Title

Authors
Rebecca Katz¹, Kate Toole¹, Hailey Robertson¹, Alaina Case², Justin Kerr², Siobhan Robinson-Marshall¹, Jordan Schermerhorn¹, Sarah Orsborn², Michael Van Maele², Ryan Zimmerman¹, Tess Stevens¹, COVID AMP Coding Team¹**, Alexandra Phelan¹, Colin Carlson¹, Ellie Graeden¹**

Affiliations
1. Center for Global Health Science and Security, Georgetown University, Washington DC
2. Talus Analytics LLC, Boulder, Colorado

* A full list of members appears in the Author Contributions
**corresponding author(s): Ellie Graeden (Ellie.Graeden@georgetown.edu)

Abstract
As the COVID-19 pandemic unfolded in the spring of 2020, governments around the world began to implement policies to mitigate and manage the outbreak. Significant research efforts were deployed to track and analyse these policies in real-time to better inform the response. While much of the policy analysis focused narrowly on social distancing measures designed to slow the spread of disease, here, we present a dataset focused on capturing the breadth of policy types implemented by jurisdictions globally across the whole-of-government. COVID Analysis and Mapping of Policies (COVID AMP) includes nearly 50,000 policy measures across 152 countries, 124 intermediate areas, and 235 local areas between January 2020 and June 2022. With up to 40 structured and unstructured metadata fields per policy, as well as the original source and policy text, this dataset provides a uniquely broad capture of the governance strategies for pandemic response, serving as a critical data source for future work in legal epidemiology and political science.

Background & Summary
In response to the COVID-19 pandemic, governments around the world implemented a range of policies, regulations, and mandates to mitigate transmission, support the economy, and protect population health. Despite targeting similar goals, there was significant heterogeneity in how governments approached policy strategies for the pandemic response, in part because of a dearth of prior policy evidence, an evolving understanding of which governmental actions might effectively protect populations, differing access to resources required for specific policy actions, and mismatched expectations regarding adherence to stringent policies.

Most policy trackers deployed during the pandemic focused on social distancing measures with an emphasis on the ability to assess the effectiveness of these policies in limiting human movement, human-human interaction, and disease spread as quantified by reported cases, hospitalizations, and fatalities for different populations and subpopulations. [1] These efforts, while critical in performing data capture for rapid analysis of the relative value of different social distancing measures, did not capture the full breadth of policy measures implemented, limiting policymakers’ ability to assess the impact of these “non-health” policies and the synergistic effects of a more integrated approach to pandemic response. [2]

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
To address this gap, the COVID Analysis and Mapping of Policies (COVID AMP) database tracked policy responses to COVID-19 around the world between January 2020 and June 2022. We focused on high-volume data collection in real-time during the event, which allowed us to document and retain a historical record of policy changes, even as policy and guidance was being posted and its online record replaced, risking erasure. Data collection prioritized breadth over depth, while including comprehensive data collection for a subset of specific regions and topics to facilitate comparative analysis. The database archives official legal documents and/or policy announcements at the at local, intermediate, and national levels, including metadata such as the dates they were active, tags related to public health and economic relief, and up to 40 other characteristics per policy. The coded metadata are aligned with the key sectors defined during prior outbreaks and established by existing emergency management frameworks, and the breadth of these metadata supports cross-sector and combinatorial analysis of policy impact.

With nearly 50,000 policy measures, regulations, and announcements, COVID AMP provides a new and powerful foundation for secondary analysis to better assess the impact of all policies implemented to manage the pandemic response. Taken together, these data are a critical addition to the body of work describing the policy and governance response to COVID-19 and a significant advancement in how we understand the heterogeneity of policymaking during outbreak response.

Methods

Data Collection

Beginning in April 2020, we identified policies implemented to mitigate and respond to the COVID-19 outbreak from January 2020 through June 2022. Policies were defined broadly and included signed legislation, executive orders, ministry regulations, official press releases, and social media announcements made by verified authorities. We reviewed official government websites, databases, and social media pages to source documents (e.g., public health ministry websites, legislative archives, published press releases) for each jurisdiction.

We collected policies from over 150 countries. For the United States (U.S.) and its territories, we reviewed websites for the state governor’s office, Department of Health or comparable agency, and if applicable, the state legislature. Researchers consulted the Politico Pro Legislative Compass Database to identify additional state-level COVID-19 legislation. For other countries, researchers identified the primary authorities for health policy and reviewed their official websites for policies. In addition, researchers used search engines for COVID-19 policies in the local language. If the coder was not fluent in the local language of the jurisdiction being collected, Google Translate was used to translate policy documents. The Internet Archive was used to identify policies in circumstances where policies were removed or updated from the original site. [3] Only official government policies issued in direct response to the COVID-19 pandemic were included in the database. In cases where official policy documents were not published, no longer available, or inaccessible from the Internet Archive, we coded the record from social media records, news notices, and policy announcements describing the policy.

Data Structure & Coding Process

As we collected policies, we concurrently and iteratively developed a coding scheme to capture structured and unstructured data related to COVID-19 response policies, balancing an internally-consistent taxonomy with flexibility to describe heterogenous policy environments. Many policies include one-to-many relationships in which a single policy established more than one and often several different directives related to COVID-19 mitigation or response.
management. Each row in the dataset represents an individual directive, linked by a unique identifier to the original policy document and coded by the type of policy and the target of policy, as defined as the primary population, location, or entities impacted by the policy or law, in addition to more than 40 additional metadata per directive.

Event response and event-specific mitigation efforts are only one subset of the policies needed to effectively manage and respond to large scale emergencies. [4] The National Response Framework (NRF) in the U.S. lists 12 emergency support functions and leans on a whole-of-government response framework to manage critical functions across transportation, military authorities, manufacturing, supply-chain management, first-responder housing, cross-border licensing issues for critical response personnel (e.g., nurses, electrical lineman), housing authorities, and economic support for those impacted. [5] Building on this cross-sector approach, previously identified and applied in the Georgetown Outbreak Activity Library (https://outbreaklibrary.org/), we identified five categories of policy relevant to the COVID-19 outbreak: (1) Social distancing, (2) Emergency declarations, (3) Travel restrictions, (4) Enabling and relief measures, and (5) Support for public health and clinical capacity. Over the course of data collection, five additional categories emerged from policy analysis that were added to the coding scheme to more accurately capture the range of policy actions available and pull forward specific types of policies as they gained global traction (e.g., variation in vaccination policies): (6) Face mask, (7) Contact tracing and testing, (8) Military mobilization, (9) Authorization and enforcement, and (10) Vaccinations. In addition, 71 subcategories were used to capture the type of policy actions at a more granular level. For example, the social distancing category is composed of subcategories such as “Curfews”, “Event delays or cancellations”, “Alternative election measures”, “Private sector closures”, or “Stay at home.”

As the pandemic unfolded, the policies implemented by governments to manage the response and mitigate impacts evolved. Therefore, categories, subcategories, and targets were adjusted over time to maximize the taxonomy of the dataset for exhaustiveness and usability for secondary analysis. All updates to categories or subcategories were made by consensus of the research team, and backpropagated across existing data to ensure internal consistency. For a full Data Dictionary, see Appendix 1: Table 1.

Comparison to other COVID-19 policy trackers
The COVID-19 pandemic prompted over 200 research and government initiatives aimed at tracking the policies and measures implemented in response to the outbreak. [1] Given the extensive nature of these efforts, a comprehensive evaluation of each one is beyond the scope of this article. However, we summarize the key features of COVID AMP in the context of similar datasets, including OxCGRT [6] and CoronaNet [7], to underscore the unique contributions of this effort.

One of the most significant contributions of the COVID AMP dataset is the breadth of data collected over geography and time. CoronaNet shares a similarly broad scope, identifying 20 “broad policy types” including NPIs, declarations of emergency, travel restrictions, health communication, and some public and private restrictions. [7] OxCGRT has a more limited scope with 19 indicators focused more specifically on containment, health, and economic support policies [6]. In the COVID AMP ontology, these “broad policy types” and “indicators” are equivalent to our concept of “Policy subcategory”, for which we capture 71 unique policy types.
Importantly, in contrast to OxCGRT, we do not assign quantitative values to interpret policy stringency, but instead classified policies as either restricting or relaxing based on the intended effect of the directive on the policy environment at the time of enactment. In doing so, the dataset does not use static quantitative measures of implementation impact, but instead captures a breadth of policy types in the context of which they were issued. This is a marked divergence from other policy trackers, which do not differentiate between restricting or relaxing policies with metrics defining the degree of restrictiveness. [6,7] Therefore, the COVID AMP dataset allows for in-depth analysis not only of the lockdown in response to COVID-19, but also an understanding of how reopening occurred across jurisdictions.

In addition to the type of policy captured, COVID AMP captures geographic, sector, and demographic targets for a more descriptive approach to policy. In OxCGRT, these variables are binary for each of the indicators to simply designate “targeted” or “general.” [6] In CoronaNet, the geographic target can be specified with free text, and the demographic target aligns with 11 broad demographic targets or 25 special demographic targets; however, it does not capture sector targets. [7] In contrast to these databases, COVID AMP uses the terms ‘authorizing areas’ and ‘affected areas’ to define conditions in which a policy issued by one level of government applies to another geography. For example, the United Kingdom’s travel restriction after the Omicron variant was identified in December 2021 targeted six countries. [8] In COVID AMP, this policy would be a single row where the United Kingdom would be the “Authorizing country” and South Africa, Botswana, Lesotho, Eswatini, Zimbabwe, and Namibia would each be listed in the “Affected country” field.

Complementing the geographic targets, the “Policy target” has 73 multi-select options to indicate the populations, sectors, or entities affected by the policy. With nearly 50,000 policies with 40 metadata, the COVID AMP dataset contains over 2 million hand-coded pieces of information without the use of machine learning software. The metadata chosen were designed to ensure a complete historical record of the policies identified and support broad secondary analysis. To our knowledge, COVID AMP is currently the largest and most descriptive policy tracking dataset by number of policies and metadata collected.

COVID AMP’s coverage of jurisdictions and dates is similar to that of OxCGRT and CoronaNet. COVID AMP captures policies issued from January 2020 to June 2022, whereas OxCGRT has longer temporal coverage through December 2022 and CoronaNet has more narrow coverage through October 2021. [13, 14] Although OxCGRT and CoronaNet have broader global coverage (184 and 195 countries, respectively) extending to some subnational areas, the COVID AMP dataset captures data from 152 countries, 124 intermediate areas (i.e., states, provinces, etc.), and 235 local areas (i.e., cities, countries, etc.).

Data Records
The COVID AMP library currently contains more than 15,000 individual COVID-19-related documents issued or effective through the period January 2020 to June 2022 (and beyond for select jurisdictions), comprised of nearly 50,000 unique policies from over 150 countries. Figure 1 shows the extent of policy data coverage globally and in the U.S.

This database was specifically designed to capture the breadth of measures applied by different jurisdictions to manage and mitigate the pandemic; therefore, each measure was captured as a separate policy target and categorized by the focus or intent of the policy. Thus, each row in the database represents a uniquely identified policy directive, meaning a single policy document may be captured across many rows. For example, an executive order can
include a stay-at-home order for individuals and mandate non-essential business closures. These policy directives share a single policy name and PDF since they are part of the same larger piece of legislation, but they are captured in different lines with different unique IDs. Extensions of previous policies are also captured as a new row and linked back to the previous policy using unique IDs.

Each policy directive is tagged with a series of descriptive attributes based on a detailed review of the policy language, including the following selection of fields:
Table 1. Required data fields and definitions

<table>
<thead>
<tr>
<th>Data field</th>
<th>Field definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique ID</td>
<td>A unique identifier associated with data in each row. The data is captured so that each row represents a single policy action, per date issued, per authority, and per area affected.</td>
</tr>
<tr>
<td>Attachment for policy</td>
<td>PDF or image of the policy (permanently hosted in Amazon S3 bucket)</td>
</tr>
<tr>
<td>Data source for law/policy</td>
<td>URL from which to access the underlying law or policy, may be from the Internet Archive [0]</td>
</tr>
<tr>
<td>Policy name</td>
<td>The complete title of the law or policy, including any relevant numerical information</td>
</tr>
<tr>
<td>Policy number</td>
<td>A numeric identifier given to each policy release, including capturing co-released policies where applicable. A single policy release may contain multiple directives</td>
</tr>
<tr>
<td>Policy description</td>
<td>A written description of the policy and the directive by the researcher</td>
</tr>
<tr>
<td>Policy type</td>
<td>The type of policy that is enacted (e.g., executive order, emergency declaration, statute, etc.)</td>
</tr>
<tr>
<td>Policy relaxing or restricting</td>
<td>Broad designations about a policy with regard to its intended impact on the policy environment at the time the policy was issued.</td>
</tr>
<tr>
<td>Policy category</td>
<td>Categorization of the overall scope of the policy directive (e.g., social distancing, emergency declarations, travel restrictions, enabling and relief measures, support for public health and clinical capacity, contact tracing/testing, military mobilization, face masks)</td>
</tr>
<tr>
<td>Policy subcategory</td>
<td>Detailed information about the intention of the policy (e.g., face coverings, quarantine, private sector closures, school closures, etc.)</td>
</tr>
<tr>
<td>Policy target</td>
<td>The primary population, location, sector, or entities impacted by the policy or law (e.g., restaurants/bars, nursing homes and/or assisted living, essential workers, suspected cases, etc.)</td>
</tr>
<tr>
<td>Authorizing level of government</td>
<td>The level of government that authorized and/or issued the policy (e.g., global entity, country, intermediate area, local area, tribal nation)</td>
</tr>
<tr>
<td>Authorizing body</td>
<td>The office of the authorizing entity who issued the policy (e.g., governor, mayor, health official, president, city council, etc.)</td>
</tr>
<tr>
<td>Authorizing country name</td>
<td>The name of the country in which the authorizing entity is located</td>
</tr>
<tr>
<td>Affected country name</td>
<td>The name of the country to which the policy applies, if different from the country from which the policy was enacted</td>
</tr>
<tr>
<td>Issued date</td>
<td>The date on which the policy was initially announced and/or issued</td>
</tr>
<tr>
<td>Effective start date</td>
<td>Date on which the policy took effect or was enacted</td>
</tr>
<tr>
<td>Anticipated end date</td>
<td>The date on which the directive specified in the policy was intended to end</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Actual end date</td>
<td>The data on which the directive specified in the policy was terminated, replaced, or extended</td>
</tr>
</tbody>
</table>
A comprehensive Data Dictionary describing each of the 40 metadata fields is available in Appendix 1: Table 1.

Figure 2 shows the distribution of policies by category over time, globally and within the U.S. Both globally and in the U.S., the greatest number of policies were initiated in April 2020; “Social distancing” was the predominant category of policies enacted by governments over the course of the pandemic, followed by “Enabling and relief measures” and “Support for public health and clinical capacity.”

In conducting analysis, users should expect to see a broad, representative sample of the heterogenous policies implemented over the course of the COVID-19 pandemic. However, the COVID AMP dataset is not a complete global historical record. To the best of our knowledge, the dataset contains a comprehensive set of policies implemented for each of the U.S. states, Puerto Rico, and Guam from January 2020 to June 2022, with over 19,000 policies captured at the national and state level in these jurisdictions. Researchers also documented many policies for U.S. counties (approximately 8,000) and tribal areas (approximately 1,400) with comprehensive coverage for California, Washington D.C., Maryland, Nevada, and Virginia.

For the additional 150+ countries for which we have collected data, more than 40 countries have 100+ policies coded, though this does not necessarily imply complete or comprehensive coverage for those countries. For jurisdictions other than the U.S. and its territories, there is generally better policy coverage at the national level as opposed to the intermediate area levels (e.g., state, province, etc.). Due to variations in legal systems, the significance of the total number of policies varies by state and country. For example, many entities regularly renewed the emergency authority of the health department or governor, thus renewing the same policies regularly. Policy totals tend to reflect variation in governance structure and method more than stringency or effectiveness of the policy response.

Technical Validation
Given the frequency and scale of data collection, the research team implemented a combination of manual and automated quality assurance and control (QA/QC) processes to check and correct the data. The manual QA/QC process involved a lead researcher who reviewed data for typographical errors, ensured inter-coder reliability, and confirmed record completion. Completed records included all fields specified in the “Data Records” section; records with missing fields were flagged for review and excluded until corrected. The fields, “Anticipated end date” and “Actual end date” were exceptions, as many policies did not specify the intended end date or were ongoing during data collection. Policies for which the end date is not provided may still be in place or permanent or the end date for the policy was not publicly documented. As of writing, approximately 50% of policies have an “Anticipated end date” and 70% have an “Actual end date.”

In addition to manual review, automated QA/QC was applied to clean and standardize the data. Drop-down lists, with easily accessible data definitions and glossaries, were used to standardize coding selections, prevent typos, and reduce discrepancies. The Dedupe extension in Airtable was used to find and manage duplicate records based on policies with identical issued/effective start dates, authorizing/affected areas, and data sources. Where a duplicate was identified, the lead researcher merged the information from the two records, selecting the correct information from each if discrepancies in coding existed. Python (3.7.0) was used
to filter incomplete records out of the final dataset view, assign policy numbers, and standardly format dates and country names for ease of use in secondary analysis.

Usage Notes

From the implementation of mask mandates to the reduction of prison populations and alternate measures of voting during elections, the COVID AMP library contains a wide array of policy documents that historians, legal experts, economists, and epidemiologists can analyze to assess and compare the effectiveness of COVID-19 outbreak responses around the world. Pairing this tool with epidemiological data supports the evaluation of policy effectiveness and how that success relates to the affected population, authorizing entity, health infrastructure, and other extenuating factors. We also hope that this library will support policymakers in future outbreaks by providing canonical examples of policies from countries and states that had different outcomes during the pandemic.

Example Analysis

The data collected in COVID AMP provides researchers with valuable insights to understand how policy is used to respond to a global pandemic and inform policy response for the next. Figure 3 offers a visual representation of the progression of restricting and relaxing policy types over time in comparison to caseload for the U.S. We identify two informative patterns about the pandemic response in the U.S. First, despite initial concerns about the Omicron variant, the corresponding response was commensurate with that of the early days of the pandemic, where policies were primarily restrictive and gradually relaxed. Second, Figure 3 shows that restrictive policies typically preceded outbreaks by 1-2 months, highlighting the importance of global early warning systems in curbing transmission. These initial insights emphasize the importance of early and effective policy implementation, and support further use of the COVID AMP dataset to strengthen the evidence base for decision-making.

The granularity of the COVID AMP database allows for disaggregation and analysis by broad category of policy enacted, as shown in the bottom panel of Figure 3. This analysis highlights the need for nuanced policy making that includes both restricting and relaxing measures not only for policies such as face masks and social distancing, but for authorization and enforcement policies. This analysis also highlights the degree to which different categories are not clearly structured around restrictions, but instead are focused on a whole-of-government, coordinated response. Using “issued date”, “effective start date”, “anticipated end date”, and “actual end date”, as coded within COVID AMP, policymakers can use this type of analysis to evaluate when decisions were made to initially implement a policy, when the policy took effect, and the pattern by which policies were relaxed, renewed, or terminated.

COVID AMP also supports analysis of the intended targets of each policy implemented, as shown in Figure 4. For example, economists could use the data to assess specific policy types, such as “Regulatory relief”, to analyse which sectors received which types of support, and compare effects across jurisdictions and sectors. Using the date each policy was issued and became effective, analysts could, for example, assess how stock prices reacted to regulatory relief announcements. For education officials, the COVID AMP data could be combined with school test scores to understand how the timing of school closures, reopening, and distance learning impacted students’ educational performance. Public health researchers could use the data to identify a specific population, such as “Homeless shelters and individuals” and determine which policy types were (or were not) targeted toward the population, and whether it met community needs. With the ability to cross-reference policy subcategories and targets,
COVD AMP enables researchers from various fields to conduct more nuanced analyses of the impact of policies on their area of interest, whether that is a sector, population, or policy type, and encourages policy innovation for the future.

Published Research Using COVID AMP

As a library of policies collected in near real-time and continuously evolving throughout the pandemic, COVID AMP allows users to identify and access policies of interest in addition to the original text of the policy as a raw text file or PDF stored in an Amazon S3 bucket. These data can then be used to perform secondary data transformation as needed for derivative analysis. The COVID AMP dataset does not prescribe research-side assumptions such as policy stringency or policy levels to the data with the specific intent of supporting broader cross-disciplinary downstream use. The value of this approach is demonstrated by Page-Tan & Corbin (2021), who used COVID AMP data to define unique parameters of restrictiveness to test four different policy scenarios in states and localities with high social vulnerability scores using propensity score matching. [9] Additional studies used COVID AMP to validate parameter assumptions for models about the timing of intervention implementation [10, 11]. Others have used COVID AMP to analyse global differences in response strategies to the Omicron variant through specific focus on travel restrictions [8], access archived public health measures from governments, trace the progression of policy, and evaluate the role of institutions [12, 13], and assess the benefits of mask-wearing at the county-level. [14] These studies highlight the ease of use of the database and suggest that significant future work could continue to make use of COVID AMP to ask new questions about the Covid-19 pandemic.

Code Availability

COVID AMP data are available via an application programming interface (API) and are licensed under the Creative Commons Attribution CC BY Standard at: https://api.covidamp.org/docs. We provide a public, interactive web interface for visual exploration of the dataset at: https://covidamp.org/. Within the site, data is available at: https://covidamp.org/data?type=policy. This page allows for download of the full dataset or filtered subsets of the data. Additionally, documentation of the methods, including a data dictionary and glossary, are available at: https://covidamp.org/about/doc.

In addition to this manuscript, a static version of the COVID AMP database itself can be cited directly as Zenodo DOI: 10.5281/zenodo.7829169.

As of the time of submission, we have stopped policy collection for the COVID AMP dataset. All policies and directives coded within the dataset have been reviewed and technically validated. We plan to continue to host the dataset on the project website to ensure ongoing access to this resource. We hope that the dataset will support research efforts aimed at improving pandemic response strategies and inform future outbreak policy analysis.

Acknowledgements

Funding for COVID AMP provided by Rockefeller Foundation, NTI Bio, and Georgetown University.

Author contributions

Rebecca Katz conceived of the idea, designed and managed data collection, provided subject matter expertise and guidance, and reviewed the manuscript.
Ellie Graeden conceived of the idea, designed and managed data collection, provided subject matter expertise, led design and build of the data platform, and drafted the manuscript.

Kate Toole helped draft the manuscript, managed data entry, trained coders, performed QA/QC, and performed analysis.

Hailey Robertson helped draft the manuscript, performed QA/QC, prepared the dataset for publication, performed analysis, and produced visualizations.

Alaina Case managed data entry, trained coders, contributed to design of the data platform, user interface, and web access for the data.

Justin Kerr contributed to design and build of the data platform, user interface, and web access for the data, and served as subject matter expert on data structure.

Siobhan Robinson-Marshall managed data entry, trained coders, and performed QA/QC.

Jordan Schermerhorn managed data entry, trained coders, and performed QA/QC.

Sarah Orsborn managed data entry, trained coders, and performed QA/QC.

Michael Van Maele contributed to design and built the online data platform, user interface, and web access for the data.

Ryan Zimmerman contributed to design and built the online data platform.

Tess Stevens designed the data platform, user interface, and web access for the data.

Alexandra Phelan contributed to project conception and provided legal guidance.

Colin Carlson provided input on data visualization.

The COVID AMP Coding Team identified policy sources, reviewed and coded policies, and performed QA/QC. Team members include:

Beatrice Salas, Divya Sammeta, Grace Sander, Isabel Schaffer, Samantha Schlageter, Maclyn Senear, Kavya Shah, Emily Shambaugh, Emily Sherman, Kennedy Smith, Anna Strunjas, Alison Talty, May Tan, Joe Thomas, Krysten Thomas, Tyler Thompson, Briana Thrift, Zachary Trotzky, Allison Van Grinsven, Ileana Velez Alvarado, Danielle Venne, Sara Villanueva, Patrick Walsh, Jingxuan (Thomas) Wang, Yihao Wang, Sarah Weber, Ciara Weets, Courtney Wolf, Emily Woodrow, Theresa Worthington, Velen Wu, Wenhui Yang, Betelhem Yimer, Kayla Zamanian, Wei Zhang, Wenyu Zhu

Competing interests
We have no conflicts of interest to report.

Figures
Fig. 1. Geographic policy data coverage of the COVID-AMP database from January 2020 to June 2022 (A) Total number of policies captured for each country. As of date of submission, 152 countries have at least 1 policy coded. (B) Total number of policies captured for each U.S. state. As of date of submission, all 50 states and territories were coded comprehensively.

Fig. 2. (A) Distribution of policies by category and month, globally. (B) Distribution of policies by category and month for the United States. The month for each policy was the effective start date.
Fig. 3. Overview of the policy environment in the United States. (A) Relative proportion of policies enacted over time by policy type, compared to the number of average new cases that occurred over a 7-day period, per 100,000 people [15]. (B) Relative proportion of policies enacted over time by policy type and category.

Fig. 4. Heat map shows the co-occurrence of policy subcategories and policy targets globally, with the darkest squares representing the most overlap.
References

Supplementary Materials

Table 1. COVID AMP Data Dictionary

<table>
<thead>
<tr>
<th>Column name</th>
<th>Definition</th>
<th>Allowed values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique ID</td>
<td>A unique identifier associated with data in each row. The data is captured so that each row represents a single policy, per date issued, per authority and per area affected.</td>
<td>Numeric: Any unique integer value</td>
</tr>
<tr>
<td>Authorizing level of government</td>
<td>The level of government that authorized the policy</td>
<td>One of: Local, State / Province, Country</td>
</tr>
<tr>
<td>Authorizing country name</td>
<td>The name of the country in which the authorizing entity of the policy is located</td>
<td>Text: Any country name (obtained from a pre-defined list based on ISO-3 code)</td>
</tr>
<tr>
<td>Authorizing country ISO</td>
<td>The ISO-3 code of the authorizing country</td>
<td>Text: Any 3-digit alpha-3 ISO code, as defined at https://www.iban.com/country-codes</td>
</tr>
<tr>
<td>Authorizing state/province</td>
<td>The name of the sub-national area (e.g., state, province district, etc.) corresponding to the country or agency which authorized the policy. This value is “NA” if the policy was issued at the country level.</td>
<td>Text: Any state, province, or other intermediate area name, or NA</td>
</tr>
<tr>
<td></td>
<td>Where possible, UN LOCODE geographic area names are used as defined at https://www.unice.org/cefact/codesfortrade/codes_index.html</td>
<td></td>
</tr>
<tr>
<td>Authorizing local area</td>
<td>The name of the local area (e.g., city, country, etc.) corresponding to the country or agency which authorized the policy.</td>
<td>Text: Any city, county, or other local area name, or NA</td>
</tr>
<tr>
<td>Authorized local area code</td>
<td>If available, a unique ID for the local area (e.g., city, county) corresponding to the location which authorized the policy. This value is "N/A" if the policy was issued at the country or state/province level, or "Undefined" if a unique ID is not defined in the AMP database.</td>
<td>Text: Any unique ID, such as a 5-digit FIPS code for USA counties, or NA or Undefined</td>
</tr>
<tr>
<td>Authorizing role</td>
<td>The name of the entity who authorized the policy. This value is “NA” if the information was not available or was not relevant (e.g., in the case of judicial rulings).</td>
<td>Text: Any role</td>
</tr>
<tr>
<td>Authorizing body</td>
<td>The office of the authorizing entity that issued the policy.</td>
<td>Text: Any office name, agency, or similar entity name</td>
</tr>
<tr>
<td>Name of official</td>
<td>If relevant, the first and last name of the authorizing official.</td>
<td>Text: Any name</td>
</tr>
<tr>
<td>Affected level of government</td>
<td>The level of government to which the policy applies.</td>
<td>One of: Local State / Province Country</td>
</tr>
<tr>
<td>Affected country name</td>
<td>The name of the country to which the policy applies</td>
<td>Text: Any country name (obtained from a pre-defined list based on ISO-3 code)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Affected country ISO</td>
<td>The ISO-3 code of the affected country</td>
<td>Text: Any 3-digit alpha-3 ISO code, as defined at https://www.iban.com/country-codes</td>
</tr>
<tr>
<td>Affected state/province</td>
<td>The name of the sub-national area (e.g., state, province, district) affected by the policy. This value is “NA” if the affected location is the same as the authorizing location (e.g., a state authorizing policy that only affects that state).</td>
<td>Text: Any state, province, or other intermediate area name, or NA Where possible, UN LOCODE geographic area names are used as defined at https://www.unece.org/cefact/codesfortrade/codes_index.html</td>
</tr>
<tr>
<td>Affected local area</td>
<td>The name of the local area (e.g., city, county) affected by the policy/law. This value is “NA” if the affected location is the same as the authorizing location (e.g., a city authorizing policy that only affects that city).</td>
<td>Text: Any city, county, or other local area name, or NA</td>
</tr>
<tr>
<td>Affected local area code</td>
<td>If available, a unique ID for the local area (e.g., city, county)</td>
<td>Text: Any unique ID, such as a 5-digit FIPS code for USA counties, or NA or Undefined</td>
</tr>
<tr>
<td>Policy relaxing or restricting</td>
<td>Broad designations about a policy with regard to its intended impact on the policy environment at the time the policy was issued.</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricting: a policy where the intention is to impose limitations or regulations on behaviors or actions, for an overall reduction in what is allowed relative to before.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Relaxing: a policy that aims to ease limitations or regulations on behavior or actions, for an overall increase in what is allowed relative to before.</td>
<td></td>
</tr>
<tr>
<td>Other: All other policies that do not focus on limiting or promoting specific behaviors or actions.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Policy category</th>
<th>Categorization of the overall scope of</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>One of: Authorizing and enforcement</td>
</tr>
<tr>
<td>Policy subcategory</td>
<td>Detailed information about the intention of the policy based on its content</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| a policy based on its content | Contact tracing/Testing
Emergency declarations
Enabling and relief measures
Face mask
Military mobilization
Social distancing
Support for public health and clinical capacity
Travel restrictions
Vaccinations |
| Policy subcategory | Any of:
Authorization and enforcement
Authorization
Enforcement
Contact tracing/Testing
Contact tracing
Testing
Emergency declarations
General emergency declaration
Public health emergency declaration
Enabling and relief measures
Anti-price gouging measures
Budget modifications
Early prison release
Eviction and foreclosure delays
Extension of public services
Hazard pay
Leave entitlement adjustments
Modification of unemployment benefits
Mortgage payment support
Other labor protections
Other relief measures
Regulatory relief
Relief funding
Remote notarization
Stimulus payments
Support for essential workers
Tax delay
Utility payment
Face mask
Face mask required
Face mask suggested
Face mask exemption |
<table>
<thead>
<tr>
<th>Face mask (other)</th>
</tr>
</thead>
</table>
| **Military mobilization**
Activation of military for enforcement
Activation of military for logistical and/or medical support |
| **Social distancing**
Adaptation and mitigation measures
Alternative election measures
Curfews
Distancing mandate
Event delays or cancellations
Face covering
Health screening
Isolation
Lockdown
Mass gathering restrictions
Other forms of social distancing
Quarantine
Prison population reduction
Private sector closures
Public service closures
Safer at home
School closures
Stay at home
Visitor restrictions |
| **Support for public health and clinical capacity**
Coverage for cost of testing
Crisis standards of care
Elective procedure delay or cancellation
Emergency use or expanded market authorization
Healthcare facility licensing waivers
Immunity for medical providers
Medical licensing waivers
Notification requirements
Other measures to support public health and clinical capacity
Revised "emergency personnel" designations
Risk communication
Support for telemedicine |
| **Travel restrictions**
Domestic travel restriction
Domestic travel restrictions (interstate)
Domestic travel restrictions (intrastate)
International travel restriction |
<p>| Vaccinations |</p>
<table>
<thead>
<tr>
<th>Multi-vaccine policy</th>
<th>Policy target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccine administration, distribution, and logistics</td>
<td></td>
</tr>
<tr>
<td>Vaccine cost, financing, and insurance</td>
<td></td>
</tr>
<tr>
<td>Vaccine exemption or alternative</td>
<td></td>
</tr>
<tr>
<td>Vaccine mandate</td>
<td></td>
</tr>
<tr>
<td>Vaccine prioritization</td>
<td></td>
</tr>
<tr>
<td>Vaccine-related plan</td>
<td></td>
</tr>
</tbody>
</table>

Policy target

The primary population, location, sector, or entities impacted by the policy or law

Any of:

- All essential businesses
- All non essential businesses
- All recreation/entertainment venues
- All workers/employees
- Bars/alcohol service establishments
- Businesses/private sector
- Casinos/gambling facilities
- Childcare facilities (preschool or other daycare)
- Churches/places of worship
- Confirmed cases
- Courthouse/Judiciary
- Criminal justice system/prisons/jails/incarcerated persons
- Cultural events/weddings/funerals
- Day camps/summer camps
- Essential workers
- Event center/convention/performance hall/fair
- Family entertainment/leisure activity
- Farmer’s market/open air market
- Farming/agriculture/food processing
- Fully vaccinated individuals
- Funeral home/mortuary
- General population
- Grocery store
- Gym/fitness center/recreational sports facility
- Healthcare workers and allied personnel
- Higher education
- Homeless shelters/homeless individuals
- Hospitals/urgent care/emergency medical services
- Hotels/lodging
- Housing sector/real estate/renters/homeowners
- Indigenous people
- Insurance/banking
- Libraries/museums/art galleries/community centers
- Liquor stores
- Manufacturers
- Marginalized communities
- Medical offices (doctor/dentist/physical therapist)
- Migrant workers/refugees/asylum seekers
- Military
<table>
<thead>
<tr>
<th>Policy description</th>
<th>A written description of the policy and the directive by the researcher</th>
<th>Text: Any English-language text</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issued date</td>
<td>The date on which the policy was initially announced and/or issued</td>
<td>Date: format mm/dd/yyyy</td>
</tr>
<tr>
<td>Effective start date</td>
<td>The date on which the policy took effect or was enacted</td>
<td>Date: format mm/dd/yyyy</td>
</tr>
<tr>
<td>Category</td>
<td>Description</td>
<td>Date: Any date after the specified effective start date, format mm/dd/yyyy</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Anticipated end date</td>
<td>The date on which the directive specified in the policy was intended to end.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If a specific measure was extended beyond the initial end date, each extension is captured as a new row. Extended policies are linked back to the previous policy through the field ‘Prior row ID linked to this entry’.</td>
<td></td>
</tr>
<tr>
<td>Actual end date</td>
<td>The date on which the directive specified in the policy was terminated, replaced, or extended.</td>
<td></td>
</tr>
<tr>
<td>Intended duration</td>
<td>A text description of the intended duration of the policy, expressed in days where applicable</td>
<td>Text: Any text value</td>
</tr>
<tr>
<td>Prior row ID linked to this entry</td>
<td>The unique ID of the prior policy that immediately preceded the specified policy.</td>
<td>Numeric: Blank, or any unique policy ID</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
<td>Values</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Linked row relationship</td>
<td>The type of relationship that the specified policy has to the "parent" policy linked in “Prior row ID linked to this entry.”</td>
<td>Amended, Extended, Rescinded, Related, Exemption Reinstated, Superseded</td>
</tr>
<tr>
<td>Data source for policy announcement</td>
<td>A link to the website from which the policy data were gathered. This link may be a news report or press announcement if data were gathered from that source and not from the source policy document.</td>
<td>Any URL</td>
</tr>
<tr>
<td>Attachment for policy announcement</td>
<td>URL of permanently hosted PDF document(s) for the policy announcement</td>
<td>Any URL</td>
</tr>
<tr>
<td>Policy/law name</td>
<td>The complete title of the law, policy, or policy announcement, including any relevant numerical information.</td>
<td>Text: Any text value</td>
</tr>
<tr>
<td>Policy/law type</td>
<td>The type of law or policy that is enacted</td>
<td>One of: Case, Declaration, Directive, Mandate, Memorandum, Non-policy guidance, Order, Ordinance, Proclamation, Regulation, Statute</td>
</tr>
<tr>
<td>Data source for law/policy</td>
<td>Source</td>
<td>Any URL</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
<td>Value</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>Attachment for policy</td>
<td>URL of permanently hosted PDF document(s) for the policy</td>
<td>Any URL(s)</td>
</tr>
<tr>
<td>Authorizing entity has authority?</td>
<td>Whether the entity who authorized the policy has the legal authority to do so, at the time that the policy was issued or effective. When a policy is under legal challenge, the field “Legal challenge?” will be set to Yes.</td>
<td>One of: Yes, No, Unclear</td>
</tr>
<tr>
<td>Relevant authority to make the law/policy</td>
<td>Title of legal authority for entity to enact the policy</td>
<td>Text: Any text value</td>
</tr>
<tr>
<td>Data source for authority to make the law/policy</td>
<td>Source documentation for the relevant authority specified above</td>
<td>Any URL</td>
</tr>
<tr>
<td>Legal challenge?</td>
<td>Whether there has been a legal challenge to the policy.</td>
<td>One of: Yes, No</td>
</tr>
<tr>
<td>Home rule state?</td>
<td>Whether the state is a “Home Rule” state or a “Limited Home Rule” state</td>
<td>One of: Yes, Limited, No</td>
</tr>
<tr>
<td>Documentation for the underlying law or policy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Limited Home Rule State: a city or county must obtain permission from the state legislature if it wishes to pass a law or ordinance which is not specifically permitted under existing state legislation

| Dillon’s rule state? | Whether or not a state is under Dillon's rule. If yes, the local government's power is derived from the state, and the local government is strictly limited by the state delegates. | One of: Yes Limited No Unclear |