
 
 

 
 

INTERNATIONAL EVALUATION OF AN ARTIFICIAL INTELLIGENCE-
POWERED ECG MODEL DETECTING OCCLUSION MYOCARDIAL 
INFARCTION 

 

Robert Herman MD1,2,3, H. Pendell Meyers MD4, Stephen W. Smith MD5,6, Dario T. 
Bertolone MD1,2, Attilio Leone MD1,2, Konstantinos Bermpeis MD1,2, Michele M. Viscusi 
MD1,2, Marta Belmonte MD1,2, Anthony Demolder MD, PhD3, Vladimir Boza MSc, PhD3,7, 
Boris Vavrik MSc3, Viera Kresnakova MSc, PhD3,8, Andrej Iring MSc3, Michal Martonak 
MSc3, Jakub Bahyl MSc3, Timea Kisova BSc3,9, Dan Schelfaut, MD2, Marc Vanderheyden, 
MD2, Leor Perl, MD10, Emre K. Aslanger, MD11, Robert Hatala, MD, PhD12, Wojtek 
Wojakowski MD, PhD13, Jozef Bartunek MD, PhD2, Emanuele Barbato MD, PhD14 

 

1Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, 
Italy; 2Cardiovascular Centre Aalst, Aalst, Belgium; 3Powerful Medical, Bratislava, Slovakia; 
4Department of Emergency Medicine, Carolinas Medical Center, North Carolina, USA; 
5Department of Emergency Medicine, University of Minnesota, Minneapolis, Minnesota, 
USA; 6Department of Emergency Medicine, Hennepin Healthcare, Minneapolis, Minnesota, 
USA; 7Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 
Bratislava, Slovakia; 8Department of Cybernetics and Artificial Intelligence, Technical 
University of Kosice, Kosice, Slovakia; 9Barts and The London School of Medicine and 
Dentistry, London, United Kingdom;  10Department of Cardiology, Rabin Medical Center, 
Petah Tikvah, Israel; 11Department of Cardiology, Basaksehir Cam and Sakura City Hospital, 
Istanbul, Turkey, 12Department of Arrhythmia and Pacing, National Institute of 
Cardiovascular Diseases, Bratislava, Slovakia; 13Department of Cardiology and Structural 
Heart Diseases, Medical University of Silesia, Katowice, Poland, 14Department of Clinical 
and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 
Italy.  

 

Short title: AI ECG Detecting Occlusion Myocardial Infarction 

Word count: 3,543 

 

 

Address for correspondence:

Robert Herman, MD 
Powerful Medical 
Bratislavská 81/37, Šamorín, Slovakia 
Phone: +43 676 374 6517 
Email: robert@powerfulmedical.com 
 
 

Emanuele Barbato, MD, PhD 
Department of Clinical and Molecular Medicine 
Sapienza University of Rome 
Via di Grottarossa 1035, 00189 Rome, Italy 
Phone: +39 349 812 0123 
Email: emanuele.barbato@uniroma1.it 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 2, 2023. ; https://doi.org/10.1101/2023.04.26.23289180doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.04.26.23289180
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

RH 2

ABSTRACT 
 
Background. One third of Non-ST-elevation myocardial infarction (NSTEMI) patients 
present with an acutely occluded culprit coronary artery (occlusion myocardial infarction 
[OMI]), which is associated with poor short and long-term outcomes due to delayed 
identification and consequent delayed invasive management. We sought to develop and 
validate a versatile artificial intelligence (AI)-model detecting OMI on single standard 12-
lead electrocardiograms (ECGs) and compare its performance to existing state-of-the-art 
diagnostic criteria. 

Methods. An AI model was developed using 18,616 ECGs from 10,692 unique contacts 
(22.9% OMI) of 10,543 patients (age 66±14 years, 65.9% males) with acute coronary 
syndrome (ACS) originating from an international online database and a tertiary care center. 
This AI model was tested on an international test set of 3,254 ECGs from 2,263 unique 
contacts (20% OMI) of 2,222 patients (age 62±14 years, 67% males) and compared with 
STEMI criteria and annotations of ECG experts in detecting OMI on 12-lead ECGs using 
sensitivity, specificity, predictive values and time to OMI diagnosis. OMI was based on a 
combination of angiographic and biomarker outcomes. 

Results. The AI model achieved an area under the curve (AUC) of 0.941 (95% CI: 0.926-
0.954) in identifying the primary outcome of OMI, with superior performance (accuracy 
90.7% [95% CI: 89.5-91.9], sensitivity 82.6% [95% CI: 78.9-86.1], specificity 92.8 [95% CI: 
91.5-93.9]) compared to STEMI criteria (accuracy 84.9% [95% CI: 83.5-86.3], sensitivity 
34.4% [95% CI: 30.0-38.8], specificity 97.6% [95% CI: 96.8-98.2]) and similar performance 
compared to ECG experts (accuracy 91.2% [95% CI: 90.0-92.4], sensitivity 75.9% [95% CI: 
71.9-80.0], specificity 95.0 [95% CI: 94.0-96.0]). The average time from presentation to a 
correct diagnosis of OMI was significantly shorter when relying on the AI model compared 
to STEMI criteria (2.0 vs. 4.9 hours, p<0.001). 

Conclusions. The present novel ECG AI model demonstrates superior accuracy and earlier 
diagnosis of AI to detect acute OMI when compared to the STEMI criteria. Its external and 
international validation suggests its potential to improve ACS patient triage with timely 
referral for immediate revascularization. 
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CLINICAL PERSPECTIVE 

What is new? 
• A novel artificial intelligence (AI) model detecting acute occluded coronary artery 

(OMI) using standard 12-lead electrocardiograms (ECGs) was developed from an 
international cohort. 

• The OMI AI model is the first of its kind to be validated in an external international 
cohort of patients using an objective angiographically confirmed endpoint of OMI. 

• Our study demonstrated the OMI AI models superior accuracy in identifying OMI and 
shorter time to correct diagnosis compared to standard of care STEMI criteria. 

 

What are the clinical implications? 
• The OMI AI model has the potential to improve ACS triage and clinical decision-

making by enabling timely and accurate detection of OMI in NSTEMI patients. 
• The robustness and versatility of the OMI AI model indicate its potential for real-

world clinical implementation in ECG devices from multiple vendors.  
• Prospective studies are essential to evaluate the efficacy of the OMI AI model and its 

impact on patient outcomes in real-world settings. 
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INTRODUCTION 1 

Patients with an acutely occluded coronary artery (Occlusion Myocardial Infarction, or OMI) 2 

who will benefit from emergent reperfusion therapy are currently identified mainly on the 3 

basis of electrocardiographic ST-segment elevation (ST Elevation Myocardial Infarction 4 

[STEMI]), according to the universal guidelines.1,2 Growing evidence suggests that the 5 

current acute coronary syndrome (ACS) classification dichotomizing patients as STEMI or 6 

non-STEMI (NSTEMI) is unsatisfactory for the timely diagnosis of OMI, as also recognized 7 

by the 2022 American College of Cardiology Chest Pain Expert Consensus.3 On one hand, 8 

25% to 30% of NSTEMI patients present with acute coronary occlusion with insufficient 9 

collateral circulation as discovered only on delayed coronary angiography.4 The delayed 10 

invasive management in these patients is associated with higher short and long-term 11 

mortality.4,5 On the other hand, catheterization laboratories are inappropriately activated in 12 

15-35% of suspected STEMIs where eventually no culprit lesions or a non-ischemic etiology 13 

of ST elevation is found.6-8 A plethora of ECG criteria have been proposed to increase the 14 

diagnostic sensitivity for OMI as compared to the current guideline-based STEMI criteria, 15 

and to differentiate OMI from mimics.3,5,9-15 However, their adoption is limited due to their 16 

complexity and unclear inter-evaluator reliability.  17 

The application of artificial intelligence (AI) to ECG waveforms has demonstrated increased 18 

diagnostic accuracy in various conditions and may offer a significant improvement in the 19 

timely detection of OMI.16-20 Therefore, we developed an automated deep learning AI model 20 

detecting acute OMI using only single standard 12-lead ECGs as input, and hypothesized that 21 

it would outperform the existing state-of-the-art ECG criteria for detection of acute OMI and 22 

perform equally to interpreters with special expertise in ECG OMI diagnosis in patients with 23 

suspected ACS.  24 
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METHODS 25 

Study design. This is a retrospective study following three key stages: (1) development of a 26 

Powerful Medical (PM)cardio-OMI AI model for the detection of acute OMI using only 12-27 

lead electrocardiograms as input (“derivation cohort”); (2) blinded AI model evaluation on an 28 

internal European testing dataset (“EU internal test set”); (3) blinded AI model evaluation in 29 

an independent external United States  (“US external test set”). In the analysis, the term 30 

"overall test set" encompasses all ECGs that were contained in the combined EU internal test 31 

set and the US external test set. Each of these steps are described below. 32 

Data sources and processing. The derivation cohort included data from 12,241 patients 33 

undergoing coronary angiography and serial troponin testing between 2011 and 2021 at the 34 

Cardiovascular Centre Aalst in Belgium and an online international database of 2,368 ACS 35 

patients (see Supplemental material for detailed description). Waveform data were exported 36 

from the MUSE ECG data management system (GE Healthcare, Chicago, IL) in XML format 37 

and sampled at 500 Hz. Patients without acute symptoms compatible with ACS undergoing 38 

coronary angiogram (CAG) were identified using manual chart review and excluded. ECGs 39 

recorded more than 24 hours before CAG and all ECGs post-CAG were removed. The 40 

remaining patients and contacts retained in the final dataset were carefully split into a model 41 

development (derivation) set and an internal EU testing dataset ensuring that patients with 42 

more than one (recurrent) ACS contacts were present in only one of the sets. Time from the 43 

first ECG to intervention was recorded for all cases if the patient underwent coronary 44 

angiography. The derivation set included ECGs in the EU dataset which were classified as 45 

OMI or not OMI by interpreters with special expertise in ECG OMI diagnosis (SWS, HPM), 46 

and by outcome data (see details below under “model development”). “Not OMI” includes 47 

patients who either have no acute MI or have acute Non-Occlusion MI (Non-OMI, or 48 

NOMI). Images of ECG tracings from multiple device vendors within the online database of 49 
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ACS patients were converted to digital waveforms using proprietary CE-certified PMcardio 50 

ECG digitization technology (Powerful Medical, Samorin, Slovakia). The full overview of 51 

data sources and inclusions and exclusions are available in Figure 1. 52 

Primary and secondary outcomes. The primary outcome was the AI model’s ability to 53 

identify patients with angiographically confirmed OMI using single standard 12-lead ECGs 54 

alone. The primary definition of OMI was reproduced from previous studies5,9,10,21-24 and 55 

consisted of coronary angiographic evidence of an acute culprit stenosis with either a) 56 

Thrombolysis in Myocardial Infarction (TIMI) flow grade of 0-2 and any positive troponin; 57 

or b) TIMI flow grade of 3 and a very high peak troponin elevation (hs-cTnT ≥ 1,000 ng/L, 58 

cTnI of > 10.0 ng/mL, or cTnT of > 1.0 ng/mL).25 The primary outcome does not encompass 59 

chronic total occlusions (CTO) and all types of acute myocardial infarctions (AMI) for 2 60 

reasons: 1) AMI that is not OMI and without persistent severe ischemia is often undetectable 61 

or nonspecific on the ECG and 2) such AMI without persistent occlusion or persistent severe 62 

ischemia does not need emergent intervention and may be diagnosed with some delay based 63 

on troponin assessment. This outcome was considered the reference standard for all analyses 64 

unless otherwise specified. 65 

Secondary outcomes included: i) AI model performance in the subgroup analyses; ii) 66 

comparison of the AI model performance against existing criteria for detecting acute 67 

coronary occlusion (ACO) from 12-lead ECGs, iii) analysis of AI model performance using 68 

different definitions of OMI combining culprit vessel TIMI flow and peak troponin cut-offs, 69 

and iv) analysis of misclassified cases.  70 

OMI AI model development. Digital and digitized 12-lead ECG input data collected from 71 

sources described above was standardized into 3x4 ECG format. The model derivation set 72 

was further subdivided into a training and validation set. A deep convolutional neural 73 
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network (DCNN) architecture was deployed in model development and included two key 74 

components: feature extraction and classification. The feature-extraction component, 75 

comprised of 15 Convolutional layers, was designed to extract features in a lead-specific 76 

manner. Lead-specific analysis was achieved by implementing parallel convolutional layers 77 

focused on analyzing separate leads. The second component, classification, combined all 78 

extracted features and processed them through 3 fully connected layers, interspersed with 79 

dropouts. Analysis of each lead, and integration of the knowledge gained, mimics the 80 

analytical approach of human experts to make a final diagnosis. The validation data set was 81 

used for hyperparameter refinement and threshold selection. The optimal model threshold 82 

was selected using receiver operating characteristics (ROC) curve analysis.26 An additional 83 

threshold was selected to match the specificity of the STEMI criteria. 84 

EU internal testing dataset. Independent clinical reviewers verified the angiographic data of 85 

all patients included in the EU internal testing dataset. Verification included blinded 86 

identification of culprit vessels, their visual assessment of coronary stenosis, TIMI flow, 87 

presence of sufficient collateral flow on all individual angiograms and documentation of 88 

treatment strategy. If applicable, revascularization time, defined as the duration between the 89 

first ECG and the time when a balloon was inflated or when the wire crossed the lesion, was 90 

documented. 91 

US external testing dataset. ECG and outcome data from the Diagnosis of Occlusion MI 92 

And Reperfusion by Interpretation of the electrocardioGram in Acute Thrombotic Occlusion 93 

(DOMI ARIGATO) database (clinical trials.gov number NCT03863327) were included in the 94 

US external testing cohort. Data collection and processing of this database is explained in 95 

detail elsewhere.21 Briefly, the DOMI ARIGATO database collected ECGs, laboratory and 96 

angiographic data of patients presenting with ACS to two US sites, Stony Brook University 97 
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Hospital (SBUH) and Hennepin County Medical Center (HCMC). ECGs were interpreted 98 

and manually annotated by both ECG experts blinded to all clinical data other than age and 99 

sex. Baseline ECGs, post-CAG ECGs and ECGs with missing expert annotations were 100 

removed from the testing cohort. 101 

Benchmarking. The developed AI model was compared to three current standard criteria for 102 

detecting OMI on 12-lead ECGs: 1) physician annotation of STEMI criteria as a surrogate 103 

finding for OMI (“STEMI criteria”), 2) subjective ECG expert annotation of OMI (“ECG 104 

Experts”), and 3) a prior CE-approved AI-model trained to detect STEMI (“PMcardio-105 

STEMI AI Model” [Powerful Medical, Samorin, Slovakia]). For criterion 1, the classification 106 

of STEMI was based on the 4th universal definition of myocardial infarction.27 For criterion 107 

2, independent ECG experts (SWS, HPM) with consolidated expertise in OMI detection 108 

annotated all tracings for the presence of OMI, blinded to all clinical information.9 For 109 

criterion 3, the prior PMcardio-STEMI AI model (trained on General Electric [GE] 110 

Marquette 12SL and/or physician annotations of STEMI criteria) was used to collect 111 

continuous predictions. All ECGs in the EU internal testing dataset, and US external testing 112 

dataset were labeled using the three methods described in this paragraph. Time to diagnose 113 

OMI was noted for each criterion by measuring the duration from the initial ECG to the 114 

accurate identification of OMI. In cases where the criterion failed to detect OMI in any ECG, 115 

the time to diagnosis was equivalent to the time to CAG. 116 

Statistical analyses. Statistical analysis was performed using python programming language 117 

and the following open-source libraries tableone, lifelines, and pandas. Continuous statistics 118 

with normal distribution were expressed as mean ± standard deviation (SD) and compared by 119 

students' t-tests. Continuous variables with a non-normal distribution were presented as 120 

median with interquartile ranges (IQR) and reached by the Mann-Whitney-U test.28 If 121 
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appropriate, categorical variables were reported by frequencies and percentages and 122 

compared with the Chi-square test and a Fisher’s exact test. The performance of the AI 123 

models, ECG experts, and STEMI criteria was evaluated using the following standard 124 

evaluation metrics: sensitivity, specificity, accuracy, negative predictive value (NPV), 125 

positive predictive value (PPV), Matthew’s correlation coefficient (MCC) and area under 126 

curve (AUC). For all evaluation metrics, we estimated the confidence intervals at 95% by 127 

10,000 iterations of the bootstrap method.29 In the subgroup analysis, patients’ ECGs were 128 

stratified according to ECG measurement (QRS duration and heart rate) and ECG diagnostic 129 

annotations (rhythm, ventricular hypertrophy, bundle branch blocks) originating from CE-130 

certified PMcardio AI ECG interpretation technology.  131 
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RESULTS 132 

Sample characteristics. A total of 18,616 ECGs from 10,692 unique contacts (22.9% OMI) 133 

of 10,543 patients (age 66±14 years, 65.9% males) from the Cardiovascular Center in Aalst 134 

and from the international online ACS database were included in the AI model development. 135 

Sample characteristics are shown in Table 1.  136 

Test sets characteristics. Procedural characteristics of both testing cohorts are shown in 137 

Table 2. The overall test set included 3,254 ECGs from 2,263 unique contacts (20% OMI) of 138 

2,222 patients (age 62±14 years, 67% males). Of these, 2,016 ECGs from 1,630 contacts 139 

(with 240 [14.7%] OMI) were from the internal EU testing cohort, and 1,238 ECGs from 633 140 

contacts (with 213 [33.6%] OMI) were from the US testing cohort. The prevalence of OMI 141 

differed between the internal EU and the external US test set, 14.7% compared to 33.6%, 142 

respectively (p<0.001). Contacts included in the US test set were younger, had more ECGs 143 

recorded before catheterization and had more STEMI ECGs. Gender, peak troponin and the 144 

TIMI flow of culprit vessels did not differ significantly between the two cohorts. 145 

AI model performance. The OMI AI model with an optimal threshold (threshold of 0.1106) 146 

achieved an AUC of 0.941 (95% CI: 0.926, 0.954) in identifying the primary outcome of 147 

OMI (Panel A, Figure 2) on the overall test set. As shown in Figure 3, OMI AI model 148 

performance was comparable on both the European internal (Panel A) and US external 149 

testing datasets (Panel B), and achieved an AUC of 0.943 (95% CI: 0.925, 0.961) and of 150 

0.918 (95% CI: 0.893, 0.942) respectively. 151 

Subgroup performance. AI model performance was tested across different subgroups and 152 

patient segments based on baseline characteristics and electrocardiographic patterns (Figure 153 

2, Panel B). The model yielded stable performance across genders and age subgroups 154 

(ranging from 0.907 to 0.951 AUC). Significantly greater performance was recorded for 155 
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ECGs with QRS duration under 120 milliseconds (0.924 [95% CI: 0.912, 0.935] AUC) and 156 

heart rate over 100 beats per minute (0.961 [95% CI: 0.940, 0.978] AUC), compared to their 157 

counterparts (0.873 [95% CI: 0.830, 0.914] and 0.909 [95% CI: 0.896, 0.922] AUC, 158 

respectively) (p<0.001). Model performance was comparable when tested on secondary 159 

definitions of OMI with different TIMI flow and troponin cut-off combinations, as well as the 160 

occurrence of PCI (Table 3). 161 

AI model benchmarking. The OMI AI model was compared to three standard criteria 162 

assessing the same 12-lead ECGs in the overall test set for the presence of OMI (Table 4). In 163 

identifying OMI, the OMI AI model with optimal threshold recorded a significantly superior 164 

sensitivity of 82.6% (95% CI: 78.9%, 86.1%) compared to STEMI criteria and PMcardio-165 

STEMI AI model [sensitivities 34.4% (95% CI: 30.0%, 38.8%) and 54.5% (95% CI: 49.7%, 166 

58.8%), respectively], and statistically equal sensitivity compared to ECG experts [75.9% 167 

(95% CI: 71.9%, 80%)]. Accuracies were equal between PMcardio-OMI model and experts, 168 

and significantly higher than STEMI criteria and PMcardio-STEMI AI model. All benchmark 169 

criteria achieved high specificity on the overall test set ranging from 92.8% to 97.6%. Head-170 

to-head comparison of confidence intervals of two evaluation criteria for OMI across all 171 

standard metrics is summarized in Supplemental Table 1. When adjudicated across six 172 

metrics (sensitivity, specificity, accuracy, PPV, NPV and MCC) the OMI AI Model showed 173 

statistically superior performance compared to STEMI criteria and PMcardio-STEMI AI 174 

model and equal (non-inferior) performance to ECG experts. ECG experts also recorded 175 

significantly better performance compared to STEMI criteria and PMcardio-STEMI AI 176 

model. Mean time to OMI diagnosis was significantly shorter for OMI AI model compared to 177 

STEMI criteria, 2.0 hours vs 4.9 hours respectively (p<0.001) (Figure 4), but comparable to 178 

ECG experts, with a mean time of 2.5 hours (p=0.12). Patients with OMI received 179 

interventions at a similar rate regardless of STEMI criteria presence and outcome definition 180 
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(primary outcome definition, 96.5% vs. 94.5% [p=0.570]; strictest OMI outcome [TIMI 0-1 181 

flow only], 96.3% vs. 92.4% [p=0.358]) (Supplemental Table 2). 182 

Analysis of misclassified cases. There were 131 subjects identified by the OMI AI model 183 

and 44 subjects identified by STEMI criteria as OMI on ECG who did not meet the primary 184 

outcome definition of OMI, for purpose of the manuscript termed as “false positives” 185 

(Supplemental Table 3). However, false positives of the AI model and STEMI criteria 186 

significantly differed in the rate of AMI and AMI-related interventions. Of the 131 AI model 187 

false positives, 71 (54.2%) had AMI, 45 (34.4%) had acute culprit lesions, and 40 (30.5%) 188 

had AMI with PCI. In contrast, only 15 (34.1%) (p=0.035) of STEMI criteria false positives 189 

had AMI, 6 (13.6%) had acute culprit lesions (p=0.031), and 5 (11.4%) had AMI with PCI 190 

(p=0.036). In other words, false positives by STEMI criteria were more often cases without 191 

any AMI (whether OMI or NOMI), whereas with AI, they were much more often actual AMI 192 

cases that needed intervention, albeit not necessarily emergently. Of the 297 OMI patients 193 

(65.5% of all OMI) missed by STEMI criteria, only 100 (33.6%) had a time to 194 

revascularization of under 2 hours. Of the remaining 197 OMI patients without positive 195 

STEMI criteria who did not get urgent CAG, 112 (56.8%) were correctly identified by the 196 

OMI AI model using the first ECG; these patients had a median revascularization time 10.9 197 

hours (IQR 5.3,17.3). 198 

199 
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DISCUSSION 200 

In this study, we validated the novel PMcardio-OMI AI model which is comparable to 201 

specialized OMI ECG experts in detecting invasively confirmed acute coronary occlusion 202 

from individual 12-lead electrocardiograms recorded in ACS patients before cardiac 203 

catheterization, blinded to all other clinical information. High accuracy was upheld across 204 

two large, independent testing cohorts of ACS patients from Europe and United States, with 205 

robust performance across all subgroups and on ECGs recorded at various time intervals 206 

before coronary angiography. 207 

The present research is driven by the unmet need related to the suboptimal triage of ACS 208 

patients at their presentation. Barely 25% of patients with ACS present with typical ST-209 

segment elevation on their initial ECG30 and up to 35% of patients without such ST-segment 210 

elevation have total coronary occlusion on the delayed angiography.31-35 In addition,  20% of 211 

OMI met STEMI criteria on the initial ECG, 30% on serial ECGs, and only 49% were 212 

recognized by cardiologists as STEMI.36,37 Compared to NSTEMI with a non-occlusive 213 

stenosis of the culprit coronary artery (NOMI)21, patients with OMI have far higher mortality 214 

and worse left ventricular function, in spite of having younger age and fewer comorbidities.4 215 

Several previous studies deployed machine learning to triage patients presenting with ACS, 216 

however, bearing multiple limitations.30,38-50 The majority of these studies did not validate the 217 

occlusive or flow-limiting culprit lesions on coronary angiogram and relied on a subjective 218 

majority vote of board-certified cardiologists interpreting the ECG with STEMI as the 219 

surrogate for OMI.30,39-43 They often employed a spectrum of input clinical features in 220 

addition to the ECG waveform restricting their practical, real-world implementation.44-50 221 

Finally, their validation was not scrutinized in sizeable external and international datasets or 222 
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on ECGs recorded from multiple ECG device vendors limiting their applicability to digital 223 

ECG file formats from a single manufacturer. 224 

Our study is characterized by several methodological strengths. First, it is built using an 225 

international cohort of standardized 12-lead ECG waveforms of different formats from 226 

multiple vendors, either paper form or screenshot images. Second, the ACO reference 227 

standard used for model evaluation was an objective, invasively collected composite of TIMI 228 

flows of culprit vessels and biomarker elevation. Using this robust methodology, the OMI AI 229 

model yielded superior accuracy in the validation within an independent cohort. Likewise, the 230 

AI model demonstrated sustained high performance (>0.92 AUC) on both EU internal testing 231 

datasets with the natural prevalence of OMI within a cohort of ACS patients and an external 232 

validation set of patients from two independent US centers. The OMI AI model yielded a 233 

statistically superior performance to STEMI criteria and equal performance to ECG experts 234 

when compared using six complementary performance metrics. More specifically, the model 235 

outperformed the standard ECG millimeter criteria in detecting ACO and provided an over 236 

twofold increase in sensitivity while maintaining the high specificity in STEMI criteria. The 237 

presented OMI AI model detects OMI significantly earlier (by 2.9 hours) compared to current 238 

guideline recommended STEMI criteria. Finally, the false positive OMI interpretations 239 

classified by the AI model were more likely to have acute MI (though not meeting primary 240 

outcome criteria), have an acute culprit lesion, and undergo PCI, compared to the false 241 

positive interpretations by STEMI criteria. 242 

Clinical implications. Our study has several implications for the future management of ACS. 243 

OMI AI model paired with proprietary digitization technology offers accurate detection of 244 

patients with ACO with occlusive or flow limiting lesion using a single 12-lead ECG tracings 245 

independent of ECG vendor or its format. Specifically, such accurate and timely ECG-based 246 
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ACS diagnosis at the time of first patient contact could prompt swift coronary intervention as 247 

recommended currently in case of standard STEMI criteria. The rapid reperfusion in such 248 

management can consequently limit the burden of myocardial injury with favorable impact 249 

on clinical outcomes. In this regard, the model reliably detected ACO on average 2.9 hours 250 

before the current guideline-based ECG standards suggesting its potential to streamline the 251 

timely referral of ACS patients at risk for poor outcomes. 252 

Limitations. Several limitations are to be considered. Although validated on multi-center, 253 

international cohorts of patients, our study lacks prospective validation. In clinical practice, 254 

the decision to refer for early angiography in patients presenting with NSTEMI is not only 255 

based on the ECG but encompasses often additional criteria. Nevertheless, our results show 256 

nearly half (45.4%) of NSTEMI-OMI patients that could have had accelerated access to PCI 257 

based on the AI model detection truly underwent revascularization within 2 hours. However, 258 

their median time to revascularization was delayed over 10 hours. Annotation of STEMI 259 

criteria may be subjective, and we have only included one interpretation per ECG for this 260 

metric. Although the model has demonstrated robust performance across various patient 261 

subgroups, our study lacks AI model explainability. The OMI AI model detects OMI with a 262 

binary granularity. It is understood that the different stages of culprit coronary lesion leading 263 

to acute coronary syndrome, in terms of dynamics (active or reperfused) and time (acute or 264 

subacute), can have an influence on patient outcomes and the timing of invasive strategies. 265 

Lastly, our study was not designed to quantify other relevant clinical endpoints such as 266 

mortality, in-hospital complications, or MACE. Future work should address these limitations 267 

and observe the AI model efficacy and clinical benefit deployed in a prospective cohort of 268 

ACS patients. 269 
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Conclusions. We have developed and validated PMcardio-OMI AI model able to accurately 270 

detect ACS patients with angiographically confirmed occlusion of culprit coronary arteries 271 

using only single standard 12-lead ECGs in a large international, multi-center cohort of ACS 272 

patients. Our AI model outperformed gold-standard STEMI criteria in the diagnosis of OMI 273 

and warrants further prospective clinical studies to define the role of OMI AI model in 274 

guiding ACS triage and timely referral of patients benefiting from immediate 275 

revascularization. 276 
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 TABLES 

 Table 1. Sample characteristics of the model development and EU and US test sets. 

  

Parameter Cat. 
Model 

development 
set (n=18,616) 

Overall 
Test Set 

(n=3,254) 

P-
value 
(All) 

Internal EU 
Test Set 

(n=2,016) 

External US 
Test Set 

(n=1,238)  

P-value 
(Overall 

Test Sets) 

Unique Patients, n  10,543 2,222  1,589 633  
Age [years], mean 
(SD)  66 (14.0) 62 (14.0) <0.001 63 (14.0) 61 (14.0) <0.001 

Gender, n (%) 
Female 3,394 (34.1) 747 (33.0) 0.336 543 (33.3) 204 (32.2) 0.658 
Male 6,560 (65.9) 1,516 (67.0) 0.336 1,087 (66.7) 429 (67.8) 0.658 

Unique Contacts, n  10,692 2,263  1,630 633  

Primary outcome, n 
(%) 

Class 
not-OMI 8,242 (77.1) 1,810 (80.0) 0.003 1,390 (85.3) 420 (66.4) <0.001 

Class 
OMI 2,450 (22.9) 453 (20.0) 0.003 240 (14.7) 213 (33.6) <0.001 

Unique ECGs, n  18,616 3,254  2,016 1,238  

ECGs Outcome 
breakdown, n (%) 

MI ruled-
out  1,866 (57.3) 1.000 1,456 (72.2) 410 (33.1) <0.001 

NOMI  469 (14.4) 1.000 107 (5.3) 362 (29.2) <0.001 
OMI  919 (28.2) 1.000 453 (22.5) 466 (37.6) <0.001 

 
Cat., category; EU, Europe; US, United States; SD, standard deviation; OMI, occlusion myocardial infarction; NOMI, non-
occlusion myocardial infarction; ECG, electrocardiogram; MI, myocardial infarction. 
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Table 2. Procedural characteristics of the patient contacts in the EU and US test sets. 

Parameter Cat. 
Overall 

Test Sets 
(n=2,263) 

Internal EU Test 
Set (n=1,630) 

External US 
Test Set 
(n=633) 

P-value 

Pre-CAG ECG, n (%) 
STEMI 264 (11.7) 154 (9.4) 110 (17.4) <0.001 

not-STEMI 1999 (88.3) 1476 (90.6) 523 (82.6) <0.001 
Average ECGs per patient, 
mean (SD)  1.4 (0.9) 1.2 (0.6) 2.0 (1.2) <0.001 

Admission Troponin T (ng/L), 
median [Q1,Q3]  7.4 [4.2,13.5] 7.4 [4.2,13.5] NA NA 

Peak Troponin T (ng/L), 
median [Q1,Q3]  31.8 [5.0,1457.2] 11.8 [4.3,340.5] 340.0 

[11.0,2820.1] <0.001 

CAG performed, n (%)  1408 (62.2) 948 (58.2) 460 (72.7) <0.001 
Time to CAG (hours), median 
[Q1,Q3]  13.4 [2.5,19.6] 17.3 [4.9,20.4] 3.8 [0.8,15.1] <0.001 

Time to CAG, n (%) 

Late (12-24h) 310 (22.1) 129 (13.7) 181 (39.3) <0.001 
Delayed (4-12h) 123 (8.8) 72 (7.6) 51 (11.1) <0.001 

Early (2-4h) 256 (18.2) 167 (17.7) 89 (19.3) <0.001 
Immediate (<2h) 715 (50.9) 576 (61.0) 139 (30.2) <0.001 

Culprit vessel, n (%) 
None 1632 (72.1) 1316 (80.7) 316 (49.9) <0.001 
Native  605 (26.7) 298 (18.3) 307 (48.5) <0.001 
Graft  26 (1.1) 16 (1.0) 10 (1.6) <0.001 

Culprit artery, n (%) 

LMCA 11 (1.7) 6 (1.9) 5 (1.6) <0.001 
LAD 234 (37.1) 113 (36.0) 121 (38.2) <0.001 
LCx 142 (22.5) 59 (18.8) 83 (26.2) <0.001 
RCA 220 (34.9) 130 (41.4) 90 (28.4) <0.001 
PDA 9 (1.4) 0 (0.0) 9 (2.8) <0.001 

RI 11 (1.7) 2 (0.6) 9 (2.8) <0.001 
Multi-vessel 4 (0.6) 4 (1.3) 0 (0.0) <0.001 

Culprit stenosis (%), median 
[Q1,Q3]  90.0 [70.0,100.0] 80.0 [60.0,100.0] 95.0 

[90.0,100.0] <0.001 

Culprit TIMI Flow, n (%) 

TIMI-0 244 (38.6) 119 (37.8) 125 (39.4) 0.897 
TIMI-1 38 (6.0) 19 (6.0) 19 (6.0) 0.897 
TIMI-2 70 (11.1) 33 (10.5) 37 (11.7) 0.897 
TIMI-3 280 (44.3) 144 (45.7) 136 (42.9) 0.897 

Collateral flow, n (%) 

NONE 284 (90.4) 284 (90.4) NA NA 
MILD 16 (5.1) 16 (5.1) NA NA 

MODERATE 12 (3.8) 12 (3.8) NA NA 
HIGH 2 (0.6) 2 (0.6) NA NA 

Time to Revascularization 
(hours), median [Q1,Q3]  7.5 [2.1,19.3] 7.5 [2.1,19.3] NA NA 

Treatment, n (%) 
Conservative 706 (50.1) 525 (55.4) 181 (39.3) <0.001 

PCI 699 (49.6) 422 (44.5) 277 (60.2) <0.001 
 
Cat., category; EU, Europe; US, United States; CAG, coronary angiography; ECG, electrocardiogram; STEMI, ST-elevation 
myocardial infarction; SD, standard deviation; LMCA, left main coronary artery; LAD, left anterior descending artery; LCx, left 
circumflex artery; RCA, right coronary artery; PDA, posterior descending artery; RI, ramus interventricularis; TIMI, 
Thrombolysis In Myocardial Infarction; PCI, percutaneous coronary intervention. 
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Table 3. Performance of PMcardio-OMI AI models and analysis of different OMI outcome definitions across the grouped testing datasets (both 

EU and US). In bold primary outcome definition of OMI. 

 

OMI outcome definition 
PMcardio-OMI AI Model –  

Optimal threshold± 

Sens. Spec. PPV NPV AUC MCC 

Culprit TIMI 0-1  87.5% 
(83.4-91.3) 

86.9% 
(85.4-88.4) 

0.485 
(0.445-0.528) 

0.980 
(0.973-0.987) 

0.929 
(0.912-0.944) 

0.588 
(0.548-0.628) 

Culprit TIMI 0-1 OR TIMI 2-3 Trop T ≥500 ng/L 83.6% 
(79.9-86.9) 

92.4% 
(91.1-93.6) 

0.727 
(0.688-0.765) 

0.959 
(0.949-0.968) 

0.942 
(0.928-0.955) 

0.722 
(0.685-0.756) 

Culprit TIMI 0-1 OR TIMI 2-3 with Trop T ≥1000 ng/L 84.5% 
(80.8-88.0) 

91.6% 
(90.3-92.8) 

0.691 
(0.65-0.73) 

0.964 
(0.955-0.972) 

0.942 
(0.928-0.955) 

0.706 
(0.667-0.74) 

Culprit TIMI 0-2 OR TIMI 3 with Trop T ≥500 ng/L 81.9% 
(78.1-85.3) 

93.1% 
(91.9-94.2) 

0.754 
(0.715-0.791) 

0.952 
(0.942-0.962) 

0.939 
(0.924-0.952) 

0.728 
(0.69-0.762) 

Culprit TIMI 0-2 OR TIMI 3 with Trop T ≥1000ng/L 82.6% 
(78.9-86.1) 

92.8% 
(91.5-93.9) 

0.741 
(0.7-0.778) 

0.955 
(0.945-0.965) 

0.941 
(0.926-0.954) 

0.724 
(0.687-0.758) 

Culprit TIMI 0-2 OR TIMI 3 with Trop T ≥1000 ng/L 
AND PCI performed 

82.4% 
(78.6-86.0) 

92.6% 
(91.3-93.7) 

0.733 
(0.694-0.771) 

0.955 
(0.945-0.965) 

0.939 
(0.925-0.952) 

0.718 
(0.68-0.753) 

± Optimal threshold based on ROC analysis (threshold of 0.1106) 
OMI, Occlusion myocardial infarction; AI, artificial intelligence; STEMI, ST-elevation myocardial infarction; Sens., Sensitivity; Spec., Specificity; PPV, positive predictive 
value; NPV, Negative predictive value; AUC, Area under curve; MCC, Matthews correlation coefficient; TIMI, Thrombolysis In Myocardial Infarction; Trop, Troponin; PCI, 
percutaneous coronary intervention. 
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 Table 4. Head-to-head benchmark comparison in detecting the primary outcome definition of OMI. 

  

Comparator Ref - Ref + Accuracy Sensitivity Specificity PPV NPV AUC 

PMcardio-OMI AI Model –  
Optimal threshold± 

- 1679 79 90.7% 
(89.5-91.9) 

82.6% 
(78.9-86.1) 

92.8% 
(91.5-93.9) 

0.741 
(0.7-0.778) 

0.955 
(0.945-0.965) 

0.941 
(0.927-0.953) + 131 374 

PMcardio-STEMI AI Model 
- 1721 206 87.0% 

(85.6-88.3) 
54.5% 

(49.7-58.8) 
95.1% 

(94.1-96.1) 
0.735 

(0.686-0.782) 
0.893 

(0.879-0.906) 
0.861 

(0.841-0.881) + 89 247 

STEMI Criteria 
- 1766 297 84.9% 

(83.5-86.3) 
34.4% 

(30.0-38.8) 
97.6% 

(96.8-98.2) 
0.780 

(0.723-0.834) 
0.856 

(0.842-0.871) 
0.660 

(0.637-0.682) + 44 156 

ECG Experts 
- 1720 109 91.2% 

(90.0-92.4) 
75.9% 

(71.9-80.0) 
95.0% 

(94.0-96.0) 
0.793 

(0.753-0.832) 
0.940 

(0.929-0.951) 
0.855 

(0.834-0.875) + 90 344 
 
± Optimal threshold based on ROC analysis (threshold of 0.1106) 
Ref, reference; OMI, Occlusion myocardial infarction; AI, artificial intelligence; STEMI, ST-elevation myocardial infarction; PPV, Positive 
predictive value; NPV, Negative predictive value; AUC, Area under curve; ECG, electrocardiogram. 
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ILLUSTRATIONS 

 

Figure 1. PRISMA Flow chart showing data sources and study populations. Unique cardiology contacts identified, exclusions (in grey), and final study 

population split into model development (development) set (in white), EU internal test set (in blue) and US external test set (in red). 

ECG, electrocardiogram; ACS, acute coronary syndrome; pts, patients; CAG, coronary angiography; MI, myocardial infarction; OMI, occlusion myocardial infarction.  
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Figure 2. AI model performance on the overall test sets and subgroup analysis. Panel A shows the ROC curve of AI algorithms, PMcardio-OMI (red) and 

PMcardio-STEMI (blue) and sensitivity and specificity of STEMI criteria (green dot) and ECG experts (purple cross) on combined EU and US testing cohorts. The AUC is 

0.941 (n = 2,263 contacts [20.02% OMI]); Panel B shows the PMcardio-OMI AI model performance on different patient subgroups.  

ROC, Receiver operating curve; OMI, Occlusion myocardial infarction; AI, artificial intelligence; STEMI, ST-elevation Myocardial Infarction; ECG, electrocardiogram; Sens, Sensitivity; Spec, 

Specificity; PPV, Positive predictive value; NPV, Negative predictive value; AUC, Area under the curve; AF, atrial fibrillation; VH, Ventricular hypertrophy; LBBB, Left bundle branch block; 

RBBB, Right bundle branch block; BPM, beats per minutes. 

A. B.     
 

  

Parameter Cat No. ECGs (%) Sens. Spec. PPV NPV AUC 

Gender 
Male 2219 (68.19%) 0.758 0.919 0.818 0.888 0.910 

Female 1035 (31.81%) 0.793 0.931 0.730 0.950 0.934 

Age 
subgroups 

≤45 328 (10.08%) 0.770 0.959 0.810 0.948 0.951 
45-65 1417 (43.55%) 0.782 0.896 0.756 0.909 0.920 
≥65 1509 (46.37%) 0.749 0.940 0.838 0.900 0.907 

QRS 
duration 

<120 2806 (86.23%) 0.789 0.918 0.794 0.915 0.924 
≥120 448 (13.77%) 0.595 0.958 0.825 0.878 0.873 

Rhythm 
Sinus 2897 (89.03%) 0.767 0.918 0.790 0.908 0.915 
Paced 133 (4.09%) 0.600 0.944 0.714 0.911 0.851 

AF 189 (5.81%) 0.810 0.993 0.971 0.948 0.981 
VH  898 (27.60%) 0.735 0.926 0.778 0.908 0.900 
LBBB  246 (7.56%) 0.557 0.932 0.765 0.841 0.839 
RBBB  548 (16.84%) 0.726 0.976 0.907 0.916 0.916 

BPM 
<100 2875 (88.35%) 0.749 0.920 0.773 0.910 0.909 
≥100 379 (11.65%) 0.848 0.952 0.921 0.904 0.961 
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Figure 3. AI model performance on EU and US testing cohorts separated. Figure shows the ROC curve of AI algorithms, PMcardio-OMI (red) and PMcardio-

STEMI (blue) and sensitivity and specificity of STEMI criteria (green dot) and ECG experts (purple cross). Panel A shows the AUC of PMcardio-OMI AI of 0.943 (n=1,630 

contacts [14.72% OMI] on the EU internal testing cohort; Panel B shows the AUC of PMcardio-OMI AI of 0.918 (n=633 contacts [33.65% OMI] on the US external testing 

cohort.  

ROC, Receiver operating curve; EU, Europe; US, United States; OMI, Occlusion myocardial infarction; AI, artificial intelligence; STEMI, ST-elevation Myocardial 

Infarction; ECG, electrocardiogram; Sens, Sensitivity; Spec, Specificity; AUC, Area under the curve.
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Figure 4. Time to OMI diagnosis by detection method. Graph shows the time to OMI diagnoses 

(primary outcome definition) when relying on individual detection methods. If the detection method detected 

OMI on the first ECG, the time to diagnosis is 0. If the detection method did not catch OMI on any ECG, the 

time to diagnosis corresponds to the time to coronary angiography. 
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