Inferring Alzheimer's disease pathologic traits from clinical measures in living adults

Author(s):
Jingjing Yang, PhD¹; Xizhu Liu²; Shahram Oveisgharan, MD³; Andrea R. Zammit, PhD³; Sukriti Nag, MD, PhD,³ David A Bennett, MD³; Aron S Buchman, MD³

Corresponding Author:
Jingjing Yang, jingjing.yang@emory.edu

Affiliation Information for All Authors: 1. Center for Computational and Quantitative Genetics, Department of Human Genetics, Emory University School of Medicine, 615 Michael St, Atlanta, GA, 30322, USA; 2. Department of Biostatistics, Yale University School of Public Health, New Haven, CT, USA; 3. Rush Alzheimer’s Disease Center, Rush University Medicine Center, Chicago, IL, 60612, USA.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Background and Objectives: Develop imputation models using clinical measures to infer Alzheimer’s disease neuropathologic changes (AD-NC) in living adults to identify adults at risk for Alzheimer’s disease (AD).

Methods: We used clinical and postmortem data of two prospective cohort studies — Memory and Aging Project (MAP) and Religious Orders Study (ROS). We used generalized linear regression models with Elastic-Net penalty to train imputation models of AD-NC traits (β-Amyloid, tau tangles, global AD pathology, and NIA-Reagan), in MAP decedents using clinical measures collected at last visit as predictors. ROS cohort was used as an independent validation and test data. We validated these models in ROS decedents and applied the models to baseline clinical data of ROS participants to infer baseline AD-NC traits. Baseline clinical data were collected an average of 8 years before last follow-up. We used Cox proportional hazard models to test if inferred baseline AD-NC traits predicted incident AD dementia (ADD). In addition, two-sample t-tests were used to examine if inferred baseline AD-NC traits predicted adults with high risk of pathologic AD profiled at death.

Results: By applying imputation models to clinical measures collected at last visit in ROS to validate the imputation models, we obtained predicted R^2 as 0.188 for β-Amyloid, 0.316 for tau tangles, and 0.262 for global AD pathology. Prediction area under the receiver operating characteristic curve (AUC) for the dichotomous NIA-Reagan was 0.765. All four inferred AD-NC traits at last visit strongly discriminated postmortem NIA-Reagan status (p-values < 10^{-28}). The inferred baseline levels of all four AD-NC traits predicted ADD, with higher accuracies for predicting ADD in Year 3 (AUC ranging in $0.861 - 0.919$) versus Year 5 (AUC $0.842 - 0.896$), and the highest accuracy was obtained using inferred NIA-Reagan status. The inferred baseline levels of all four AD-NC traits significantly discriminate individuals with postmortem pathologic AD (all p-values < 1.5×10^{-7}).

Conclusions: Inferred baseline levels of AD-NC traits derived from clinical measures discriminate adults at risk for ADD and pathologic AD profiled at death. Further studies are needed to determine if repeated measures of inferred AD-NC traits can be used to monitor the accumulation of AD-NC traits during the prolonged course of AD.

Keywords & Subject Areas: Alzheimer’s disease (AD), Cohort studies, Computational imputation model, Alzheimer’s disease neurologic change (AD-NC)
INTRODUCTION

Alzheimer’s disease dementia (ADD) is a chronic progressive disorder that develops over years before manifesting impaired cognition. In its earliest asymptomatic stage, Alzheimer’s disease neuropathologic changes (AD-NC) accumulate in adults with normal cognition, and higher levels of AD-NC during early stages are associated with an increased risk of ADD. Yet, ADD is commonly caused by mixed-brain pathologies, so clinical risk models identifying adults at risk for clinical ADD do not inform on which AD-NC traits underlie the predicted risk of ADD. Thus, developing a model that can infer the level of AD-NC traits in living adults with normal cognition can identify adults with specific high levels of AD-NC traits being at risk of ADD, which could facilitate early targeted treatments of specific AD-NC traits.

Currently, indices of AD-NC can only be obtained after death via autopsy. Yet, AD-NC accumulate over years before cognitive impairment manifests. Recent efforts to identify AD-NC before impaired cognition have focused on using brain imaging or CSF AD-NC biomarkers. Yet, these biomarkers are not widely available due to their costs, invasiveness, and difficulty to deploy at scale. This explains in part why current aging research is focused on identifying blood biomarkers for AD-NC traits that can be used in general population.

A computational model that can infer AD-NC traits based on clinical measures in living adults is an understudied alternative that if successful could be deployed widely and might also be combined with fluid biomarkers to improve identification of adults at risk of ADD.

Machine learning techniques such as penalized regression have been employed to impute missing data or estimate data that are difficult to measure directly in many areas of biomedical research. Prior efforts to impute AD-NC traits have used a combination of brain imaging and clinical measures to infer AD-NC traits. However, brain imaging is expensive and not widely available. In contrast, a validated imputation model can be conveniently applied to infer AD-NC traits in any living adults with the same clinical measures used in the imputation model.

To develop imputation models for AD-NC traits, we used clinical and postmortem data from two harmonized, independent cohort studies — Rush Memory and Aging Project (MAP) and the Religious Orders Study (ROS). First, we trained imputation models to infer AD-NC traits using clinical measures at the last visit in MAP decedents and validated model performance in a second independent cohort, ROS decedents. Then we applied the imputation models to clinical measures collected in ROS participants at study entry to infer baseline levels of AD-NC traits. The baseline is on average 8 years before the last follow up in MAP and ROS. We examined if inferred baseline AD-NC traits predicted future ADD and pathologic AD profiled at death.

METHODS

We use the STOBE cohortreporting guidelines.

Participants

Participants were community-dwelling older adults enrolled without known clinical dementia in one of two ongoing cohort studies of chronic conditions of aging, MAP (n=1179, ~500 autopsied) and ROS (n=1103, ~600 autopsied). Both cohorts employed a harmonized data collection battery administered by the same research assistants facilitating joint analyses. We
only analyzed samples that had at least two follow-ups. At study entry, MAP and ROS have
1742 samples that had no cognitive impairment (NCI) and 540 samples that had mild cognitive
impairment (MCI) (Table S1). The duration of follow-up for participants ranged from 2 to 26
years, with an average of 8 years and standard deviation 5.42 (Fig S1; Tables S1-S2).

Assessment of Alzheimer’s Disease Neuropathologic Traits (AD-NC)
After death, the brain was removed and hemisected following standard procedure, as
previously described. Tissue blocks were dissected from predetermined regions and used for
making the postmortem diagnosis of pathologic AD. Structured autopsy collected indices of
neurodegenerative pathologies that were collected blinded to all prior clinical and cognitive
data. This study focuses on studying three continuous measures summarizing the burden of
AD-NC in five cortical regions — β-amyloid, tau tangles, and global AD pathology (i.e., a
summary of neuritic and diffuse plaques), and one dichotomous NIA-Reagan status (Table
S2). Measures of β-amyloid and tau tangles were square-root transformed to improve their
asymptotic normality as previously reported. NIA-Reagan status was also taken as
diagnosis of pathologic AD based on modified AD NIA-Reagan criteria.

Assessment of Cognition and Cognitive Status
A structured exam was administered annually. The neuropsychological battery included 19
tests that assessed five domains of cognitive ability. Raw test scores were standardized per
test using baseline means and standard deviations (SDs) of both cohorts; the resulting Z-
scores were then averaged across 17 of these cognitive tests to derive a summary composite
global cognition score and scores for five cognitive abilities including: episodic memory,
semantic memory, working memory, visuospatial abilities, and perceptual speed. A
neuropsychologist and a neurologist with expertise in dementia reviewed annual cognitive
testing and classified cognitive status of participants as NCI, MCI, ADD, or other dementias
according to established criterion of clinical diagnosis of Alzheimer’s disease.

Other Clinical Covariates
Five groups of clinical variables (a total of 57) were considered as predictors for developing
imputation models of AD-NC traits (Tables S2-S5) — i) Common Alzheimer’s disease risk
factors including age, sex, education, Mini Mental State Exam (MMSE) score, and APOE E4
allele; ii) Health measures such as blood pressure, depression, and cardiovascular diseases;
iii) Medication usage such as lipid lowering medications, and antidepressants; iv) Variables
uniquely profiled by MAP/ROS such as composite global cognition scores based on 17
cognitive tests, self-reported physical activity and social network size; v) Motor and sleep
metrics such as dexterity, hand strength, gait function, four parkinsonian signs, and four self-reported variables about sleep quality and duration.

These 57 clinical variables were selected by excluding variables with a high proportion of
missing values (>20%) and those that were highly correlated with other selected clinical
variables (correlation>0.95). Missing values of longitudinal variables were imputed from the
corresponding values at participants’ nearest visits. A total of 345 individuals with missing
cross-sectional variables were excluded, leaving n=1179 MAP and n=1103 ROS participants.
for the analyses in this study, including both living participants and decedents. A heat map showing the correlations of the clinical variables examined in this study is shown in Fig S2.

Analytic Approach

Training and validating imputation models to infer AD-NC

Training imputation models in MAP. We trained an imputation model per AD-NC trait using clinical variables obtained at the last visit before death as predictors, employing a generalized linear regression model with Elastic-Net penalty (GLM-EN) (Fig 1A). A total of 57 clinical variables were considered as predictors for imputation models of AD-NC traits (Tables S2-S5; Fig S2). By using the GLM-EN method, variable selection was implemented and potential collinearity among clinical variables was accounted for during model training. Ten-fold cross validation was used during model training to select Elastic-Net penalty parameters to ensure best imputation accuracy.

Validating imputation model in ROS. Next, we validated the performance of these imputation models by inferring AD-NC traits using clinical variables measured at the last visit proximate to death in the 2nd independent test cohort, ROS decedents (Fig 1A). Prediction R^2, the squared correlation between inferred and measured values, was used for assessing imputation accuracy for continuous AD-NC traits. Prediction accuracy for the dichotomous NIA-Reagan was evaluated by the predicted area under curve (AUC) values of receiver operating characteristic curve (ROC)\(^\text{33}\).

Applying imputation models to infer AD-NC at study baseline

Once imputation models are trained and validated, they can be applied to any living adult with the same clinical variables measured. Thus, we applied the imputation models to the clinical data obtained from the ROS cohort at study entry (baseline) with an average of eight years of follow-up to infer the levels of the four AD-NC traits at baseline (Fig 1B). We examined if these inferred AD-NC traits could be employed as a biomarker of AD-NC through two sets of analyses. We examined if inferred AD-NC traits at study baseline: a) predict adults at risk for ADD, b) predict adults at risk for pathologic AD measured at death.

Inferred AD-NC traits at study entry and incident ADD.

We fitted Cox proportional hazard models using covariates of age, sex, education, and a single inferred baseline AD-NC trait in MAP cohort for predicting ADD, and evaluated the prediction performance in year 3 and year 5 in ROS cohort (Fig S3). Our fitted Cox proportional hazard risk prediction models\(^\text{34-36}\) also accounted for the competing risk of death. The annual cognitive status diagnosis and the follow up year were used to identify the first occurrence of ADD. For each participant, the year of enrollment is considered as baseline (time 0), the year of first diagnosis of ADD is considered as the time when the event occurs (incident ADD), and the last visit of participants without the considered event during all follow-ups is considered as the right censored time for living participants or the time of death for dead participants without ADD. Sample size distributions with respect to cognitive status at baseline and the cognition event types are shown in Tables S1. All Cox models were trained using data from MAP participants and tested with data from ROS participants\(^\text{37}\). Both living and deceased ROS participants were used to evaluate the prediction performance by Cox models.
We first considered all individuals including adults without dementia at baseline, and then included only individuals with NCI at baseline. We calculated AUC to evaluate the prediction accuracy of developing ADD in year 3 and year 5. Since Cox models provides a continuous risk score for developing ADD, by selecting a risk score threshold corresponding to the ~80% specificity (the proportion of correctly predicted non-ADD in test ROS samples, i.e., 1 – false positive fraction), we could compare the overall classification, sensitivity (the proportion of true positive predictions in all test cases, i.e., true positive fraction), and accuracy (the proportion of true discrimination of ADD in all test samples). Samples with risk scores greater than the selected threshold were predicted as positives (i.e., ADD) or otherwise negatives (i.e., no ADD). The sensitivity and specificity corresponding to a selected risk score threshold reflect risk model performance at one point in the ROC curves. Additionally, we also sequentially added the other three inferred baseline AD-NC traits into the Cox model with covariates of age, sex, education, and inferred baseline \(\beta \)-amyloid. The prediction performance of the models with additional AD-NC traits was also evaluated for developing incident ADD in year 3 and year 5 in ROS cohort.

Inferred AD-NC traits at study entry and pathologic AD.

We evaluated the discrimination of these inferred baseline levels of AD-NC traits for pathologic AD at the time of death, i.e., postmortem NIA-Reagan status (Fig 1B). These evaluations only use ROS decedents who also had postmortem NIA-Reagan status profiled. Boxplots and two-sample t-tests were used to evaluate the discrimination of inferred baseline AD-NC traits and postmortem NIA-Reagan status. Scatter plots and ROC curve were used to evaluate the consistence between inferred baseline AD-NC traits and the corresponding profiled postmortem AD-NC traits in ROS samples.

Research Ethics and Informed Consent

Both MAP and ROS studies were approved by an Institutional Review Board of Rush University Medical Center. All participants agreed to annual clinical evaluations and autopsy at the time of death. Written informed consent was obtained from all study participants as was an Anatomical Gift Act for organ donation.

Data Access and Availability Statement

All data analyzed in this study are de-identified and available to any qualified investigator by submitting a request through the Rush Alzheimer’s Disease Center Research Resource Sharing Hub, https://www.radc.rush.edu, which has descriptions of the studies and available data.

RESULTS

Training imputation models of AD-NC traits in MAP

Imputation models were trained for AD-NC traits by GLM-EN method by taking 57 clinical variables measured at last visit before death in MAP decedents as predictors. The estimated coefficients (i.e., effect sizes) of strongest predictors of AD-NC traits are shown in Fig 2,
including APOE E4, age, and composite cognition score. Fig 2 illustrates that the imputation models isolated different combinations of most predictive clinical measures to infer the levels of each of the four AD-NC traits.

Validating imputation models of AD-NC traits in ROS
Inferred levels of AD-NC traits at last visit of ROS decedents can be generated by using the corresponding trained imputation model per AD-NC trait and measured clinical variables at last visit before death. Scatter plots illustrate the comparison between the inferred levels of continuous AD-NC traits and the corresponding indices measured at autopsy in ROS decedents (Fig S4, A-C). ROC plot illustrates the consistency between the inferred NIA-Reagan status at last visit versus the profiled status by autopsy (Fig S4D). The prediction R^2 was 0.188 for β-Amyloid, 0.316 for tau tangles, and 0.262 for global AD pathology. AUC for the dichotomous NIA-Reagan was 0.765 (Table S6). As shown by the boxplots (Fig S4) of inferred AD-NC traits at last visit with respect to pathologic AD status (i.e., NIA-Reagan status profiled by autopsy), inferred AD-NC traits at last visit in ROS decedents discriminated profiled pathologic AD at autopsy, with two-sample test p-values $< 10^{-28}$ for all four inferred AD-NC traits. These results validated the inference accuracy of these trained imputation models of AD-NC traits.

Association of inferred baseline AD-NC traits and ADD
To infer baseline levels of four AD-NC traits at study entry, we applied the validated imputation models to clinical data collected at baseline in all available ROS participants, an average of 8 years before their last visit ($n=1103$) (Fig 1B). Cox models were fitted by using covariates of age, sex, education, and each single inferred baseline AD-NC trait, to predict the risk of developing ADD (Fig S3). Coefficient estimates of the inferred baseline AD-NC traits in the Cox models were provided along with the corresponding p-values in Table S7. All inferred baseline AD-NC traits had significant predictive coefficients with p-values $< 10^{-30}$ for predicting the development of ADD from adults with NCI or MCI, and p-values $< 10^{-5}$ for predicting the development of ADD from adults with only NCI. The inferred baseline NIA-Reagan was found with the largest coefficient effect size with the most significant p-values, compared to other three inferred baseline AD-NC traits.

The inferred baseline levels of all four AD-NC traits predicted ADD (Fig 3, Upper Row). For all four AD-NC traits, model performance was higher in Year 3 (AUC ranging in 0.861 – 0.919) versus Year 5 (AUC 0.842 – 0.896). Similar results were observed when we restricted the analyses to the prediction of ADD in individuals with NCI at baseline (Fig 3, Lower Row). Of the four AD-NC traits, inferred baseline NIA-Reagan had the highest predictivity (Year 3, AUC 0.919; Year 5, AUC 0.896) for ADD. By selecting a risk score threshold corresponding the ~80% specificity, we calculated sensitivity and accuracy based on the prediction results by all Cox models (Table 1). Inferred baseline NIA-Reagan also had the highest accuracy rates (80%) and sensitivity for predicting ADD in year 3 (0.911) and year 5 (0.829) (Table 1) as compared to the other AD-NC traits.

In further analyses, we examined if adding terms for multiple inferred AD-NC traits in a single Cox model would improve the prediction accuracy for incident ADD. As shown in Fig S5...
(Upper Row), we observed slightly improved AUC for prediction of incident ADD in adults with NCI or MCI, by sequentially adding inferred baseline \(\beta \)-amyloid, tau tangles, global AD pathology, and NIA-Reagan. Yet, including covariates of all four AD-NC traits together did not perform any better than using the inferred NIA-Reagan alone (Last Column of Fig3 versus Fig S5). Sequentially adding inferred baseline \(\beta \)-amyloid, tau tangles, global AD pathology did not increase the prediction of incident ADD in adults with only NCI (Fig S5, Lower Row). Still, adding inferred baseline NIA-Reagan would improve the prediction of incident ADD in adults with only NCI, but still not perform any better than using the inferred NIA-Reagan alone (Last Column of Fig3 versus Fig S5).

Association of inferred baseline AD-NC traits with postmortem pathologic AD

By comparing inferred AD-NC traits in ROS decedents to their corresponding postmortem measurements, we observed significant concordance as shown in scatter and ROC plots in Fig 4. Also, inferred baseline AD-NC traits obtained in ROS decedents who had an autopsy at the time of death, discriminated individuals with a postmortem diagnosis of pathologic AD (i.e., NIA-Reagan status profiled by autopsy), with significant p-values \(< 1.5 \times 10^{-7}\) by two-sample t-tests (Fig 5). The postmortem pathologic AD and AD-NC traits were profiled at death an average of 8 years after baseline.

DISCUSSION

We developed and validated imputation models of four AD-NC traits based on clinical measures in living adults obtained at their last visit about one year before death. To demonstrate the utility of inferred AD-NC traits, we applied these models to clinical measures obtained in living adults at their initial clinical assessment at study entry about eight years before death. Inferred baseline AD-NC traits showed good accuracy in predicting adults at risk for developing clinical ADD 3 and 5 years during follow-up and also discriminated adults at risk for pathologic AD profiled at the time of death. These data suggest that imputation models to infer AD-NC traits based on clinical measures may have potential to provide a low cost, non-invasive classifier for clinical Alzheimer disease dementia. A classifier based on clinical measures could be deployed in diverse populations and areas with limited medical infrastructure. Further work will be needed to determine if repeated measures of inferred AD-NC traits might be used as a reliable proxy for monitoring the accumulation of AD-NC traits during the prolonged course of Alzheimer’s disease. This approach might be extended to infer the presence of other AD related dementia (ADRD) pathologies that commonly accumulate in aging brains.

Tools detecting preclinical Alzheimer’s disease, i.e., adults with normal cognition at risk for future ADD, can benefit from early treatments that are crucial to prevent symptomatic ADD. To fill this gap, current research efforts have focused on identifying AD biomarkers that correlate with postmortem indices of AD-NC traits.\(^7\)-\(^{14}\), \(^{38}\) Yet, imaging or CSF biomarkers are not widely available due to their costs, invasiveness, and difficultly to deploy on a large scale. Aging research is currently focused on identifying blood biomarkers to fill this gap.\(^{18\text{-}21}\) Developing an effective AD classifier based on clinical measures alone is an understudied alternative.

The concept of fitting imputation models has been used in diverse disciplines to infer data that are not easily available.\(^{39\text{-}44}\) The imputation model learns the predictive information of postmortem AD-NC traits like tau tangles from clinical indices at last visit before decedents.
undergoing autopsy. The imputation model works by mathematically “explaining” the variation of observed AD-NC traits in autopsied adults by their equivalence in clinical indices. Efforts to impude AD-NC traits using clinical and brain imaging indices have been reported, but brain imaging is costly and not widely available.⁴⁵, ⁴⁶ Recent work, that compared tau and amyloid PET brain imaging to AD indices measured at autopsy, suggest that current imaging may not reliably detect the early stages of AD pathology.⁴⁷, ⁴⁸

Clinical measures prior to death and postmortem AD-NC traits are needed to develop imputation models for AD-NC traits. Obtaining a large range of clinical measures within a year prior of death in large numbers of older adults as well as a structured autopsy is difficult. Thus, two large cohorts like MAP or ROS with the same clinical and postmortem indices of AD-NC traits are rare, and may explain in part the paucity of previous studies that have tried to develop imputation models for AD-NC traits based on clinical measurements alone. Thus, the current study provides novel data demonstrating the feasibility of developing imputation models to infer AD-NC traits from clinical measures obtained at the last visit about one year prior to death.

Once an imputation model has been validated, it can be applied to infer AD-NC traits in any older adult with similar clinical measures.⁴⁹ To demonstrate the effectiveness of the imputation models that were developed, we applied these models to baseline clinical measures obtained at study entry with an average of 8 years before last visit, in an independent test cohort. As would be expected for an effective AD classifier, adults without dementia at study entry who had higher inferred baseline levels of AD-NC traits had a higher risk of subsequent ADD. Cox proportional hazard regression models using covariates of inferred baseline AD-NC traits, along with age at visit, sex, and education, showed good accuracy for predicting ADD three and five years after baseline. Inferred baseline AD-NC traits also predicted adults with a high risk of pathologic AD profiled on average eight years later at death. That is, while the imputation models were developed based on clinical measures at last visit prior to death, inferred levels of AD-NC traits based on clinical data obtained almost a decade before death showed good predictions of clinical ADD during the course of the study as well as postmortem measurements of AD-NC traits. These promising initial results will require further work to validate the accuracy of repeated measures of inferred AD-NC traits in living adults before they can be employed to monitor the accumulation of AD-NC pathologic traits or the efficacy of clinical drug trials.

This study has several limitations. First, participants were predominantly Americans of European descent and have higher than average levels of education, so our findings will need to be replicated in more diverse populations. Second, this study only inferred AD-NC traits. Since most older adults show mixed-brain pathologies, further work is needed to extend imputation models to accommodate the presence of combinations of multiple AD/ADRD pathologies. Third, brain imaging, as well as serum or fluid biomarkers were not examined and might enhance predictions of the inferred AD-NC traits. Further validation using brain imaging or fluid AD-NC biomarkers are needed. Last, the current study used diverse clinical predictors, many that are not available outside the research setting. Further work is needed to identify a parsimonious set of clinical predictors that are widely available to enhance the use of this approach in diverse populations and geographic locations that have limited medical personnel and resources. Despite these limitations, this study is best conceptualized as an important first
step highlighting the potential of developing inferred AD-NC traits based on clinical measures in living adults.

The study has several strengths that lend confidence for the current findings. All subjects were recruited from the community, underwent an annual detailed clinical evaluation, and were without dementia based on their clinical assessment at study entry. Large numbers of men and women underwent annual assessments, and follow-up rates were very high (~90%) with a medium of 8 years follow up. Uniform and structured procedures were employed for both the collection of clinical measures and postmortem AD-NC traits. An important strength of the current study design is that we evaluated model performance in a second cohort, independent of the training cohort, that employed similar staff and data collection procedures\(^{50}\).

Acknowledgments

We are deeply indebted to all participants who contributed their data and agreed to autopsy at the time of their death. We thank the Rush Alzheimer's Disease Center staff for their efforts.

Study Funding: This work was supported by the National Institute of Health R35GM138313, P30AG10161, P30AG72975, K01AG054700, R01AG15819, R01AG17917, R01AG56352; R01AG79133, the Illinois Department of Public Health; and the Robert C. Borwell Endowment Fund. The funding organizations had no role in the design or conduct of the study; collection, management, analysis, or interpretation of the data; or preparation, review, or approval of the manuscript.

Disclosures: There are no disclosures for any of the authors.

Supplemental: One supplementary data file with 7 supplement tables and 5 supplement figures are provided.
Table 1. Prediction accuracy (with 95% confidence interval) and sensitivity with respect to selected risk score thresholds that ensure ~80% specificity by Cox models using a single inferred AD-NC trait. Values in this table are reflecting the Cox risk model prediction performance at one point in the ROC curves as shown in Fig 3, with corresponding risk score thresholds. Samples with predicted risk scores greater than the selected threshold were considered as Predicted Positives (incident ADD), otherwise Predicted Negatives (not developing ADD).

<table>
<thead>
<tr>
<th></th>
<th>β-Amyloid</th>
<th>Tau tangles</th>
<th>Global AD Pathology</th>
<th>NIA-Reagan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y3</td>
<td>Y5</td>
<td>Y3</td>
<td>Y5</td>
</tr>
<tr>
<td>NCI/MCI -> ADD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy(^a) (95% CI)</td>
<td>0.798 (0.773, 0.822)</td>
<td>0.788 (0.763, 0.813)</td>
<td>0.802 (0.777, 0.825)</td>
<td>0.795 (0.771, 0.818)</td>
</tr>
<tr>
<td>Sensitivity(^b)</td>
<td>0.772</td>
<td>0.699</td>
<td>0.822</td>
<td>0.756</td>
</tr>
<tr>
<td>Specificity(^c)</td>
<td>0.800</td>
<td>0.800</td>
<td>0.800</td>
<td>0.800</td>
</tr>
<tr>
<td>NCI -> ADD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy(^a) (95% CI)</td>
<td>0.796 (0.768, 0.823)</td>
<td>0.792 (0.763, 0.7819)</td>
<td>0.794 (0.765, 0.821)</td>
<td>0.791 (0.761, 0.818)</td>
</tr>
<tr>
<td>Sensitivity(^b)</td>
<td>0.650</td>
<td>0.634</td>
<td>0.550</td>
<td>0.609</td>
</tr>
<tr>
<td>Specificity(^c)</td>
<td>0.800</td>
<td>0.800</td>
<td>0.800</td>
<td>0.800</td>
</tr>
</tbody>
</table>

\(a\). Accuracy = (# True Positive Predictions + # True Negative Predictions) / (# of test samples)

\(b\). Sensitivity = (# True Positive Predictions) / (# Positives in test samples) = True Positive Fraction

\(c\). Specificity = (# True Negative Predictions) / (# Negatives in test samples) = 1 – False Positive Fraction
Main Figures

Fig 1. Study design used to develop and validate imputation models that infer the burden of AD-NC traits based on clinical measures in living adults. This figure provides an overview contrasting the complementary components of this study. **A.** We trained imputation models for AD-NC traits using clinical data from the last visit before death in MAP decedents that underwent autopsy. Then we validated these models in a 2nd independent sample of ROS decedents. **B.** Then to show the utility of how these imputation models could be used in any adults with the requisite clinical measures, we applied the validated imputation models to clinical data obtained at the initial clinical assessment of ROS participants to infer AD-NC traits at the ROS baseline visit about a decade before the last follow-up assessment.
Fig 2. Different combinations of clinical measures obtained at the last visit before death are used by imputation models to infer each of the four AD-NC traits. GLM-EN method was used to train imputation models for each of the four AD-NC traits. Effect sizes (beta) of the standardized predictors in the prediction model with $|\beta| > 0.01$ are plotted in the figure to highlight the differences and common and AD-NC trait specific measures in the four imputation models used to infer AD-NC traits.
Fig 3. Inferred AD-NC traits based on clinical measures at study entry for all ROS participants predict Alzheimer’s Disease Dementia (ADD). We applied validated imputation models to clinical measures collected at study entry in ROS participants to infer 4 AD-NC pathologic traits. Row 1 shows that prediction of ADD for the inferred burden of each of the four AD-NC pathologic traits in adults without dementia at study entry. Row 2 shows results for inferred burden of each of the four AD-NC pathologic traits in adults with NCI at baseline. Inferred NIA-Reagan was found with best predictivity for the incidence of ADD in year 3 and year 5.
Fig 4. Inferred baseline AD-NC traits using clinical measures at the time of study entry predict the pathologic AD profiled at autopsy in ROS decedents. Scatter plots for continuous AD pathologic traits and ROC curve for binary NIA-Reagan show that the inferred AD-NC traits based on clinical measures at study entry were concordant with their corresponding measures profiled at the time of autopsy about a decade later.
Fig 5. Boxplots of inferred AD-NC traits at study baseline versus postmortem NIA-Reagan status profiled at autopsy in ROS decedents with autopsy. Two-sample t-test p-values are 1.5×10^{-10} for β-amyloid (A), 7.3×10^{-11} for tau tangles (B), 7.1×10^{-10} for global AD pathology (C), and 1.2×10^{-7} for NIA-Reagan (D).

<table>
<thead>
<tr>
<th></th>
<th>A. β-Amyloid</th>
<th>B. Tau tangles</th>
<th>C. Global AD pathology</th>
<th>D. NIA-Reagan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pathologic AD</td>
<td>Pathologic AD</td>
<td>Pathologic AD</td>
<td>Pathologic AD</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Appendix. Authors

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jingjing Yang, PhD</td>
<td>Center for Computational and Quantitative Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA</td>
<td>Drafting/revision of the manuscript for content, including medical writing for content; study concept or design; analysis or interpretation of data</td>
</tr>
<tr>
<td>Xizhu Liu</td>
<td>Department of Biostatistics, Yale University School of Public Health, New Haven, CT</td>
<td>Drafting/revision of the manuscript for content, including medical writing for content; analysis or interpretation of data</td>
</tr>
<tr>
<td>Shahram Oveisgharan, MD</td>
<td>Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL</td>
<td>Drafting/revision of the manuscript for content, including medical writing for content; major role in the acquisition of data; analysis or interpretation of data</td>
</tr>
<tr>
<td>Andrea R. Zammit, PhD</td>
<td>Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL</td>
<td>Drafting/revision of the manuscript for content, including medical writing for content; analysis or interpretation of data</td>
</tr>
<tr>
<td>Sukriti Nag, MD, PhD</td>
<td>Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL</td>
<td>Drafting/revision of the manuscript for content, including medical writing for content; analysis or interpretation of data</td>
</tr>
<tr>
<td>David A. Bennett, MD</td>
<td>Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL</td>
<td>Drafting/revision of the manuscript for content, including medical writing for content; major role in the acquisition of data; analysis or interpretation of data</td>
</tr>
<tr>
<td>Aron S. Buchman, MD</td>
<td>Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL</td>
<td>Drafting/revision of the manuscript for content, including medical writing for content; major role in the acquisition of data; study concept or design; analysis or interpretation of data</td>
</tr>
</tbody>
</table>
References

