td>2 x 2.7 ml</td>
<td>Plasma</td>
<td>2</td>
<td>1 ml</td>
<td></td>
</tr>
</tbody>
</table>
Triggered testing

Participants with infection experiencing specific symptoms or having abnormal study assessments may be eligible for additional assessments, each of which is triggered by qualifying criteria. In addition, participants with and without infection are randomly selected to complete additional assessments for comparison. These assessments are divided into Tier 2 and Tier 3 assessments. Tier 2 assessments are anticipated to be completed by approximately 30% of participants per assessment, and may be repeated yearly if abnormal (S4 Table). Tier 3 assessments are more invasive and/or burdensome, and are anticipated to be completed by not more than 20% of participants per assessment. Tier 3 assessments with more than minimal risk can only be performed once (S5 Table). Participants are eligible to begin Tier 2 and Tier 3 testing 90 to 180 days after index date, depending on the assessment. Individuals who are pregnant, 3-months postpartum or breastfeeding are ineligible for some of the assessments.

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Volume</th>
<th>Description</th>
<th>Container Type</th>
<th>Preparation</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood in ethylenediaminetetraacetic acid (EDTA) tube**</td>
<td>1 x 10 ml</td>
<td>Plasma White blood cells***</td>
<td>4 ml</td>
<td>1 ml</td>
<td>Refrigerated, shipped at refrigerated temperature on day of collection</td>
</tr>
<tr>
<td>Blood in PAXgene-RNA tube</td>
<td>1 x 2.5 ml</td>
<td>Whole blood</td>
<td>1</td>
<td>2.5 ml</td>
<td></td>
</tr>
<tr>
<td>Urine in no additive tube</td>
<td>1 x 10 ml</td>
<td>Urine supernatant</td>
<td>8</td>
<td>1 ml</td>
<td></td>
</tr>
<tr>
<td>Saliva in Oragene OGR-600***</td>
<td>1 x 2 ml</td>
<td>Saliva</td>
<td>1</td>
<td>2 ml</td>
<td></td>
</tr>
<tr>
<td>Stool</td>
<td>1 x 25 ml</td>
<td>Stool</td>
<td>1</td>
<td>25 ml</td>
<td>Directly sent by participant</td>
</tr>
</tbody>
</table>

* As of June 29, 2022, nasopharyngeal swab changed to nasal swab
** As of protocol v6.0, added sodium citrate and EDTA tubes and CPT reduced to 2 cell preparation tubes.
*** Not collected in those who decline genetic testing
Tier 2 and 3 assessments include additional surveys, blood tests, clinical examinations, imaging, and procedures. Specialized blood tests are run by a central laboratory (ARUP Laboratories, Salt Lake City, Utah) for consistency. Imaging is acquired via pragmatic standard clinical protocols to maximize testing availability across sites. Several of the imaging studies are overseen by reading centers charged with protocol development, quality assurance/control, and certifying performance sites, in addition to centralized review of a portion of studies. DICOM images are uploaded and shared using specialized cloud-based image storage software provided by Ambra Health. Clinical examinations and procedures are performed by clinically certified personnel at each site following standard clinical protocols.

Data collection and management

Study data are collected by sites and entered into a centralized REDCap (Research Electronic Data Capture) database hosted by the DRC in a Federal Information Security Modernization Act moderate environment.[43] REDCap includes data validation and audit capabilities.[44, 45] Protected health information in the central REDCap database is limited to zip code and birthdate. Automated queries are generated by the DRC for missing or implausible data and sent to sites for near real-time correction. Monthly study monitoring reports are provided to sites to optimize fidelity to protocol. Periodic audits are conducted independent of the site investigators and sponsor.

Outcomes

The primary endpoints of this study are the presence of composite incident or prevalent PASC symptoms and progression of PASC; since there is not yet an agreed-upon definition of PASC, a working definition will be developed as part of the study (see statistical analysis). Secondary
endpoints include recovery trajectories from SARS-CoV-2 infection, documentation of organ injury, and incident clinical diagnoses.

Statistical analysis

Point prevalence, defined as the proportion of participants reporting a symptom at a given follow-up time point among those remaining in RECOVER, will be calculated for participants with and without infection separately. Odds ratios (ORs) adjusted for demographic factors will be reported. Machine learning approaches will be used to select combinations of symptoms among the 40+ included in the symptom survey (i.e., variable selection) that differentiate participants with and without a history of infection [46]. Prevalent symptoms and select severity scores will be used as input to the model. Balancing weights will be applied to account for any differences between infected and uninfected participants [47]. Analyses will be iteratively refined as new data modalities (e.g. laboratory, radiology and other Tier 2/3 tests) and additional longitudinal assessments become available. Within PASC positive individuals, consensus clustering will be applied to identify PASC subgroups.[48]

Logistic regression analyses will be conducted to investigate associations between clinical factors, demographics, and SDoH, and the cumulative incidence of PASC among participants with infection. Multinomial regression models will also be used to investigate specific associations between these risk factors and PASC subgroups. A Cox proportional hazards regression will be fitted to model the hazard of developing PASC given the risk factors. A Fine-Gray model for the sub-distributional hazard of developing each PASC subgroups, accounting for the competing and semi-competing risks of each sub-phenotype as well as study dropout as a censoring event, will be fit among infected participants to estimate the association between risk...
factors and the hazard of each PASC subgroups.[49] Additional strategies that account for time-varying covariates (e.g., vaccination status, pharmaceutical or clinical interventions) will be considered.[50]

A Cox proportional hazard model will model PASC resolution, defined based on longitudinal assessments, to evaluate associations with baseline factors, including markers of illness severity during the acute phase of infection. Point estimates and 95% Wald confidence intervals will be estimated for each risk factor and a large-sample score test will be conducted to test against the null hypothesis that the hazard of resolution is independently associated with each risk factor.

Observational Study Monitoring Board

The RECOVER OSMB appointed by the NIH provides data and safety oversight, meeting at least twice annually. The purpose of the OSMB is to assure independent review of unreasonable risk exposure because of study participation, monitor study progress and integrity, and advise on significant protocol modifications. The OSMB is composed of experts in longitudinal studies, manifestations of COVID-19, biostatistics and bioethics, and patient/caregiver representatives. As RECOVER-Adult does not involve any interventions, early stopping rules for efficacy or futility are not indicated.

Major changes to the protocol

A planned flexible study design allows modifications to PASC case definition, tiered phenotyping assessments, comparator groups, and statistical plan after study initiation to
optimize public health impact without undermining validity and integrity of study findings.

Table 4 lists key modifications to the protocol to date.

Table 4: Selected, key protocol modifications since initial approval

<table>
<thead>
<tr>
<th>Protocol version</th>
<th>Date of approval</th>
<th>Major changes</th>
<th>Participants enrolled at time of modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>9/16/2021</td>
<td>Original release</td>
<td>0</td>
</tr>
<tr>
<td>1.1</td>
<td>10/08/2021</td>
<td>Additions to comorbidity form to align with NeuroCOVID Databank
Orthostatic test changed to active stand test</td>
<td>0</td>
</tr>
<tr>
<td>2.0</td>
<td>10/18/2021</td>
<td>Coagulation panel, urinalysis, SARS-CoV-2 PCR (uninfected) added to Tier 1
Mini International Neuropsychiatric Interview, adrenocorticotropic hormone, morning cortisol, hepatitis B and C, renal ultrasound added to Tier 2
Electrocardiogram, D-dimer, troponin, NT-pro BNP moved from Tier 2 to Tier 1
Tilt table testing, cardiovagal innervation testing, catecholamine testing moved from Tier 2 to Tier 3
Ear-nose-throat exam, lung plethysmography, dual energy chest CT moved from Tier 3 to Tier 2
Parathyroid hormone, gamma-glutamyl transferase, anti-phospholipid antibody, CT pulmonary angiography, ventilation/perfusion scan, MRI spine, abdominal CT removed from protocol</td>
<td>0</td>
</tr>
<tr>
<td>3.0</td>
<td>12/01/2021</td>
<td>Clarified inclusion criteria to include patients who have positive SARS-Cov-2 infection-specific antibody testing
Added incarceration as an exclusion criterion.
Added an opt-in for future genetic testing
Removed procalcitonin and moved electrocardiogram from Tier 1 back to Tier 2
Added Anti-Mullerian hormone.</td>
<td>30</td>
</tr>
<tr>
<td>Protocol version</td>
<td>Date of approval</td>
<td>Major changes</td>
<td>Participants enrolled at time of modification</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>4.0</td>
<td>01/27/2022</td>
<td>Added one-time off schedule visit during on-study infection</td>
<td>399</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Removed option to return research lab results</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>03/22/2022</td>
<td>Updated the recruitment window from 24 to 36 months since first infection</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added that uninfected pregnant individuals begin study schedule on delivery date</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added that women <3 months postpartum can not have any tests that pregnant women can not have</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Specified methylmalonic acid to be drawn with serum B12</td>
<td>1,474</td>
</tr>
<tr>
<td>6.0</td>
<td>08/11/2022</td>
<td>Revised the earliest date of possible infection from March to January, 2020</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Removed lung plethysmography</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Removed 15% cap on self-referral participants</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Changed study schedule to start at time of acute reinfection (enrollment) for previously infected participants enrolling during an acute infection</td>
<td>7,698</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduced the number of cell preparation tubes for collection and replaced with sodium citrate and EDTA tubes for plasma</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moved anti-nuclear antibody, anti-cyclic citrullinated peptide antibodies, rheumatoid factor, Epstein Barr virus testing to Tier 2</td>
<td></td>
</tr>
<tr>
<td>7.0</td>
<td>12/15/2022</td>
<td>Added collection of tears as a biospecimen</td>
<td>11,602</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added section on the mobile health platform</td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td>Pending</td>
<td>Reduced target N of acute infected enrollees from 7,800 to 5,000 given higher than expected PASC rates</td>
<td></td>
</tr>
</tbody>
</table>
Data sharing and dissemination

Scientific data will be de-identified and shared pursuant to the NIH policy for Data Management and Sharing policy.[51] The RECOVER Ancillary Study Oversight Committee and Biospecimen Access Committee govern access to data and biospecimens for ancillary studies. Study results will be disseminated via scientific publication, presentation at national meetings, public-facing webinars, community briefings, RECOVER newsletters, social media, and other means of communication to both scientific and lay audiences. Additionally, results of all tests performed in CLIA-certified laboratories or read by clinically-certified personnel are returned to study participants.[52] Tests performed in research laboratories that are not CLIA-certified are not returned to participants, following federal regulations.

Ethics

The study was approved by the NYU Grossman School of Medicine Institutional Review Board (IRB), which serves as the single IRB for the majority of the study sites. A few pre-existing consortia use their own IRBs through an exemption granted by the NIH. All participants provide signed, informed consent to participate in the main protocol. Participants are reconsented if there are major changes to the study design or to anticipated risks. For high-risk Tier 3 procedures, a separate procedure-specific consent is obtained prior to the procedure.

Discussion

The overall goal of RECOVER is to rapidly improve understanding of, and ability to predict, treat, and prevent PASC. RECOVER-Adult’s large sample size and breadth of representation
across geographic region, age, sex, race/ethnicity and other SDoH and pregnancy status are expected to produce broadly applicable and actionable results and support numerous subgroup analyses. Additionally, nested case-control studies will occur among participants with certain PASC phenotypes who have triggered assessments. RECOVER-Adult includes numerous strengths. Participants include many uninfected and asymptomatic infected individuals for comparison that is often missing from other large studies.[11, 53-56] All participants are followed prospectively from time of enrollment, allowing longitudinal analyses of disease trajectory. By contrast, most studies to date have been single time point assessments or serial cross-sectional studies.[3-9, 57] Acute participants enrolled at the time of first infection will provide a prospective estimate of PASC rates that is less biased than the most studies, which have enrolled subjects after PASC status is known.[3-9] The strong focus on patient-reported symptom outcomes allows capture of a broader range of sequelae than studies relying on electronic health records or claims data.[53, 58-62] The adaptive nature of the protocol allows for rapid responsiveness to new discoveries and changes in the nature of the pandemic. The extensive biospecimen collection and clinical, laboratory, and radiology assessments will generate a wealth of deep phenotyping data that can be used for pathophysiologic analyses. Finally, multi-omics analyses are proposed and have potential to provide molecular mechanistic insights into the pathophysiology of PASC.

RECOVER-Adult is also unique in the extent to which patients experiencing PASC and representatives from patient advocacy communities contributed to the protocol’s development and ongoing operations. For example, the PASC symptom survey was drawn in part from lists of symptoms generated by members of the patient community,[2] allowing measurement of symptoms overlooked by other studies, including post-exertional malaise and menstrual cycle
changes. At the urging of patient representatives, participants with a clinical diagnosis of COVID were included even without a positive test history, to permit inclusion of individuals affected in the earliest stages of the pandemic when testing was not widely available. Among the many other significant design aspects credited to input from patient representatives are: wording of the consent document, including clinical assessments specific to dysautonomia, sharing clinically certified lab results with participants, ensuring accommodations for participants with myalgic encephalomyelitis/chronic fatigue syndrome, and selection of SDoH instruments.

In summary, RECOVER-Adult is a large, national, longitudinal, retrospective and prospective cohort that will answer key questions about the epidemiology and pathophysiology of PASC. Results will support clinical trial development by defining PASC and sub-phenotypes, natural history, risk factors, biomarkers, and mechanistic pathways for potential therapeutic targets. Results of this study will also inform public health efforts, prevention, and clinical care.

Acknowledgements

We would like to thank the National Community Engagement Group (NCEG), all patient, caregiver and community representatives, and all the participants enrolled in the RECOVER initiative.
References

Supporting information

S1 Fig: Protocol Development Timeline

S2 Fig: RECOVER Consortium Oversight Structure

S1 Table: Hubs and Enrolling Sites

S2 Table: Survey Topics as of Protocol Version 7.0

S3 Table: Tier 1 Assessments

S4 Table: Tier 2 Assessments

S5 Table: Tier 3 Assessments

S6 Table: Writing Committee

S7 Table: RECOVER-Adult Consortium Members

S8 Table: RECOVER-Adult Committees and Task Forces
Workflow for Acute and Post-Acute

<table>
<thead>
<tr>
<th>eCRF</th>
<th>Baseline</th>
<th>3m</th>
<th>6m</th>
<th>9m</th>
<th>12m</th>
<th>15m</th>
<th>18m</th>
<th>21m</th>
<th>24m</th>
<th>27m</th>
<th>30m</th>
<th>33m</th>
<th>36m</th>
<th>39m</th>
<th>42m</th>
<th>45m</th>
<th>48m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enrollment</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Tier 1-2 Consent</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Identity</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Visit</td>
<td>●</td>
</tr>
<tr>
<td>Comorbidities</td>
<td>●</td>
</tr>
<tr>
<td>COVID Treatment*</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Medications</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Change in Medications</td>
<td>●</td>
</tr>
<tr>
<td>Demographics</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>PASC Symptoms</td>
<td>●</td>
</tr>
<tr>
<td>Vaccination Status</td>
<td>●</td>
</tr>
<tr>
<td>Social Determinants of Health</td>
<td>●</td>
</tr>
<tr>
<td>Social Determinants Follow-up</td>
<td>●</td>
</tr>
<tr>
<td>Alcohol/Tobacco</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Alcohol/Tobacco Follow-up</td>
<td>●</td>
</tr>
<tr>
<td>Disability</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Pregnancy</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Pregnancy Follow-up</td>
<td>●</td>
</tr>
<tr>
<td>Tier 1 office visit</td>
<td>●</td>
</tr>
<tr>
<td>Biospecimens</td>
<td>●</td>
</tr>
<tr>
<td>Lab Results</td>
<td>●</td>
</tr>
<tr>
<td>Tier 2/Tier 3 Tests</td>
<td>●</td>
</tr>
</tbody>
</table>

* COVID Treatment not collected on people without infection

Legend
- ● Completed by research coordinator
- ● Completed by participant
- ● Completed by research coordinator with review/validation by participant
May 2021
Clinical Science Core and Data Resource Core awards issued

June 2021
Phase I sites announced by NIH

June 14-July 9 2021
Phase I protocol development period (>110 site/core investigators, 24 patient representatives/caregivers involved)

July-September 2021
Phase II site application, NIH protocol review, and budget development period. Delta wave. Target enrollment increased to allow substantive numbers of acute phase enrollment.

September-October 2021
Phase II (enrollment) sites announced by NIH; further protocol review and revision by site investigators

Beta test enrollment phase at two sites (Case Western Reserve University and University of Texas Health Science Center at San Antonio): 30 participants enrolled

October 29-November 12, 2021

December 6, 2021
Enrollment opened broadly across sites