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Abstract: 
Background 
Tackling biases in medical artificial intelligence requires multi-centre collaboration, 
however, ethical, legal and entrustment considerations may restrict providers’ ability 
to participate. Federated learning (FL) may eliminate the need for data sharing by 
allowing algorithm development across multiple hospitals without data transfer. 
Previously, we have shown an AI-driven screening solution for COVID-19 in 
emergency departments using clinical data routinely available within 1h of arrival to 
hospital (vital signs & blood tests; CURIAL-Lab). Here, we aimed to extend and 
federate our COVID-19 screening test, demonstrating development and evaluation of 
a rapidly scalable and user-friendly FL solution across 4 UK hospital groups. 
 
Methods 
We supplied a Raspberry Pi 4 Model B device, preloaded with our end-to-end FL 
pipeline, to 4 NHS hospital groups or their locally-linked research university (Oxford 
University Hospitals/University of Oxford (OUH), University Hospitals 
Birmingham/University of Birmingham (UHB), Bedfordshire Hospitals (BH) and 
Portsmouth Hospitals University (PUH) NHS trusts). OUH, PUH and UHB 
participated in federated training and calibration, training a deep neural network 
(DNN) and logistic regressor to predict COVID-19 status using clinical data for pre-
pandemic (COVID-19-negative) admissions and COVID-19-positive cases from the 
first wave. We performed federated prospective evaluation at PUH & OUH, and 
external evaluation at BH, evaluating the resultant global and site-tuned models for 
admissions to the respective sites during the second pandemic wave. Removable 
microSD storage was destroyed on study completion. 
 
Findings 
Routinely collected clinical data from a total 130,941 patients (1,772 COVID-19 
positive) across three hospital groups were included in federated training. OUH, PUH 
and BH participated in prospective federated evaluation, with sets comprising 32,986 
patient admissions (3,549 positive) during the second pandemic wave. Federated 
training improved DNN performance by a mean of 27.6% in terms of AUROC when 
compared to models trained locally, from AUROC of 0.574 & 0.622 at OUH & PUH to 
0.872 & 0.876 for the federated global model. Performance improvement was more 
modest for a logistic regressor with a mean AUROC increase of 13.9%. During 
federated external evaluation at BH, the global DNN model achieved an AUROC of 
0.917 (0.893-0.942), with 89.7% sensitivity (83.6-93.6) and 76.7% specificity (73.9-
79.1). Site-personalisation of the global model did not give a significant improvement 
in overall performance (AUROC improvement <0.01), suggesting high 
generalisability. 
 
Interpretations 
We present a rapidly scalable hardware and software FL solution, developing a 
COVID-19 screening test across four UK hospital groups using inexpensive micro-
computing hardware. Federation improved model performance and generalisability, 
and shows promise as an enabling technology for deep learning in healthcare. 
 
Funding University of Oxford Medical & Life Sciences Translational Fund/Wellcome 
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Research in Context: 
 
Evidence before this study 
International consortia have highlighted the importance of adequate representation in 
health AI datasets, with multiple reviews identifying shortfalls in diversity most 
commonly due to a lack of systematic data-sharing. Dame Fiona Caldicott’s 2013  
report set out the governance challenges facing healthcare providers participating in 
data-sharing, and the recent emergence of federated learning (FL) has been 
highlighted as a promising solution for providers to participate in medical AI 
development. We searched PubMed for applications of FL in hospitals (search 
terms: "federated learning" AND ("hospital" OR "hospitals") AND ("screen" OR 
"screening" OR "diagnosis" OR "prognosis" OR "prognostication" OR "outcomes")), 
finding 32 results to November 01, 2022, of which 5 describe implementations of FL 
in secondary care using medical imaging (chest x-ray and computerised 
tomography) for diagnosis and prognostication in COVID-19. To our knowledge, no 
works to-date describe the use of micro-computing alongside FL to assist in its 
deployment within hospitals, or demonstrated FL-driven screening using routinely 
collected vital signs and blood tests which are much more available and do not 
require use of ionising radiation. 
 
Added value of this study 
Here we present a development, validation and deployment of a Federated Learning 
solution across four UK hospital groups, extending our prior work on AI-driven 
screening for COVID-19 in emergency care. To our knowledge, our study is the first 
to couple an FL pipeline with deployment of micro-computing hardware in a real-
world secondary care setting. We select the commercially produced Raspberry Pi 
model 4B for its low cost ($45-80), thereby enabling rapid scale, and removable 
micro-SD card storage which is securely destroyed on completion of participation to 
prevent subsequent data loss. Our results show a large improvement in performance 
on federation of the model, which is more marked for deep learning than a traditional 
statistical method, and robust and generalisable performance across 3 hospital 
groups evaluating on prospective cohorts. Our study is the largest secondary-care 
FL study to date by number of patient encounters, including the routinely collected 
clinical data for over 160,000 participants attending 4 hospital groups that serve a 
combined population of 3.5 million. 
 
Implications of all the available evidence 
Our study offers a paradigm for future FL research within secondary care settings, 
enabling AI models to be developed and validated in the real-world without transfer 
of patient data. Federated learning may be an enabling technology for deep learning, 
and micro-computing hardware may have a role in implementation. 
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Background 
Legal, ethical and entrustment challenges surround use of patient data for artificial 
intelligence (AI) research, with mounting public concern regarding unintended use, 
misuse and reidentification attacks1–4. Concerns around organisational ability to 
maintain control of data once transferred off-premises, and fear of potential 
consequences, were identified by the Caldicott review as drivers for unduly 
restrictive information governance rules, reduced co-operation, and a ‘culture of 
anxiety’5. These considerations may hamper efforts to improve diversity within 
training sets4,6. 
 
Client-server federated learning (FL) has emerged as a leading privacy enhancing 
technology (PET) for collaborative development of AI models without transfer of data 
outside of participating organisations7,8. Whereas in classical machine learning the 
training process would take place on a central server where data is aggregated, in 
FL data remains under the custody of the supplying organisation and 
training/evaluation processes occur locally. Following each round of local training, 
model weights -and not patient data- are transferred from clients to a central server 
where aggregation is performed to create a ‘global model’, and is re-circulated to 
clients for iteration9,10. 
 
FL may encourage healthcare providers to participate in AI research, thereby 
reducing development time, improving representation and facilitating international 
collaboration6,11. Successful implementations have included prediction of mechanical 
ventilation/death in COVID-19 across 20 hospitals using NVIDIA’s Clara Platform 
[California, USA]8. However, to date real-world implementations of FL in hospital 
settings have been limited in number12–16, and some approaches advocate use of an 
intermediate platform13. Experimental works have shown some promising results for 
federated COVID-19 screening using medical imaging (chest x-ray & computerised 
tomography) however, these studies have been within a simulated setting without a 
real-world deployment, and with modest sample sizes17,18. Moreover, complexity of 
user interface and set-up has been identified as a barrier to adoption of health-AI19, 
and may also limit the uptake of FL amongst providers. 
 
An ‘Internet of Medical Things’ (IoMT), in which connected micro-computing devices 
are used to deliver care, has shown promise for improving engagement, outcomes 
and cost-effectiveness20,21. Successful IoMT applications have included patient-
facing wearables22–24, however limited work has explored applications of micro-
computing within healthcare providers or a deployment of health-AI in secondary 
care. 
 
Our group has previously developed, validated and piloted an AI screening test for 
COVID-19, for use in emergency departments (ED)25,26. The CURIAL-Lab test aims 
to reduce nosocomial transmission and ease operational pressures by utilising 
clinical data routinely collected within 1 h of a patient arriving in hospital (vital signs, 
full blood count, liver function tests, urea & electrolytes, and C-reactive protein) to 
provide a high confidence result-of-exclusion. The initial work, highlighted in a 2022 
editorial27, included design considerations to prioritise patient confidentiality when 
working across multiple hospital groups. We asked NHS trusts to de-identify patient 
data at source and employed secure protocols for transfer to a trusted server at the 
University of Oxford where analysis was performed. However, de-identification 
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processes can lead to a loss of informative predictors28, and may alone be 
insufficient to safeguard privacy in the event of a data leak29. 
 
To eliminate the need for transfer of patient data, we propose and deploy a user-
friendly federated training, calibration and evaluation pipeline for COVID-19 
screening across four UK hospital groups (CURIAL-Fed-Lab). We combine a custom 
software pipeline with micro-computing hardware to provide an end-to-end solution, 
supplying each participating hospital group or their linked research University with a 
pre-configured Raspberry Pi 4B [£40-85, Raspberry Pi Ltd, Cambridge, UK] running 
the commercially supported Ubuntu Desktop operating system. Strengths of our 
approach include its ease-of-use (Supplementary Figure S1), eliminating the need 
for local technical expertise, and use of inexpensive micro-computing devices to 
permit rapid scale. Further, our solution uses removable microSD storage which can 
be destroyed on completion to prevent subsequent data loss30.  
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Methods 
 
Privacy-preserving federated learning for COVID-19 screening in ED 
Four NHS hospital groups participated in the CURIAL-Fed-Lab study (Figure 1); 
these included Oxford University Hospitals NHS Foundation Trust (OUH), 
Portsmouth Hospitals University Trust (PUH), University Hospitals Birmingham NHS 
Foundation Trust (UHB) and Bedfordshire Hospitals NHS Foundation Trust (BH). 
Further details are provided in Appendix A. OUH, UHB and PUH participated in 
federated training and calibration. OUH, PUH and BH participated in federated 
evaluation. Data extracted from BH was additionally used for a centralised 
evaluation. 
 
Table 1: Clinical predictors within the CURIAL-Fed-Lab model. 

Feature Set Constituents 

Vital Signs Heart rate, respiratory rate, oxygen saturations, blood 
pressure, temperature, oxygen delivery device level 

Full Blood Count 
(FBC) 

Haemoglobin, haematocrit, mean cell volume, white cell 
count, neutrophil count, lymphocyte count, monocyte 
count, eosinophil count, basophil count, platelets 

Urea & Electrolytes 
(U&Es) Sodium, potassium, creatinine, urea, eGFR  

Liver Function (LF) 
Tests & CRP 

Albumin, alkaline phosphatase, ALT, bilirubin, C-
Reactive Protein  

 
 
Figure 1: Overview of study design. (a) Timeline showing derivation of training 
and prospective evaluation cohorts. (b) Federated training & evaluation study design. 
bi) Deidentified patient data is extracted by NHS trusts and loaded on to Raspberry 
Pi devices held locally within the hospital group or its linked research university. 
Machine learning models are trained locally and calibrated and evaluated on a 
locally-held test set. Model weights, thresholds and evaluation results are transmitted 
to a co-ordinating server, where aggregation and averaging is performed to form a 
global model. Updated weights for the new global model are transmitted to local 
devices, facilitating the next round of training. 150 rounds are performed. bii) 
Following each training of round, weights for the trained global model are transmitted 
to the devices at local participating sites. Federated evaluation is performed by 
applying the models to prospective cohorts of patients admitted to hospital during the 
second wave of the UK COVID-19 Pandemic at OUH, PUH and BH. For sites also 
contributing to training (OUH & PUH), an additional step of site-personalisation is 
performed and the personalised model evaluated. Evaluation results are transmitted 
to the co-ordinating server for reporting. For quality assurance, centralised 
evaluation is also performed on the co-ordinating server for BH. 
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Implementation: 
We performed client-server based federated training & evaluation, supplying a 
Raspberry Pi 4 Model B device (the client; Raspberry Pi Limited, Cambridge, UK) 
configured with at least 2Gb of Random Access Memory (RAM) and 32Gb removal 
microSD storage, to participating NHS hospital trusts or their linked research 
university. We pre-installed Ubuntu 22.04.1 LTS, necessary dependency packages 
(see Appendix A), and our custom FL pipeline based on the Flower framework (code 
available via Github and as a flashable disk image for the Raspberry Pi)31. We 
selected the Raspberry Pi 4 Model B as a commercially available and inexpensive 
device (£45-85), thereby allowing for rapid scale, and for its removable microSD 
storage enabling participating Trusts to securely destroy media containing the patient 
data extract on completion. No patient data was transmitted from clients to co-
ordinating server as part of the federated training, thereby preserving privacy (see 
Appendix A). Source code was available to participating sites for review. Clients 
were operated on-premises by the respective NHS Trusts at PUH and BH, and by 
the locally-linked University within a shared research network at OUH and UHB 
(University of Oxford and University of Birmingham respectively, within the NIHR 
Biomedical Research campuses). Where necessary, firewall rules were instated to 
permit two-way communication between client and server through a pre-agreed port 
(see Appendix A for further details). On completion of participation, participating sites 
were directed to remove and securely dispose of the microSD card following 
organisational procedures for hardware disposal. 
 
Study Populations for Federated Training & Evaluation: 
We provided participating NHS Trusts with inclusion and exclusion criteria for 
extraction from Electronic Healthcare Records (EHR), alongside requested clinical 
parameters (Supplementary Table S1). Screening against criteria, followed by de-
identification and extraction, was performed by each participating NHS Trust and 
enforced programmatically within the analysis pipeline. For both training & 
evaluation, patients included had an unscheduled acute or emergency care 
admission, received a blood draw on arrival, and were aged over 18. Patients who 
had opted out of EHR research or who did not receive routine laboratory blood tests 
within 24h of arriving at hospital were excluded.  
 
Due to incomplete penetrance of testing and imperfect PCR sensitivity during the 
first pandemic wave, there is uncertainty in the viral status of patients presenting 
during the early pandemic who were untested or tested negative. Therefore as 
previously, for training we selected a pre-pandemic control cohort (attending hospital 
prior to December 1, 2019) to ensure absence of disease in patients labelled as 
COVID-19-negative. Patients presenting during the first wave, between December 1, 
2019 and October 29, 2020, with PCR confirmed SARS-CoV-2 infection formed the 
COVID-19-positive (cases) training cohort. For federated evaluation, we selected 
independent prospective sets of adult patients admitted to OUH, PUH and BH during 
the second pandemic wave in the UK, defined as after November 1st, 2020. 
Evaluation included patients receiving confirmatory molecular testing with either a 
positive or negative result, excluding indeterminate or invalid results. Further 
information on training & evaluation cohorts, alongside confirmatory testing method, 
are provided in Appendix A. 
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Clinical features extracted for each presentation included demographics (age, 
gender, ethnicity), results of first-performed blood testing, blood gases, vital signs 
measurements and results of molecular testing for SARS-CoV-2 (Supplementary 
Table S1). As previously, we selected routine blood tests to include the full blood 
count (FBC), urea and electrolytes (U&E), liver function tests (LFT), and C-reactive 
protein (CRP) because they are widely performed within existing care pathways in 
emergency departments and results are typically available within 1 h25. Staff at 
participating organisations were directed to load the data extracts on to the supplied 
Raspberry Pi device and activate the study application (Appendix A & 
Supplementary Figure S1). 
 
Federated pipeline: 
We deployed a custom analysis pipeline, pre-installed on the Raspberry Pi 4B 
devices, to locally i) standardise the anonymised data extracts in to a common 
format, ii) perform normalisation and imputation, iii) federated training, and iv) 
federated evaluation. Feature names, result representations and units, and SARS-
CoV-2 PCR results were programmatically standardised into a common format on-
device (Appendix A). To ensure accurate cohort eligibility, inclusion & exclusion 
criteria were programmatically re-enforced. Missing data were imputed by selecting 
the median value of the training population, as we previously showed stability of 
model performance across multiple imputation strategies (mean, median and age-
based mean)26. Training population median values for each site were autonomously 
transmitted to the federated server, to facilitate imputation for sites performing 
evaluation only. We performed normalisation by scaling training data to a range 
between 0 and 1, aiming to mitigate against biases towards features with large 
numerical values. As previously, patients with PCR-confirmed SARS-CoV-2 infection 
during the first wave were matched with pre-pandemic controls across three 
demographic factors (ethnicity, gender and age to within +/- 4 years per participant). 
A case-control ratio of 1:10 was selected during training to limit the degree of class 
imbalance. 20% of the training set was reserved for internal evaluation and 
calibration. 
 
Federated Training: 
We performed 150 rounds of federated training across three contributing hospital 
groups (OUH, PUH, UHB; Fig 1), implementing the FedAvg algorithm10. Initial model 
parameters were randomly generated and clients trained a local model on their 
individual training sets. Following local training, local models were evaluated and 
model parameters transmitted by clients to the central server for aggregation and 
calculation of a global model. The new global model parameters were subsequently 
transmitted to the clients, replacing the locally-held model, prior to the next training 
round. To maximise data utilisation, we sampled each participating site (client) for 
every round of training. Locally-held datasets were not accessible to the server 
during training. 
 
We performed federated training for two different binary classifiers aiming to predict 
COVID-19 PCR result. First, as a base case, we trained a Logistic regression (LR) 
classifier with an L2 ridge regression regularisation penalty, performing 5 iterations 
over the training data per round. Next, we trained a deep neural network (DNN) 
comprising of an input layer, a dense hidden layer with 10 nodes, a dropout 
regularisation layer (rate 0.5) to mitigate overfitting, and an output layer. The rectified 
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linear unit (ReLU) activation function was used for the hidden layers and the sigmoid 
activation function in the output layer. For updating model weights, the Adaptive 
Moment Estimation (Adam) optimizer was used with a learning rate of 0.0001. For 
initial local training and each subsequent round of FL, we configured the clients to 
iterate over the training data for up to 50 epochs with early stopping if the AUC on 
the held-out test set did not improve over 15 sequential epochs. Each client tracked 
performance of its best-performing local model when evaluated on the held-out test 
set after each epoch, transmitting weights for this best model to the server for 
aggregation and updating of the global model. 
 
Testing and calibration 
Following each round of federated training, local models were calibrated by selecting 
the prediction threshold required to achieve a sensitivity of 85% on the held-out test. 
Evaluation results for the test set, and the selected threshold, were transmitted to the 
co-ordinating server for aggregation. 
 
Federated Evaluation of Global Model 
We performed prospective federated evaluation by locally validating our global 
model, calibrated to 85% sensitivity, for emergency hospital admissions during the 
second wave of the COVID-19 pandemic at OUH, PUH, and BH. Model predictions 
were evaluated by comparison to results of confirmatory molecular testing performed 
on admission (SARS-CoV-2 laboratory PCR and the point-of-care PCR devices 
SAMBA-II and Panther; Appendix A).  
 
For sites both contributing to federated training and evaluation (OUH & PUH), 
calibration was performed by selecting the locally-determined threshold identified 
during calibration on the held-out test set. Missing data were imputed using median 
values of the training population at the local site. For sites performing federated 
evaluation only (BH), we selected the threshold by performing autonomous server-
side aggregation and averaging (mean) of the optimum local thresholds at each of 
the three sites contributing to training (OUH, PUH and UHB). Missing data at BH 
were imputed by autonomously calculating the mean of the median population 
values for the three contributing sites on the evaluation server and transmitting the 
result to the BH client, eliminating the need for any transfer or aggregation of patient 
data between sites. Summary statistical measures of the results of federated 
evaluation (sensitivity, specificity, predictive values and AUROC) were transmitted to 
the server for reporting. 
 
Site-specific model tuning 
To investigate model sensitivity to distribution shifts between contributing NHS 
Trusts, thereby assessing generalisability, we investigated whether performing local 
tuning of the global model would affect performance during evaluation. Following 
each round of training, we tuned the global model by locally performing a final cycle 
of training on the local training set for sites contributing to training (OUH & PUH). 
Model performance was assessed on the prospective validation set and compared 
with the untuned global model. 
 
Centralised (server-side) Evaluation 
To verify integrity of the federated evaluation, we additionally performed centralised 
evaluation by validating the global model for all patients admitted to BH after each 
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training round on the central server. The BH data extract was transferred to the 
server to facilitate this. For centralised evaluation, the mean threshold across all 
sites contributing to training was used. Median population values from each training 
site were transmitted to the server, and a mean of the median values used to impute 
missing data. To understand the impacts of individual features on model predictions, 
we calculated SHAP (SHapley Additive exPlanations) values for the global models 
using a subset of 400 cases32. 
 
Statistical Analysis Methods: 
Model performance was evaluated during testing and prospective evaluation in terms 
of area under receiver operating characteristic curves (AUROC), sensitivity, 
specificity, positive predictive value (PPV), negative predictive value (NPV), and F1 
score. We compared the performance of (i) locally-trained models with federated 
global models, (ii) federated global models with site-tuned variations, and (iii) the 
global LR model with the global DNN model, within the federated pipeline, using 
DeLong’s Test33. 
 
Ethics: 
NHS Health Research Authority (HRA) approval (IRAS ID 281832).  
 
Role of the funding source  
The funders of the study had no role in study design, data collection, data analysis, 
data interpretation, or writing of the manuscript.   
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Results 
 
Study Populations 
 
Table 2: Summary population characteristics for (a) training cohorts at OUH, UHB 
and PUH, divided by pre-pandemic control patients and COVID-19-cases during the 
first wave of the UK COVID-19 pandemic, (b) prospective validation cohorts of 
patients admitted to OUH, PUH & BH during the second wave of the UK COVID-19 
epidemic. * indicates merging for statistical disclosure control. 
 

 
Three NHS trusts (OUH, UHB and PUH) participated in federated training, 
contributing routinely collected clinical data from 129,169 patients admitted to 
hospital prior to the pandemic and 1,772 patients admitted with PCR-confirmed 
COVID-19. OUH, PUH and BH participated in prospective federated evaluation, 
comprising 32,986 patients admitted during the second pandemic wave, of whom 
3,549 tested positive. During the evaluation period, prevalence was similar between 
PUH and BH (11.2% & 12.3%, Fisher’s Exact p=0.29), but lower at OUH (10.3%; 
p=0.01 for PUH & p=0.04 for BH). Patients admitted to OUH and BH had similar 
ages (67 years, IQR 31, for OUH versus 68 years, 34, for BH; Kruskal Wallis 
p=0.31), whereas patients admitted to PUH were older (69 years, 34; p<0.0001). 
 
To assess the effect of federation on model performance during development, we 
evaluated the global model on the held-out test set after each round of training 
(Supplementary Figure S1). Federation improved classifier stability for LR, 

 a) Training cohorts:  Pre-pandemic & Wave 1 COVID-19 positive b) Wave 2: Prospective evaluation cohorts 
 Oxford University 

Hospitals 
University Hospitals 
Birmingham NHS 
Foundation Trust 

Portsmouth Hospitals 
University NHS Trust 

Oxford 
University 
Hospitals  

Portsmouth 
Hospitals University 
NHS Trust 

Bedfordshire 
Hospitals NHS 
Foundation Trust 

Cohort Pre-
pandemic: 
December 
1, 2018 - 
November 
30, 2019 

Wave 1, 
COVID19+: 
December 
1, 2019 – 
October 
29, 2020 
 

Pre-
pandemic: 
December 
01, 2018 - 
November 
30, 2019 

Wave 1, 
COVID19+: 
December 
01, 2019 - 
October 
29, 2020 
 

Pre-
pandemic: 
January 
01, 2019 - 
October 
31, 2019 

Wave 1, 
COVID19+: 
March 1, 
2020 – 
October 
29, 2020 

Wave 2: 
November 
01, 2020 – 
March 06, 
2021 

Wave 2: 
November 01, 2020 
- February 28, 2021 

Wave 2:  
January 1, 2021 - 
March 31, 2021 

n, patients 68,496 816 12,901 439 47,772 517 18,543 13,260 1183 
n, COVID-
19 genome 
test +ve (%) 

 816  439  517 1,916 
(10.3%) 

1,488 (11.2%) 145 (12.3%) 

Sex: 
- Male (%) 

32,286 
(47.14) 

435 (53.31) 5,900 
(45.73) 

257 (58.54) 20,345 
(42.59) 

315 (60.93) 9,235 (49.8) 5,816 (43.86) 629 (53.17) 

- Female 
(%) 

36,210 
(52.86) 

381 (46.69) 7,001 
(54.27) 

182 (41.46) 27,425 
(57.41) 

202 (39.07) 9,308 (50.2) 7,442 (56.12) 553 (46.75) 

Age, yr 
(IQR) 

64.0 (44.0-
79.0) 

69.0 (54.0-
81.0) 

61.0 (40.0-
79.0) 

65.0 (51.0-
81.0) 

65.0 (41.0-
79.25) 

73.0 (60.0-
83.0) 

67.0 (49.0-
80.0) 

69.0 (48.0-82.0) 68.0 (48.0-82.0) 

Ethnicity: 
-White (%) 

56,295 
(82.19) 

554 (67.89) 8,486 
(65.78) 

228 (51.94) 37,321 
(78.12) 

367 (70.99) 14,079 
(75.93) 

9,954 (75.07) 1,030 (87.07) 

-Not Stated 
(%) 

8,050 
(11.75) 

149 (18.26) 1,231 
(9.54) 

69 (15.72) 9,355 
(19.58) 

131 (25.34) 3,340 (18.01) 3,014 (22.73) * 

-South 
Asian (%) 

1,507 (2.2) 34 (4.17) 1867 
(14.47) 

96 (21.87) 246 (0.51) * 369 (1.99) 62 (0.47) 71 (6.0) 

-Chinese 
(%) 

145 (0.21) * 60 (0.47) * 39 (0.08) * 44 (0.24) 14 (0.11) * 

-Black (%) 813 (1.19) 28 (3.43) 666 (5.16) 21 (4.78) 229 (0.48) * 238 (1.28) 72 (0.54) 36 (3.04) 

-Other (%) 1,112 
(1.62) 

39 (4.78)* 347 (2.69) 25 (5.69)* 358 (0.75) 19 (3.68)* 347 (1.87) 94 (0.71) 33 (2.79) * 

-Mixed (%) 574 (0.84) 12 (1.47) 244 (1.89) * 212 (0.44) * 126 (0.68) 50 (0.38) 13 (1.1) 
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achieving optimum performance at all sites within 10 rounds. The DNN classifier 
demonstrated sustained improvement in AUROC across sequential rounds, with 
plateauing improvement after approximately 50 rounds. 
 
 
Federated Prospective (OUH, PUH) & External (BH) Evaluation: 

 
Figure 2: Receiver operating characteristic curves showing performance of (i) locally 
trained models prior to federation (blue), and (ii) the federated global model (orange) 
during prospective validation at OUH & PUH, and during evaluation on the locally-
held test set at UHB. The area between receiver operating characteristic curves 
denotes the performance improvement on federation. 
 
Table 3: Performance of calibrated local and federated (global & site-personalised) 
models for identifying patients being admitted to hospital with COVID-19 during 
prospective evaluation. AUROC, Sensitivity, specificity, and predictive values are 
reported alongside 95% CIs. Calibration was performed locally during training for 
sites participating in both federated training and evaluation (OUH and PUH), and 
was federated for sites participating only for evaluation (BH). 

Model AUROC Sensitivity Specificity Accuracy PPV NPV F1 
Oxford University Hospitals NHS Foundation Trust    
LR: Local Model 0.685 (0.673 - 

0.698) 
86.8% (85.3 - 
88.3) 

32.7% (32.0 - 
33.4) 

38.3% (37.6 - 
39.0) 

12.9% (12.4 
- 13.5) 

95.6% (95.0 - 
96.1) 

0.225 

LR: Federated Global 
Model 

0.829 (0.819 - 
0.839) 

81.1% (79.3 - 
82.8) 

70.1% (69.4 - 
70.8) 

71.2% (70.6 - 
71.9) 

23.8% (22.8 
- 24.9) 

97.0% (96.7 - 
97.3) 

0.368 
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We compared the trained local models, trained using a maximum 50 epochs, with 
the final federated global and site-personalised models by evaluation on the 
prospective validation sets at sites participating in both training & evaluation (Figure 
2). Federated training significantly improved AUROC of the Logistic Regressor from 
0.685 (95% CIs: 0.673-0.698) for the locally-trained model to 0.829 (0.819 - 0.839) 
for the global model at OUH, and from 0.731 (0.718 - 744) to 0.865 (0.854 - 0.876) at 
PUH (DeLong p < 0.0001 for both), representing a mean 13.9% increase in AUROC. 
The performance improvement due to federation was more marked for the DNN 
model, improving from 0.574 (0.560 - 0.589) to 0.872 (0.862 - 0.882) at OUH, and 
0.622 (0.608 - 0.637) to 0.876 (0.865 - 0.886) at PUH (p < 0.0001 for both), a mean 
27.6% increase in AUROC; possibly reflecting the high data requirements of deep 
neural networks. 
 
When the final global model was externally and prospectively evaluated for all 
patients admitted to Bedfordshire Hospitals NHS Foundation Trust between January 
1, 2021 and March 31, 2021, both LR and DNN global models demonstrated high 
classification performance (AUROC: 0.878, 95% CI 0.851-0.904, for the LR Global 
model, and 0.917, 0.893-0.942, for the DNN Global Model). Federated calibration 
was effective, achieving sensitivities of 83.4% and 89.7% for the LR and DNN 
respectively during external evaluation. Both global models showed stable 
performance across the three evaluating sites (AUROCs range 0.829 to 0.878, 95% 
CIs range 0.819-0.904, for LR, and 0.872 to 0.917, 95% CIs range 0.862-0.942, for 
DNN; Table 3). As during training, the improvement in validation performance 
brought about by federation was more marked for DNN than LR, achieving plateau 
after approximately 75-100 rounds of federation when compared to approximately 10 

LR: Federated Site-
Personalised Model 

0.83 (0.819 - 
0.84) 

80.0% (78.1 - 
81.7) 

71.4% (70.7 - 
72.1) 

72.3% (71.6 - 
72.9) 

24.4% (23.3 
- 25.5) 

96.9% (96.5 - 
97.2) 

0.374 

        
DNN: Local Model 0.574 (0.56 - 

0.589) 
83.4% (81.6 - 
85.0) 

20.6% (20.0 - 
21.2) 

27.1% (26.5 - 
27.7) 

10.8% (10.3 
- 11.3) 

91.5% (90.6 - 
92.3) 

0.191 

DNN: Federated 
Global Model 

0.872 (0.862 - 
0.882) 

80.8% (79.0 - 
82.5) 

78.6% (78.0 - 
79.3) 

78.9% (78.3 - 
79.5) 

30.4% (29.1 
- 31.7) 

97.3% (97.0 - 
97.5) 

0.442 

DNN: Federated Site-
Personalised Model 

0.873 (0.863 - 
0.883) 

81.1% (79.2 - 
82.7) 

78.0% (77.3 - 
78.6) 

78.3% (77.7 - 
78.9) 

29.8% (28.5 
- 31.0) 

97.3% (97.0 - 
97.5) 

0.435 

        
Portsmouth Hospitals University NHS Trust    
LR: Local Model 0.731 (0.718 - 

0.744) 
81.8% (79.7 - 
83.7) 

49.7% (48.8 - 
50.6) 

53.3% (52.5 - 
54.2) 

17.1% (16.2 
- 18.0) 

95.6% (95.0 - 
96.1) 

0.282 

LR: Federated Global 
Model 

0.865 (0.855 - 
0.876) 

78.2% (76.1 - 
80.2) 

81.0% (80.3 - 
81.7) 

80.7% (80.0 - 
81.3) 

34.2% (32.6 
- 35.8) 

96.7% (96.3 - 
97.0) 

0.476 

LR: Federated Site-
Personalised Model 

0.867 (0.856 - 
0.878) 

74.2% (71.9 - 
76.4) 

85.7% (85.0 - 
86.3) 

84.4% (83.8 - 
85.0) 

39.6% (37.8 
- 41.4) 

96.3% (96.0 - 
96.7) 

0.516 

        
DNN: Local Model 0.622 (0.608 - 

0.637) 
74.5% (72.3 - 
76.7) 

43.8% (42.9 - 
44.7) 

47.3% (46.4 - 
48.1) 

14.4% (13.6 
- 15.2) 

93.2% (92.5 - 
93.8) 

0.241 

DNN: Federated 
Global Model 

0.876 (0.865 - 
0.886) 

77.2% (74.9 - 
79.2) 

82.3% (81.6 - 
82.9) 

81.7% (81.0 - 
82.3) 

35.5% (33.8 
- 37.1) 

96.6% (96.2 - 
96.9) 

0.486 

DNN: Federated Site-
Personalised Model 

0.883 (0.873 - 
0.893) 

78.2% (76.1 - 
80.2) 

82.7% (82.0 - 
83.4) 

82.2% (81.6 - 
82.9) 

36.4% (34.7 
- 38.1) 

96.8% (96.4 - 
97.1) 

0.497 

        
Bedfordshire Hospitals NHS Foundation Trust    
LR: Federated Global 
Model 

0.878 (0.851 - 
0.904) 

83.4% (76.6 - 
88.6) 

73.6% (70.8 - 
76.2) 

74.8% (72.3 - 
77.2) 

30.6% (26.3 
- 35.3) 

97.0% (95.5 - 
97.9) 

0.448 

DNN: Federated 
Global Model 

0.917 (0.893 - 
0.942) 

89.7% (83.6 - 
93.6) 

76.6% (73.9 - 
79.1) 

78.2% (75.7 - 
80.5) 

34.9% (30.2 
- 39.8) 

98.1% (97.0 - 
98.9) 

0.502 
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for LR (Figure 3). Although the global DNN model outperformed the global LR model 
at BH (DeLong p=0.0011) and OUH (p<0.0001), it performed similarly at PUH 
(p=0.81).  
 
Tuning of the global models for individual sites, by performing an additional round of 
training on the local training set prior to prospective evaluation, led to a small 
improvement in DNN performance at PUH (with AUROC improving <0.01; DeLong 
p=0.0014) but not for OUH (DeLong p=0.262). For LR, site personalisation did not 
improve performance (DeLong p=0.269 & p=0.629 for PUH and OUH respectively; 
Table 3 & Figure 3). This finding suggests low levels of population distribution shifts 
for predictors between sites, and high generalisability of the global model. 
 
Figure 3: Effect of increasing rounds of federated training on performance of LR & 
DNN models (AUROC +/- 95% CIs) during federated evaluation. (a) Prospective 
evaluation of both global and site-tuned models for patients admitted to OUH & PUH. 
(b) External evaluation of the global model for patients admitted to BH.  
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Explainable AI (XAI) 
Coefficient analysis of the LR global model showed granulocyte counts, including 
Neutrophils and Eosinophils, Albumin and respiratory rate had the highest impact on 
model predictions. This finding is in keeping with results in previous work, and the 
recognised roles of these predictors in the inflammatory response25,26. However, 
different to previous results, Haematocrit had a relatively larger coefficient possibly 
reflecting that coefficient analysis may identify co-variates/correlates. Shapley 
Additive exPlanations (SHAP) values, which provide a quantitate measure of the 
impact a feature has a models’ predictions, identified similar features as having 
greatest effect on the LR global model predictions.  For the DNN, SHAP values 
showed that Eosinophil count has greatest impact on model predictions, similar to 
the findings with the previous XGBoost based CURIAL-Lab model25. 
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Figure 4: Explainability analyses. (a) logistic regression coefficient scalars within the 
final global model. (b) and (c) SHAP values for the 20 features with greatest impact 
on predictions made by the LR and DNN global models respectively, calculated 
during centralised external validation at BH and shown as beeswarm plots. Each dot 
represents a patient attending BH during the prospective evaluation period. Positive 
SHAP values indicate a change in the expected model prediction towards testing 
positive for COVID-19. Features are shown in descending order of mean absolute 
SHAP value, with most impactful features shown at the top. 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 11, 2023. ; https://doi.org/10.1101/2023.05.05.23289554doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.05.23289554
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discussion 
Best practice in health data research mandates risks of inadvertent or malicious 
disclosure should be mitigated as far as possible, irrespective of whether 
pseudonymisation is used34–36. Although AI methods have shown great promise for 
improving diagnostics, participation by healthcare providers who hold EHR data has 
been limited thereby reducing diversity of available training data and limiting potential 
healthcare improvements11,37–39. 
 
Here, we present a real-world deployment of an end-to-end FL pipeline in tandem 
with IoMT hardware in the UK’s NHS. We train, calibrate and validate a COVID-19 
screening model for emergency care in a decentralised fashion, without centralising 
patient data from the four participating hospital groups, developing a user-friendly 
method for sites to participate without local technical expertise. Our micro-computing 
solution uses commercially available hardware and can be rapidly replicated across 
providers, achieving scalability at a low per-site cost (<£80). We propose that FL has 
potential to become a new standard-of-practice for privacy-prioritising health data 
research, reducing participation barriers and contributing to reduction of bias within 
training sets7, and allowing cross-border collaboration while maintaining data 
sovereignty. 
 
While FL theoretically offers safeguards against leakage in case of interception 
attack, additional considerations are required to mitigate other security risks such as 
unauthorised access or code injection. The use of single-purpose client and server 
hardware reduced the risk of inadvertent trojan attack. We selected the most recent 
long-term support (LTS) release of Ubuntu (22.04.1 LTS), an 
enterprise Linux distribution with full commercial support, configured to automatically 
accept security updates. Clients were secured in line with local requirements, and 
participating sites were asked to physically safeguard devices following local 
processes for handing IT hardware containing pseudonymised data. Source code 
was available to participating sites for review. Data was held on the client in 
pseudonymised form for the period of analysis only, protected by the site network’s 
firewall, and switched off when not in use. Sites were directed to remove and destroy 
the microSD storage disk on completion of participation. Where required, firewall 
rules were instated by local IT/security teams to allow two-way traffic communication 
between the device and co-ordinating server via a single pre-agreed port. The co-
ordinating server was hosted in a dedicated virtual machine on the Microsoft Azure 
platform [Redmond, California, USA], within an isolated virtual network and subject 
to the security considerations of the Azure platform 40. External communication was 
restricted to the pre-agreed port only, and the server was switched off when not in 
use for the present study. Messages between client and server contained only 
weights from within the trained model or summary results of evaluation, providing 
inherent protection against leakage if intercepted.  
 
Our results find that federation provided significant performance improvement over 
training on a single-site (figure 2), bringing model performance in to a clinically-
acceptable range (AUROC 0.917 during external validation; Table 3). Our findings 
show a more marked performance increase for deep neural networks, in keeping 
with other applications of federated deep learning8,17,18,41. This possibly reflects the 
high data requirements of DNNs, which require large quantities of data to extract 
high-level features42, indicating that FL may be an enabling technology for deep-
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learning based medical AI41. When compared to the original XGBoost-based 
CURIAL-Lab model, our federated global DNN model achieves higher performance 
during the comparable external evaluation at BH (CURIAL-Lab AUROC 0.881, 95% 
CIs 0.851-0.91225, versus CURIAL-Fed-Lab AUROC 0.917, 0.893 - 0.942). 
 
Strengths of our federated approach include the elimination of transfer of patient 
data off-premises as a prerequisite for participation, and without requiring use of a 
data-intermediary or Trusted Research Environment (TRE). We use the Raspberry 
Pi 4B device owing to commercial availability, high levels of support, and 
inexpensive removable storage medium (microSD; <£9 for 32Gb). To aid rapid 
deployment at scale, the microSD card of a configured Raspberry Pi can be imaged 
and cloned for new sites. Further, as the microSD cards are interchangeable, this 
approach may allow for a novel network of research devices to be maintained on 
providers’ premises, with new microSD cards sent to Trusts when deploying a new 
medical-AI application. Our study reports the largest number of patient encounters in 
a published secondary-care FL study to date, including routinely collected data from 
160,000 presentations to acute and emergency services across three UK regions. As 
our pipeline is designed for the well-supported Ubuntu operating system, our solution 
may readily scale to hardware offering greater computational power for more 
demanding learning tasks or operate on existing hospital-owned hardware.  
 
Notable limitations included that prior knowledge of the data format was required to 
allow harmonisation of feature names, unit values, and the representation of out-of-
bounds values between sites. We approached this by providing Trusts with a data 
specification and dictionary, however future work may explore a role for 
complimentary PETs such as differential privacy or synthetic data where a more in-
depth knowledge of the data sets is required43,44. Further, future work would seek to 
implement a fully-autonomous data extraction pathway through direct EHR 
integration, although challenges of this are well described45,46. The distributed nature 
of FL required that sensitivity and subgroup analyses are defined a priori, as only 
model weights and evaluation results are transmitted, potentially limiting researchers’ 
ability to rapidly investigate trends discovered within early results. FL, in combination 
with other PETs, do not create a trustless system and continue to require 
professional conduct during the manual stages of data and device handling. Lastly, 
the small physical footprint of micro-computing hardware may increase its 
susceptibility to loss or theft, requiring greater consideration towards physical 
security measures. 
 
Our results show that, in this case, site-specific tuning did not significantly improve 
model performance, suggesting that levels of distribution shift between sites were 
small for the routinely collected data examined and confirming good generalisability 
of the global model. This finding may vary for different clinical scenarios, using 
clinical data where site-specific variations are more likely, for example, where they 
may be differences in sample preparation protocols between sites, or when working 
across international borders.  
 
In conclusion, our work demonstrates an effective deployment of federated learning 
for the real-world emergency care setting. Future work may examine the extent to 
which increased diversity due to federation can improve model fairness, applications 
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of similar techniques to different clinical questions, and methods to incentivise 
uptake by providers41. 
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configured environment loaded on to the Raspberry Pi 4B devices supplied to 
participating NHS trusts. Although, by design, patient data was not transferred within 
the FL for this study, AS, JY, DWE and DAC have previously had access to the raw 
data within a prior related evaluation study (Soltan et. al 202226). PD accessed and 
verified the data at BH. MAS & DRT accessed and verified the data at UHB. LDC 
accessed and verified the data at PUH. Data from OUH studied here are available 
from the Infections in Oxfordshire Research Database 
(https://oxfordbrc.nihr.ac.uk/research-themes-overview/antimicrobial-resistance-and-
modernising-microbiology/infections-in-oxfordshire-research-database-iord/), subject 
to an application meeting the ethical and governance requirements of the Database. 
Data from UHB, PUH and BH are available on reasonable request to the respective 
trusts subject to NHS HRA requirements. 
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Supplementary Material 
Scalable federated learning for emergency care using low cost 
microcomputing: Real-world, privacy preserving development and 
evaluation of a COVID-19 screening test 
Soltan et al 2022. 
 
Appendix A: Supplementary Methods 
 
Description of Training & Evaluation Cohorts 
OUH consists of four teaching hospitals, serving a population of 600 000 and 
providing tertiary referral services to the surrounding region. Data extraction 
considered all patients presenting to emergency and acute medical departments 
prior to the pandemic, between December 1, 2018 and November 30, 2019, and 
during first and second waves of the COVID-19 pandemic in the UK between 
December 1, 2019 and March 6, 2021. Confirmatory testing at OUH was by 
laboratory RT-PCR assay (Abbott Architect [Abbott, Maidenhead, UK], TaqPath 
[Thermo Fisher Scientific, Massachusetts, USA] and Public Health England-
designed RNA-dependent RNA polymerase assays). 
 
Training & evaluation cohorts at Portsmouth Hospitals University NHS Trust (PUH) 
considered all patients presenting to the Queen Alexandria Hospital (QAH), serving a 
population of 675,000 and offering tertiary referral services to the surrounding region. 
We included patients admitted prior to the pandemic between, between January 01, 
2019 and October 31, 2019, and during first & second waves of the COVID-19 
pandemic in the UK between March 1, 2020 and February 28, 2021. Confirmatory 
COVID-19 testing was by laboratory SARS-CoV-2 RT-PCR assay (Ct for positive 
result ≤36), considering any positive PCR result within 48hrs of admission as a true 
positive. 
 
University Hospitals Birmingham NHS Foundation (UHB) Trust participated in 
federated training & testing only. Data extraction for training & testing considered all 
patients admitted to The Queen Elizabeth Hospital, Birmingham, prior to the 
pandemic between December 01, 2018 and November 30, 2019, and during the 
first wave of the COVID-19 pandemic between December 01, 2019 and October 
29, 2020. The Queen Elizabeth Hospital is a large tertiary referral unit within the 
UHB group which provides healthcare services for a population of 2.2 million across 
the West Midlands. Confirmatory COVID-19 testing was performed by laboratory 
SARS-CoV-2 RT-PCR assay (Ct for positive result ≤36).  
 
Bedfordshire Hospitals NHS Foundation Trust (BHT) participated in federated 
evaluation only. Data extraction for the evaluation considered all patients admitted to 
Bedford Hospital between January 1, 2021 and March 31, 2021. BHT provides 
healthcare services for a population of around 620,000 in Bedfordshire. Confirmatory 
COVID-19 testing was performed on the day of admission by point-of-care PCR 
based nucleic acid testing [SAMBA-II & Panther Fusion System, Diagnostics in the 
Real World, UK, and Hologic, USA]. The Ct for a positive clinical result was ≤36. In 
an evaluation of the SAMBA-II against laboratory RT-PCR testing, the SAMBA-II 
achieved sensitivity of 96.9% and specificity of 99.1%47,48. 
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We report sensitivity, specificity, positive and negative predictive values (PPV and 
NPV), AUROC and F1 alongside 95% CIs, comparing model predictions to results of 
confirmatory viral testing (laboratory PCR and SAMBA-II). 95% Confidence intervals 
for sensitivity, specificity and predictive values were computed using Wilson’s 
Method49, and for AUROC with DeLong’s method33.   
 
Data Extraction 
For PUH, UHB and BH, data extraction and pseudonymisation was performed by a 
member of staff employed by the respective trust within the participating NHS trust’s 
premises. Data extraction for OUH was performed within the shared research 
network that exists between the NHS trust and Oxford University (Oxford NIHR 
Biomedical Research Campus) via the Big Data Institute. The pseudonomised data 
was extracted from electronic health records according to the pre-provided extraction 
criteria as comma-delimited files (CSVs; Supplementary Table S1 & Methods) and 
transferred to a specified folder on the Raspberry Pi using locally-approved USB 
flash drives or secure file transfer protocol (sFTP) within the local network. 
 
The FedAvg Algorithm 
Model updates were performed using the FedAvg algorithm, in which the server 
collects weights within locally trained models and updates the global model by 
calculating a weighted average10. The weight attributed to model updates from each 
client is weighted by the number of samples contributed to the training process. 
  
Client-Server Communication 
We implemented client-server federated learning using the Flower library (v 1.2.0). 
Clients communicated with the server using in-built protocols via a dedicated port. 
Where required, firewall rules were implemented by local IT/security teams to allow 
communication between the client device and the server through the pre-agreed 
port. Media Access Control (MAC) addresses were made available where required to 
facilitate network controls. Messages between client and server contained only 
weights from within the trained model or summary results of evaluation. Data was 
held on the Raspberry Pi in pseudonymised form and was not transferred between 
client and server.  
 
Device Security 
To ensure security of the Raspberry Pi 4B devices, we selected the Ubuntu Desktop 
OS owing to its commercially security support. We selected the most up to date 
available version of Ubuntu at the time of deployment (22.04.1 LTS), configuring the 
devices to automatically install security patches. Devices were password protected, 
and participating sites were asked to physically safeguard the devices following local 
processes for handling of IT hardware. We made source code of the pipeline 
available to participating sites. On study completion, sites were asked to destroy the 
microSD storage card. Devices were switched off when not in use. The federated 
server was hosted within a dedicated virtual machine on the Microsoft Azure 
platform, as a Standard D2s v3 machine with 8 Gb RAM, and running the Ubuntu 
Server operating system. A virtual network and associated security group was 
implemented, permitting communication with the server only through the approved 
port. Both server and clients were switched off when not in use. 
 
Software Libraries & Dependencies: 
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Ubuntu Desktop & Server 22.04.01 LTS 
Flower v 1.2.0 
Pandas 1.5.0 
Tensorflow & Keras 2.10.0 
Scikit-learn 1.1.2 
SciPy 1.9.1 
Numpy 1.23.3 
Statsmodels 0.13.2 
SHAP 0.41.0 
 
Supplementary Table S1: Clinical data fields, extracted from training and 
prospectively/externally validating NHS sites, for all patients admitted to the trusts during the 
study periods. (Table reproduced from Soltan et. al. 202226). Premorbid clinical data were 
not analysed within this study. 
 

Clinical Descriptors: Presentation Blood Tests: Presentation Blood Gas: Premorbid Clinical Data 
Study ID PresentationHAEMOGLOBIN PresentationPOCT pC02 BaselineHAEMOGLOBIN 
Presentation Date PresentationWHITE CELLS PresentationPOCT sO2 BaselineWHITE CELLS 
Ethnicity PresentationPLATELETS PresentationPOCT pO2 BaselinePLATELETS 
Age at presentation PresentationMEAN CELL VOL. PresentationPCT cBASE(Ecf) BaselineMEAN CELL VOL. 
Gender (M/F) PresentationRED CELL COUNT PresentationPCT CO3(P,st) BaselineRED CELL COUNT 
Comorbidities (ICD10) PresentationNEUTROPHILS PresentationPOCT Hctc BaselineNEUTROPHILS 
Outcome PresentationHAEMATOCRIT PresentationPOCT FO2Hb BaselineHAEMATOCRIT 
Vital Signs: PresentationLYMPHOCYTES PresentationPOCT ctO2c BaselineLYMPHOCYTES 
AdmissionRespRate PresentationMEAN CELL HGB PresentationPOCT cGLU BaselineMEAN CELL HGB 
AdmissionHeartRate PresentationMONOCYTES PresentationPOCT cK+ BaselineMONOCYTES 
AdmissionBloodPressure PresentationEOSINOPHILS PresentationPOCT cNA+ BaselineEOSINOPHILS 
AdmissionSpO2 PresentationBASOPHILS PresentationPOCT cLAC BaselineBASOPHILS 
AdmissionOxygenDeliveryDevice Presentation MCH PresentationPOCT cCA++ BaselineMEAN CELL HGB CONC 
AdmissionTemperature PresentationMPV  BaselineSODIUM 
Microbiology: PresentationNRBC A  BaselineALBUMIN 
SARS-CoV-2 PCR PresentationNRBC %  BaselineALK.PHOSPHATASE 
SARS-CoV-2 RESULT TYPE PresentationSODIUM  BaselineALT  
SARS-CoV-2 Antigen Test Result PresentationALBUMIN  BaselineUREA 
INFLUENZAPCR PresentationALK.PHOSPHATASE  BaselineBILIRUBIN 
RespiratoryPCR (Biofire) PresentationALT  BaselineCREATININE 

 PresentationUREA  BaselineeGFR 

 PresentationBILIRUBIN  BaselinePOTASSIUM 

 PresentationCREATININE  BaselineCALCIUM 

 PresentationeGFR  BaselineADJUSTED CALC. 

 PresentationPOTASSIUM  BaselineCRP 

 PresentationCALCIUM  BaselineProthromb. Time 

 PresentationADJUSTED CALC.  BaselineAPTT 

 PresentationPHOSPHATE  BaselineINR  
 PresentationCRP  BaselinePOCT pC02 

 PresentationProthromb. Time  BaselinePOCT sO2 

 PresentationPOCT ctHb  BaselinePOCT pO2 

 PresentationGLUCOSE  BaselinePCT cBASE(Ecf)c 

 PresentationAPTT  BaselinePCT CO3(P,st)c 

 PresentationINR  BaselinePOCT Hctc 

   BaselinePOCT FO2Hb 

   BaselinePOCT ctO2c 

   BaselinePOCT Cglu 

   BaselinePOCT cK+ 

   BaselinePOCT cNA+ 

   BaselinePOCT cLAC 

   BaselinePOCT cCA++ 
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Supplementary Figure S1: User interface for participating NHS Trusts on loading 
the Raspberry Pi 4B devices, showing the two-step participation process. 
Participating sites were requested to upload data files into a pre-agreed folder (‘1 
Place Raw Data Here’) as Comma-Separated Value files, and select option ‘2 Run 
Client’ to operate the FL pipeline. 
 
 
Appendix B: Supplementary Results 
 
Cohort summaries 
 
Supplementary Table S2: Distribution of vital signs, reported as median and interquartile 
ranges, for each patient cohort. 
 

 a) Training cohorts:  Pre-pandemic & Wave 1 COVID-19 positive b) Wave 2: Prospective evaluation cohorts 
 Oxford University 

Hospitals 
University Hospitals 
Birmingham NHS 
Foundation Trust 

Portsmouth Hospitals 
University NHS Trust 

Oxford 
University 
Hospitals  

Portsmouth 
Hospitals University 
NHS Trust 

Bedfordshire 
Hospitals NHS 
Foundation Trust 

Cohort Pre-
pandemic: 
December 
1, 2018 - 
November 
30, 2019 

Wave 1, 
COVID19+: 
December 
1, 2019 – 
October 
29, 2020 
 

Pre-
pandemic: 
December 
01, 2018 - 
November 
30, 2019 

Wave 1, 
COVID19+: 
December 
01, 2019 - 
October 
29, 2020 
 

Pre-
pandemic: 
January 
01, 2019 - 
October 
31, 2019 

Wave 1, 
COVID19+: 
March 1, 
2020 – 
October 
29, 2020 

Wave 2: 
November 
01, 2020 – 
March 06, 
2021 

Wave 2: 
November 01, 
2020 - February 
28, 2021 

Wave 2:  
January 1, 2021 
- March 31, 2021 

Respiratory 
Rate 
(breath/min) 

18.0 (16.0-
19.0) 

20.0 (18.0-
24.0) 

17.0 (16.0-
18.0) 

19.0 (18.0-
23.0) 

18.0 (16.0-
20.0) 

22.0 (18.0-
28.0) 

18.0 (17.0-
19.0) 

18.0 (17.0-20.0) 18.0 (16.0-20.0) 

Heart Rate 
(beats/min) 

82.0 (70.0-
95.0) 

88.0 (75.0-
101.0) 

80.0 (70.0-
92.0) 

88.0 (78.0-
99.0) 

84.0 (71.0-
98.0) 

92.0 (78.0-
107.0) 

84.0 (72.0-
97.0) 

86.0 (73.0-100.0) 84.0 (73.0-97.8) 
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Supplementary Table S3: Distribution of blood test features, reported as median and 
interquartile ranges, for each patient cohort. 

Systolic 
Blood 
Pressure 
(mmHg) 

132.0 
(118.0-
149.0) 

131.0 
(115.0-
147.0) 

126.0 
(113.0-
145.0) 

123.0 
(110.0-
139.0) 

134.0 
(118.0-
153.0) 

129.0 
(113.0-
146.0) 

134.0 (119.0-
152.0) 

137.0 (120.0-156.0) 131.0 (116.0-
149.0) 

Diastolic 
Blood 
Pressure 
(mmHg) 

74.0 (65.0-
83.0) 

74.0 (64.0-
84.0) 

75.0 (67.0-
83.0) 

74.0 (65.0-
81.0) 

76.0 (67.0-
86.0) 

74.0 (65.0-
83.0) 

75.0 (65.0-
85.0) 

78.0 (69.0-87.0) 78.0 (68.0-88.0) 

Oxygen 
Saturation 
(%) 

97.0 (96.0-
98.0) 

96.0 (94.0-
97.0) 

97.0 (95.0-
98.0) 

95.0 (94.0-
97.0) 

97.0 (95.0-
98.0) 

95.0 (93.0-
97.0) 

97.0 (95.0-
97.9) 

97.0 (95.0-98.0) 97.0 (96.0-99.0) 

Tympanic 
Temperature 
(C) 

36.5 (36.1-
36.9) 

36.9 (36.2-
37.6) 

36.4 (36.1-
36.9) 

36.8 (36.2-
37.4) 

36.7 (36.4-
37.1) 

37.7 (36.9-
38.5) 

36.3 (36.0-
36.7) 

36.7 (36.4-37.2) 36.5 (36.4-36.9) 

 a) Training cohorts:  Pre-pandemic & Wave 1 COVID-19 positive b) Wave 2: Prospective evaluation cohorts 
 Oxford University 

Hospitals 
University Hospitals 
Birmingham NHS 
Foundation Trust 

Portsmouth Hospitals 
University NHS Trust 

Oxford 
University 
Hospitals  

Portsmouth 
Hospitals University 
NHS Trust 

Bedfordshire 
Hospitals NHS 
Foundation Trust 

Cohort Pre-
pandemic: 
December 
1, 2018 - 
November 
30, 2019 

Wave 1, 
COVID19+: 
December 
1, 2019 – 
October 
29, 2020 
 

Pre-
pandemic: 
December 
01, 2018 - 
November 
30, 2019 

Wave 1, 
COVID19+: 
December 
01, 2019 - 
October 
29, 2020 
 

Pre-
pandemic: 
January 
01, 2019 - 
October 
31, 2019 

Wave 1, 
COVID19+: 
March 1, 
2020 – 
October 
29, 2020 

Wave 2: 
November 
01, 2020 – 
March 06, 
2021 

Wave 2: 
November 01, 
2020 - February 
28, 2021 

Wave 2:  
January 1, 2021 
- March 31, 2021 

HAEMOGLO
BIN (g/L) 

130.0 
(116.0-
142.0) 

131.0 
(115.0-
143.0) 

131.0 
(116.0-
143.0) 

128.5 
(114.0-
141.0) 

127.0 
(113.0-
139.0) 

128.0 
(113.0-
142.0) 

130.0 (114.0-
143.0) 

127.0 (113.0-140.0) 134.0 (119.0-
146.0) 

WHITE 
CELLS (109 l-
1) 

8.52 (6.57-
11.24) 

6.74 (5.04-
9.46) 

8.6 (6.7-
11.2) 

7.15 (5.5-
10.1) 

9.6 (7.3-
12.7) 

7.0 (5.0-
9.8) 

8.89 (6.65-
12.01) 

9.3 (7.0-12.4) 9.2 (6.95-12.5) 

PLATELETS 
(109 l-1) 

248.0 
(199.0-
306.0) 

214.0 
(160.0-
282.5) 

237.0 
(188.5-
292.5) 

214.5 
(162.0-
291.75) 

245.0 
(196.0-
304.0) 

203.0 
(157.0-
255.0) 

250.0 (198.0-
313.0) 

246.0 (194.0-309.0) 246.0 (196.25-
310.0) 

MEAN CELL 
VOL (fl) 

90.1 (86.5-
93.9) 

90.1 (86.3-
94.1) 

88.6 (84.4-
92.6) 

87.35 
(83.28-
91.9) 

86.6 
(82.25-
92.67) 

88.8 (85.2-
92.2) 

90.2 (86.6-
94.2) 

90.0 (86.3-93.5) 88.0 (85.0-92.0) 

NEUTROPHI
LS (109 l-1) 

5.83 (4.11-
8.5) 

4.93 (3.34-
7.28) 

5.8 (4.2-
8.4) 

5.5 (3.9-
8.0) 

7.1 (4.9-
10.2) 

5.3 (3.6-
8.0) 

6.4 (4.37-
9.48) 

6.8 (4.7-9.8) 6.8 (4.72-9.72) 

HAEMATOC
RIT 

0.39 (0.35-
0.42) 

0.4 (0.36-
0.43) 

0.39 (0.35-
0.42) 

0.39 (0.35-
0.42) 

0.38 (0.34-
0.42) 

0.38 (0.34-
0.42) 

0.39 (0.35-
0.43) 

0.38 (0.34-0.42) 0.39 (0.35-0.43) 

LYMPHOCY
TES (109 l-1) 

1.46 (0.96-
2.07) 

0.98 (0.65-
1.39) 

1.5 (1.0-
2.1) 

0.95 (0.62-
1.4) 

1.4 (0.9-
2.0) 

0.8 (0.5-
1.2) 

1.3 (0.85-
1.88) 

1.3 (0.8-1.9) 1.27 (0.85-1.83) 

MONOCYTE
S (109 l-1) 

0.65 (0.49-
0.87) 

0.48 (0.34-
0.72) 

0.6 (0.5-
0.9) 

0.45 (0.3-
0.67) 

0.7 (0.5-
0.9) 

0.5 (0.4-
0.8) 

0.65 (0.47-
0.89) 

0.7 (0.5-0.9) 0.67 (0.48-0.92) 

EOSINOPHI
LS (109 l-1) 

0.1 (0.04-
0.2) 

0.01 (0.0-
0.06) 

0.1 (0.0-
0.2) 

0.01 (0.0-
0.04) 

0.1 (0.0-
0.2) 

0.0 (0.0-
0.0) 

0.07 (0.02-
0.16) 

0.1 (0.0-0.1) 0.06 (0.02-0.16) 

BASOPHILS 
(109 l-1) 

0.04 (0.03-
0.06) 

0.02 (0.01-
0.03) 

0.0 (0.0-
0.1) 

0.02 (0.01-
0.03) 

0.0 (0.0-
0.1) 

0.0 (0.0-
0.1) 

0.04 (0.02-
0.06) 

0.0 (0.0-0.1) 0.05 (0.03-0.07) 

SODIUM 
(mM) 

138.0 
(136.0-
140.0) 

136.0 
(133.0-
139.0) 

138.0 
(135.0-
140.0) 

138.0 
(135.0-
140.0) 

137.0 
(134.0-
139.0) 

136.0 
(133.0-
139.0) 

138.0 (135.0-
140.0) 

137.0 (134.0-139.0) 138.0 (136.0-
140.0) 

ALBUMIN 
(g/L) 

36.0 (32.0-
39.0) 

32.0 (28.0-
36.0) 

39.0 (34.0-
43.0) 

30.0 (26.0-
33.0) 

36.0 (32.0-
40.0) 

33.0 (29.0-
36.0) 

36.0 (31.0-
39.0) 

36.0 (32.0-39.0) 35.0 (31.0-39.0) 

ALKALINE 
PHOSPHAT
ASE (IU/L) 

81.0 (65.0-
106.0) 

80.0 (63.0-
106.0) 

82.0 (66.0-
106.0) 

76.0 
(59.25-
101.0) 

85.0 (67.0-
114.0) 

88.0 (67.0-
116.5) 

84.0 (66.0-
112.0) 

89.0 (71.0-119.0) 94.0 (74.0-122.0) 

ALT (IU/L) 18.0 (13.0-
28.0) 

25.0 
(16.25-
40.0) 

18.0 (12.0-
28.0) 

27.0 (17.0-
44.0) 

18.0 (13.0-
29.0) 

24.0 (16.0-
39.0) 

20.0 (14.0-
33.0) 

19.0 (13.0-31.0) 20.0 (13.0-31.0) 

UREA (mM) 5.4 (4.1-
7.7) 

5.8 (4.1-
8.8) 

5.2 (3.8-
7.4) 

6.1 (4.0-
10.1) 

6.0 (4.3-
8.8) 

8.0 (5.4-
12.1) 

5.7 (4.2-8.4) 6.2 (4.5-9.1) 5.8 (4.2-8.3) 

BILIRUBIN 
(umol/L) 

9.0 (6.0-
13.0) 

9.0 (6.0-
13.0) 

9.0 (6.0-
14.0) 

11.0 (8.0-
15.0) 

10.0 (7.0-
15.0) 

10.0 (8.0-
14.0) 

9.0 (6.0-14.0) 10.0 (7.0-15.0) 10.0 (7.0-14.0) 

CREATININE 
(umol/L) 

74.0 (60.0-
95.0) 

79.0 (64.0-
105.0) 

76.0 (61.0-
96.0) 

82.0 (64.0-
111.0) 

75.0 (60.0-
101.0) 

90.0 (71.0-
129.0) 

74.0 (60.0-
97.0) 

78.0 (62.0-104.0) 81.0 (65.25-
104.0) 
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Data-completeness summaries 
 
Supplementary Table S5: Numbers of participants with data-completeness for each 
predictor, across each evaluation cohort. 
 

eGFR 
(ml/min) 

83.0 (60.0-
150.0) 

79.0 (54.0-
150.0) 

82.0 (59.0-
90.0) 

75.0 
(49.75-
90.0) 

79.0 (55.0-
90.0) 

63.0 (43.0-
86.0) 

84.0 (58.0-
150.0) 

76.0 (52.0-90.0) 75.5 (54.0-90.0) 

POTASSIUM 
(mM) 

4.0 (3.7-
4.3) 

4.0 (3.7-
4.3) 

4.2 (3.9-
4.5) 

4.1 (3.7-
4.5) 

4.1 (3.8-
4.4) 

4.0 (3.7-
4.3) 

4.0 (3.8-4.4) 4.1 (3.8-4.4) 4.3 (4.0-4.6) 

CRP (mg/L) 9.8 (2.5-
44.8) 

64.95 
(19.7-
139.48) 

11.0 (3.0-
57.0) 

102.0 
(45.0-
175.0) 

14.0 (4.0-
60.0) 

81.0 
(27.75-
159.25) 

16.7 (3.5-
69.2) 

14.0 (4.0-70.0) 10.85 (2.8-49.05) 

 Wave 2: Prospective evaluation cohorts 
 Oxford University Hospitals  Portsmouth Hospitals 

University NHS Trust 
Bedfordshire Hospitals NHS 
Foundation Trust 

Cohort Wave 2: 
November 01, 2020 – March 
06, 2021 

Wave 2: 
November 01, 2020 - 
February 28, 2021 

Wave 2:  
January 1, 2021 - March 
31, 2021 

HAEMOGLOBIN (g/L) 18275/18543 (98.6%) 13210/13260 (99.6%) 1183/1183 (100.0%) 
WHITE CELLS (109 l-1) 18275/18543 (98.6%) 13208/13260 (99.6%) 1183/1183 (100.0%) 

PLATELETS (109 l-1) 18262/18543 (98.5%) 13191/13260 (99.5%) 1178/1183 (99.6%) 

MEAN CELL VOL (fl) 18275/18543 (98.6%) 13204/13260 (99.6%) 1183/1183 (100.0%) 

NEUTROPHILS (109 l-1) 18174/18543 (98.0%) 13202/13260 (99.6%) 1183/1183 (100.0%) 

HAEMATOCRIT 18275/18543 (98.6%) 13208/13260 (99.6%) 1183/1183 (100.0%) 

LYMPHOCYTES (109 l-1) 18187/18543 (98.1%) 13202/13260 (99.6%) 1183/1183 (100.0%) 

MONOCYTES (109 l-1) 18209/18543 (98.2%) 13205/13260 (99.6%) 1183/1183 (100.0%) 

EOSINOPHILS (109 l-1) 18209/18543 (98.2%) 13202/13260 (99.6%) 1183/1183 (100.0%) 

BASOPHILS (109 l-1) 18205/18543 (98.2%) 13205/13260 (99.6%) 1183/1183 (100.0%) 

SODIUM (mM) 18206/18543 (98.2%) 12700/13260 (95.8%) 1179/1183 (99.7%) 

ALBUMIN (g/L) 16298/18543 (87.9%) 12431/13260 (93.7%) 1166/1183 (98.6%) 

ALKALINE PHOSPHATASE (IU/L) 16199/18543 (87.4%) 12431/13260 (93.7%) 1117/1183 (94.4%) 

ALT (IU/L) 16036/18543 (86.5%) 12411/13260 (93.6%) 1042/1183 (88.1%) 

UREA (mM) 18171/18543 (98.0%) 12693/13260 (95.7%) 1147/1183 (97.0%) 

BILIRUBIN (umol/L) 16050/18543 (86.6%) 12412/13260 (93.6%) 944/1183 (79.8%) 

CREATININE (umol/L) 18216/18543 (98.2%) 12703/13260 (95.8%) 1178/1183 (99.6%) 

eGFR (ml/min) 18171/18543 (98.0%) 12703/13260 (95.8%) 1178/1183 (99.6%) 

POTASSIUM (mM) 17870/18543 (96.4%) 12154/13260 (91.7%) 1062/1183 (89.8%) 

CRP (mg/L) 15506/18543 (83.6%) 12274/13260 (92.6%) 1140/1183 (96.4%) 

Respiratory Rate (breath/min) 18486/18543 (99.7%) 11715/13260 (88.3%) 1183/1183 (100.0%) 

Heart Rate (beats/min) 18531/18543 (99.9%) 11716/13260 (88.4%) 1182/1183 (99.9%) 
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Supplementary Figure S2: Curves showing iterative improvement in performance 
(AUROC) of the global model after each round of federated training, evaluated on 
the held-out test set for each site participating in training. 
 

Systolic Blood Pressure (mmHg) 18530/18543 (99.9%) 11715/13260 (88.3%) 1177/1183 (99.5%) 

Diastolic Blood Pressure (mmHg) 18529/18543 (99.9%) 11715/13260 (88.3%) 1177/1183 (99.5%) 

Oxygen Saturation (%) 18524/18543 (99.9%) 11716/13260 (88.4%) 1183/1183 (100.0%) 

Tympanic Temperature (C) 18469/18543 (99.6%) 11714/13260 (88.3%) 1183/1183 (100.0%) 

Oxygen Delivery Device 18462/18543 (99.6%) 11722/13260 (88.4%) 1183/1183 (100.0%) 
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