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Abstract 

Delay discounting is linked to developmental trajectories of cognition and the brain, as 

well as psychopathology, such as psychosis. Although childhood socioeconomic deprivation 

is associated with both increased delay discounting and a higher incidence of psychotic 

disorders, the genetic and neural basis of these associations remains unclear. This study 

examined the causal relationships between neighborhood socioeconomic deprivation, delay 

discounting, and psychotic-like experiences (PLEs) in 2,135 preadolescent children using 

machine learning-based causal inference methods. We found that neighborhood deprivation, 

as measured by the Area Deprivation Index, had significant causal effects on delay 

discounting (β= -1.7297, p-FDR= 0.0258) and 1-year and 2-year follow-up PLEs (β= 

1.3425~1.8721, p-FDR≤ 0.0291). Furthermore, our analysis revealed significant 

heterogeneous causal effects of neighborhood deprivation on PLEs (p-FDR<0.005). The 

subgroups most vulnerable to these causal effects exhibited steeper discounting of future 

rewards, higher polygenic scores for educational attainment, reduced structural 

volume/area/white matter in the parahippocampal, right temporal pole, and right pars 

opercularis, and greater functional activation in the limbic system during Monetary Incentives 

Delay tasks. Our findings highlight the importance of a bioecological framework and the 

involvement of the mesocorticolimbic system in the causal relationship between 

socioeconomic deprivation and the risk of psychosis during childhood. Overall, our results 

support that enhancing the residential socioeconomic environment could positively influence 

child development. 
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Significance Statement 

Discerning the complex interplay of genetic, neural, and environmental factors within the 

relationship between childhood environment and psychopathology is essential for developing 

personalized health care. To provide optimal health care for each patient, identifying the 

biological and socioeconomic characteristics of the most vulnerable population is necessary. 

Through the application of state-of-the-art causal machine learning methods, this study shows 

that children with genetic and neural associates of impatient reward valuation are at a 

heightened risk of developing psychosis when exposed to neighborhood socioeconomic 

adversity. These findings underscore the significance of enhancing the childhood 

environment as a means to address social and health disparities. 
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Introduction 

In Critique of Practical Reason, Immanuel Kant posits the inherent power of human 

reason, asserting that it is an a priori capacity independent of external factors, enabling 

individuals to engage in responsible actions (1). However, contemporary scientific research 

conducted over the past several decades has accumulated considerable evidence that 

challenges the assertions of this 18th-century philosopher. Specifically, the environment in 

which individuals develop exerts a substantial influence on their identities and actions. 

Adverse childhood environments, such as low family income, inadequate nutrition, 

physical or sexual abuse, and unsafe neighborhoods, have been correlated with an elevated 

risk of pathologies, including schizophrenia (2-4), impoverished cognitive ability (5-7), 

anxiety, bipolar disorder, self-harm, depression (3, 4, 8), substance abuse, and obesity (9, 10). 

Furthermore, these environments are associated with negative social outcomes, such as poor 

academic performance (11, 12), low income, unemployment (13-18), incarceration, teen 

pregnancy (19). Additionally, childhood adversity has been linked to risky behaviors, 

encompassing criminal activity (20), excessive consumption of calorie-dense foods (21), 

substance use (22, 23), deficient self-control (24), and disrupted reward processing (25).  

But what is the complex correlation between adverse childhood environment, 

irresponsible behavior, and negative social and health outcomes? We hypothesized that 

childhood adversity causes impairment in one’s valuation system, leading to negative life 

outcomes. Children who experienced social adversities such as poverty show steeper 

discounting of future rewards in adulthood and have greater risk of psychosis (2, 3, 26-28). 
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Lower socioeconomic status positively correlates with functional brain activity concordance 

and grey matter volume within reward-related areas (i.e., ventral striatum, putamen, caudate 

nucleus, orbital frontal cortex) and negatively with executive-related areas (i.e., frontal, 

medial frontal cortex) (29). A recent study reported that neuroanatomical features including 

total cortical volume, surface area, and thickness mediates the association of environmental 

risk factors and psychotic-like experiences (PLEs) in children (3).  

In addition, individuals with steeper discounting of future rewards (i.e., value present 

rewards much higher than future rewards) were inclined to save less, invest less in education, 

more likely to engage in criminal behavior, exhibit lower academic performance, and have 

less economic wealth (30-33). Impairment of the intertemporal valuation system is associated 

with psychiatric disorders, including schizophrenia, attention deficit/hyperactivity disorder 

(ADHD), Parkinson’s disease, and drug addiction (34, 35). Particularly, schizophrenia can be 

seen as an aberrant neural response towards irrelevant rewards due to increased tonic 

dopamine (34, 36-38). Blunted dopaminergic projections from the ventral tegmental area to 

the mesocorticolimbic regions disrupt reward anticipation and perception (36, 37), causing 

delusions or hallucinations. This is supported by consistent reports of steeper delay 

discounting in schizophrenia patients (39-41).  

In the present study, our primary objective was to investigate the causal impact of 

neighborhood socioeconomic deprivation on adolescents' delay discounting, which pertains 

to individuals' intertemporal decision-making and impulsive behavior, as evidenced by the 

extent to which they discount future rewards. Additionally, this study aimed to investigate the 

impact of such deprivation on adolescents' psychotic-like experiences (PLEs). Exposure to 

adversities at the neighborhood level during childhood has been shown to negatively 
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influence neurocognitive development, subsequently resulting in psychiatric disorders and 

unfavorable social outcomes, such as decreased income, reduced probability of college 

attendance, and limited employment opportunities (3, 7, 17, 28, 42-45). This phenomenon is 

particularly pronounced in societies where discrimination based on family income or 

race/ethnicity restricts underprivileged families from selecting neighborhoods that present 

greater opportunities for upward social mobility, as observed in the United States (17).  

It is crucial to note that PLEs, which are considered as a clinically significant risk 

indicator for schizophrenia and general psychopathology (2, 3, 46), exhibit the strongest 

association with environmental risk factors in comparison to other internalizing/externalizing 

symptoms during early adolescence (3). The present study endeavors to contribute to a deeper 

understanding of the potential causal mechanisms underlying these associations, with the aim 

of informing policy and intervention strategies. 

Our second aim was to test whether the causal effects of neighborhood deprivation on 

children’s PLEs are heterogeneous based on individual’s delay discounting and its genetic, 

neural correlates. The heterogeneous nature of psychopathology has long posed significant 

challenges for clinical diagnosis and treatment (47, 48). Given that the genetic and neural 

correlates of delay discounting substantially overlap with those of schizophrenia (38, 49, 50), 

the shared biological foundations between reward valuation and schizophrenia may result in 

heterogeneous effects of environmental exposure on an individual's psychotic symptoms. By 

investigating these potential variations, this study seeks to enhance the understanding of the 

complex interplay between environmental factors and individual predispositions in the 

development of psychopathology. 
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Identifying heterogeneity of treatment/exposure is crucial for the development of 

personalized health care. Delivering optimal health care for each patient necessitates the 

recognition of genetic markers and demographic characteristics associated with individual 

variations in treatment effects (51, 52). However, previous studies employing traditional 

methods of testing treatment effect heterogeneity have often been unsuccessful in discerning 

the intricate interplay between genetic and environmental factors (53, 54). Linear models 

with interaction terms of features selected a priori by the researcher may not fully reflect the 

complex and elusive gene-environment interplay, particularly in genetic and neuroscience 

research where the input features are usually high dimensional. 

To address this knowledge gap, the present study employed an inductive approach to 

assess heterogeneous treatment effects using a state-of-the-art nonparametric causal machine 

learning algorithm. Furthermore, the study utilized multimodal magnetic resonance imaging 

(MRI) data from 11,876 preadolescent children aged 9 to 12 years old, who participated in 

the Adolescent Brain Cognitive Development (ABCD) Study. The ABCD Study represents 

the largest longitudinal investigation of children's neurodevelopment in the United States. By 

integrating innovative analytical techniques and a large, diverse sample, this study aims to 

advance the understanding of the complex interactions between genetic and environmental 

factors, ultimately contributing to the development of more effective personalized health care 

strategies.  
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Results 

The demographic characteristics of the final sample (N=2,135) are presented in Table 1. 

Within the sample, 46.14% were female and 53.86% were male, 76.63% of participants had 

married parents, the mean family income was $70,245, and 65.57% identified their 

race/ethnicity as white. To ensure the representativeness of the final sample, a supplementary 

table comparing the sample's demographic characteristics with those of the general United 

States population is provided in the SI Appendix (Table S1). This comparison serves to 

reinforce the validity and generalizability of the study's findings. 

A non-randomized observational study, such as the ABCD study, greatly benefits from 

rigorous confound modeling when examining associative and causal relationships among 

variables. For example, GPS, environmental variables, and phenotypic outcomes often share 

common unobserved causes (55). We used instrumental variable (IV) regression to adjust for 

unobserved confounding bias in identifying the unbiased causal effects of neighborhood 

socioeconomic adversity (measured with Area Deprivation Index, henceforth ADI) on delay 

discounting and PLEs (56). Utilizing such a methodological approach contributes to the 

robustness of the findings and enhances the validity of the study's conclusions. 

In an initial exploratory analysis, conventional linear instrumental variable (IV) 

regression (56) was conducted to identify potential causal effects of the Area Deprivation 

Index (ADI) on various neurocognitive, behavioral, and psychiatric outcomes, including 

cognitive intelligence, depression, and bipolar disorder. Among all the assessed outcomes, 

delay discounting and PLEs demonstrated significant causal associations with ADI (SI 

Appendix, Table S2). This preliminary analysis provided a foundation for further 
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investigation into the causal relationships between neighborhood socioeconomic adversity 

and these specific outcomes.  

 

Average Treatment Effects of Neighborhood Socioeconomic Adversity on 

Delay Discounting and PLEs 

In the primary analyses, we used IV random forest (henceforth, IV Forest) (57, 58) to 

obtain nonparametric, doubly robust estimates of average treatment effects of ADI on delay 

discounting and PLEs. The IV Forest method allows us to assess non-biased causal 

relationships between variables that are likely nonlinear—such as environmental risks and 

neurocognitive development (7, 59, 60)—using non-randomized, observational data (57). IV 

Forest analyses revealed that a higher ADI significantly correlated with a lower delay 

discounting rate (β= -1.7297, p-FDR= 0.0258) and a higher PLE (β= 1.3425~1.8721, p-FDR≤ 

0.0291) (Table 2). 

Supplementary analyses were conducted using an alternative causal machine learning 

method (i.e., Double ML (61, 62)) to validate the results. We built a partial-linear IV model 

and a nonparametric interactive IV model. The findings from both IV-based Double ML 

models were consistent with those obtained from the IV Forest (SI Appendix, Table S3), 

further supporting the primary analyses and conclusions drawn from the study. 

 

Heterogeneous Treatment Effects of Neighborhood Socioeconomic 

Adversity on PLEs, conditioned on the Genetic and Neural Correlates of 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 1, 2023. ; https://doi.org/10.1101/2023.04.30.23289335doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.30.23289335
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

Delay Discounting 

Next, we tested whether the impact of ADI was heterogeneous across children, and, if so, 

how the biological correlates of intertemporal valuation conferred the heterogeneity. 

Children’s genetic liability and neural representation were assessed using genome-wide 

polygenic scores (GPS) and structural MRI and monetary incentive delay (MID) task fMRI 

data. To find the best subset of genetic and neural correlates of delay discounting, we first 

selected GPS and MRI brain regions of interest (ROIs) specifically related to delay 

discounting. To analyze the nonparametric correlations of multiple input variables, we used a 

random forest-based feature selection Boruta algorithm (63). Its robustness and effectiveness 

in selecting relevant features in high dimensional, intercorrelated biomedical data (e.g., MRI) 

has been validated (63) and consistently applied in genetics and neuroscience research (64-

66). The variables significantly correlated with delay discounting (p-Bonferroni<0.05) were 

GPS of cognitive performance, IQ, and education attainment; anatomical features (e.g., 

surface area, volume) in the limbic system (temporal pole, parahippocampal gyrus, caudate 

nucleus, rostral anterior cingulate, isthmus cingulate), inferior frontal gyrus (pars opercularis), 

and fusiform gyrus; mean beta activations of rewards/losses versus neutral feedback in the 

midbrain areas (thalamus proper, ventral diencephalon), precentral gyrus, supramarginal 

gyrus, temporal lobe (transverse temporal gyrus, superior temporal gyrus), and insula (SI 

Appendix, Table S4).  

We then tested the heterogeneous treatment effects of ADI with the selected GPS and 

brain ROIs as covariates. To identify resilient/vulnerable groups, we conducted 5-fold cross-

validation model fitting to obtain honest, unbiased estimates of conditional average treatment 

effect (CATE) and ranked observations into quintiles by the CATE estimates (Q1: most 
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resilient ~ Q5: most vulnerable). After 100 iterations, we tested whether the predicted ADI 

effect in the lowest quintile is significantly different from the others (58, 67). We found 

significant heterogeneity of the ADI effects on 1-year and 2-year follow-up PLEs across the 

five subgroups (all p-FDR<0.005) (Fig. 1 and SI Appendix, Table S5). 

To examine the role of each genetic and neural correlates within the heterogeneous 

effects of ADI, we obtained Shapley additive explanation (SHAP) scores (68). SHAP scores 

show each variable’s positive or negative contribution to the differential causal effects of ADI 

between resilient and vulnerable groups. In the 1-year follow-up PLEs, more vulnerable 

subgroups of children (i.e., a greater negative impact of ADI on PLEs) had steeper 

discounting of future rewards, smaller right parahippocampal area and volume, smaller right 

temporal pole white matter and area, smaller intracranial volume, smaller right pars 

opercularis volume and area, smaller total grey matter volume, lower total intelligence, lower 

BMI, lower IQ GPS, lower cognitive performance GPS, younger parents, less likely to be 

Hispanic, larger right caudate volume, larger right fusiform volume, and higher educational 

attainment GPS. During MID tasks, regardless of the size of reward or loss, more vulnerable 

children had greater neural activation in the right posterior cingulate, right ventral 

diencephalon, left thalamus proper, and left precentral gyrus, and decreased activation in the 

left superior temporal gyrus. Some of these associations were reversed in the 2-year follow-

up PLEs: more vulnerable children had smaller right fusiform volume, larger 

parahippocampal area, larger intracranial volume, and greater activation in the superior 

temporal gyrus, and less activation in the precentral gyrus and thalamus proper during MID 

tasks. They also had smaller left white surface area, lower family income, greater activation 

in the insula during MID tasks compared to more resilient subgroups (Fig. 2).  
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We conducted three additional analyses to validate the robustness of the results. Firstly, 

we built an alternative IV Forest model with GPS and brain ROIs that were jointly associated 

to delay discounting and PLEs. This reduced model was unable to capture the heterogeneous 

effects of ADI across participants as effectively as the main IV Forest model (Total Score 

PLEs 1-year follow-up: p-FDR>0.05) (Fig. 3A and SI Appendix, Table S6). Secondly, we 

tested whether the heterogeneous effects of neighborhood adversity varied among psychotic 

symptoms. ADI exhibited significant heterogeneous treatment effects across delusional PLEs 

and hallucinational PLEs (all p-FDR<0.005) (Fig. 3B and SI Appendix, Table S7). Contrary 

to those of hallucinational symptoms, children more vulnerable to delusional symptoms when 

exposed to neighborhood adversity had decreased activation in the left precentral gyrus 

during MID tasks, larger left white surface area, smaller isthmus cingulate area, higher family 

income, and lower BMI (Fig. 4). Lastly, we conducted linear IV mediation analyses to test 

whether the role of delay discounting between the causal impact of ADI on PLEs can be 

captured with a conventional linear mediation model (69). This model showed no significant 

mediation effects of delay discounting (β= -1.5266 [95% CI, -19.8003~15.25] ~ -0.3335 [95% 

CI, -4.1392~4.4482]) (SI Appendix, Table S8).  
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Discussion 

In this study, we examined the relationship between neighborhood socioeconomic 

deprivation and intertemporal choice behavior (delay discounting) as well as 

psychopathology in children, while considering the diverse influences of neighborhood 

deprivation and its underlying biological, environmental, and behavioral determinants. Our 

findings can be categorized into two main aspects. Firstly, a more disadvantaged 

neighborhood environment was associated with steeper delay discounting (lower impulse 

control) and higher PLEs. The association remained significant after adjusting for known, 

observed (e.g., familial socioeconomic status), and unobserved confounding factors. Secondly, 

the impact of disadvantaged neighborhood environments on PLEs was heterogeneous, 

depending not only on delay discounting but also on genetic propensity for cognitive capacity, 

family history of psychiatric disorders, and brain morphometry and functioning (task 

activation). The conditions identified in the causal machine learning models may represent 

vulnerability or resilience factors, thereby rendering the impact of neighborhood adversity 

heterogeneous. 

Our findings hold implications for social science. Using causal machine learning models, 

such as IV Forest and Double ML, we provide consistent and robust evidence that residential 

adversity during childhood leads to steeper discounting of future rewards. This outcome 

challenges the prevailing assumption in economics that an individual's rate of discounting 

future rewards (time preference) is an exogenous parameter of intertemporal choice, given a 

priori, and cannot be influenced by external factors (32). Thus far, limited attention has been 

devoted to examining whether the development of an individual's parameter for intertemporal 
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choice is affected by environmental determinants (33), although one study in economics 

made theoretical suggestions about the endogenous nature of temporal discounting (70).  

We address this knowledge gap by identifying the potential causal influence of 

neighborhood environment on intertemporal choice using longitudinal observations of 

preadolescent children aged 9-10 years—a critical period for neurocognitive development. 

Given that an individual's intertemporal valuation of rewards contributes to economic and 

health disparities between individuals (30, 34, 50), early socioeconomic deprivation may 

result in a behavioral poverty trap (33), wherein individuals raised in impoverished 

environments tend to exhibit shortsighted behavior, making it increasingly difficult to escape 

poverty. Economic policies promoting positive intertemporal choice (e.g., increased savings, 

healthy diet) have predominantly focused on paternalistic welfare policies in adulthood, 

based on the assumption that an individual's delay discounting is exogenous (32). Our 

findings suggest that policies aimed at enhancing the socioeconomic environment during 

childhood may foster improved intertemporal choice behavior, thereby reducing economic 

(33) and health inequality (23, 71). 

Our second findings highlight the heterogeneous effects of the neighborhood deprivation 

on PLEs. Children exposed to residential deprivation with a higher risk of psychosis 

exhibited steeper discounting of future rewards, lower cognitive intelligence, smaller 

volume/area/white matter in the right parahippocampal, right temporal pole, right pars 

opercularis, and total grey matter, and increased activation in the limbic system (e.g., right 

posterior cingulate and right ventral diencephalon) during MID tasks. Additionally, children 

with higher risk of delusional symptoms had decreased activation in the precentral gyrus and 

smaller isthmus cingulate area whereas opposite associations were found in those with higher 
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risk of hallucinational symptoms. Although speculative, it is plausible that the influence of 

neighborhood deprivation on both delay discounting and the risk for psychosis targets a 

shared neural substrate, namely, reduced structural volume/area/white matter and heightened 

functional activation associated with dysregulation of glucocorticoid and dopamine, leading 

to an increased risk of psychosis.  

Maladaptive valuation of intertemporal rewards (i.e., excessive discounting of future 

rewards) arises from dysregulation of the mesocorticolimbic dopaminergic system (34, 38, 

41). Animal models show adverse social environments triggers chronic dysregulation of 

glucocorticoid signaling through epigenetic control and consequently leads to disrupted 

dopaminergic circuit during adolescence (72). This finding is supported by recent human 

studies (25, 73, 74). Childhood exposure to social adversity may contribute to 

psychopathology via abnormal development of the striatum and orbitofrontal cortex 

(dopamine pathway), and the hippocampus, amygdala, and medial prefrontal cortex 

(glucocorticoids pathway) (74). Young adults with a history of childhood social deprivation 

exhibit impaired reward processing, particularly in the cingulate, striatum, and inferior frontal 

gyrus (25, 73).  

It is worth noting that the age of our sample (9-12 years old) corresponds to a critical 

period during which these mesocorticolimbic regions undergo significant changes (75, 76). 

Additionally, dysfunction of the dopaminergic system has been consistently implicated in 

psychiatric disorders such as psychosis and schizophrenia among adolescents and adults (34-

38, 41, 77). Collectively, our findings on the heterogeneous effects of neighborhood 

deprivation contribute to the growing body of evidence suggesting that negative 

environmental impacts on economic decision-making and psychopathology share a common 
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neural basis. 

We found that with the presence of residential disadvantage, children more vulnerable to 

having PLEs when exposed to neighborhood deprivation had lower GPS of cognitive 

performance and IQ, and higher educational attainment GPS. At first, this finding may seem 

incongruous with prior reports indicating a negative association between PLEs and 

educational attainment GPS (28, 78, 79). 

The heterogeneous relationship between the genetic liability to educational attainment 

and PLE depending on the existence of residential disadvantage may be elucidated using the 

bioecological model and the Scarr-Rowe hypothesis of gene-environment interactions (80-82). 

These frameworks propose that genetic influences are attenuated in adverse environments. An 

analogy to this model is that in infertile soil, plants are unable to access adequate nutrients, 

leading to stunted growth overriding their genetic predisposition for height (83). In the 

absence residential disadvantage, children with higher GPS related to educational attainment 

exhibit increased genetic resilience against psychosis. However, exposure to residential 

disadvantage weakens the gene-psychosis association, and the genetic resilience is 

diminished. Consequently, individuals with higher educational attainment GPS experience a 

more significant loss of potential genetic resilience, rendering them more susceptible to the 

deleterious effects of ADI on PLEs. 

In concordance with our findings, recent large-scale studies have demonstrated that 

genetic influences on brain structure, cognition, and psychopathology are less potent in 

adverse environments (e.g., abuse) (84, 85) and more pronounced in enriched environments 

(e.g., high socioeconomic status) (81, 86, 87). These studies, in conjunction with our study, 
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may provide novel insights into the genetic and environmental underpinning of 

psychopathology in children. Furthermore, while the GPS of cognitive performance and IQ 

are mostly related to cognitive skills, the polygenic signals of educational attainment are 

more widely associated with noncognitive and social skills (88), and a variety of social 

outcomes including social mobility (89) and wealth inequality (90). This may be the reason 

why the bioecological model was prominent in educational attainment GPS, but not in GPS 

of cognitive performance and IQ. 

Our ability to identify the heterogeneous negative impact of neighborhood deprivation on 

childhood psychopathology was facilitated by our innovative utilization of recent rigorous 

causal machine learning modeling techniques. Using the IV Forest method, we found 

evidence that residential deprivation may exert differential effects on children’s risk of 

psychosis, contingent upon a variety of genetic factors (e.g., GPS of cognitive performance, 

educational attainment, and IQ (28, 49, 78, 79)) and environmental risk factors (e.g., family 

income (3, 45)) previously identified in the literature. Our results were adjusted for potential 

biases from observed and unobserved variables. The machine learning algorithm effectively 

modeled the intricate patterns of gene-environment interactions. Conversely, conventional 

linear mediation analysis—a traditional deductive statistical approach that relies on 

predefined interaction terms—failed to reveal a significant mediation of delay discounting 

between ADI and PLEs.  

The IV Forest model enables data-driven feature selection and stratification of 

heterogeneous treatment effects (57, 58), thereby inductively assessing nonlinear patterns of 

heterogeneous treatment effects not predefined by the investigator, in contrast to traditional 

deductive statistical approaches. Prior studies relying on the deductive approach often suffer 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 1, 2023. ; https://doi.org/10.1101/2023.04.30.23289335doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.30.23289335
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

from low statistical power and bias (55, 91), inadequately reflecting the complexity of gene-

environment interactions (53, 54). Consequently, we posit that causal modeling approaches 

that assess heterogeneous treatment effects hold significant potential as powerful tools for 

advancing precision science in psychology and medicine. 

Several limitations of this study warrant consideration. First, interpretations of our 

findings as true causality should be approached with caution. Although we employed both 

conventional and state-of-the-art causal inference methods to minimize bias from unobserved 

variables, the ABCD study is a non-randomized, observational investigation. Second, the 

majority of participants identified their race/ethnicity as white (63.76%), which may limit the 

generalizability of our findings. However, a recent study (92) suggests that measures of 

temporal discounting remain robust across 61 countries worldwide (n=13,629). Third, while 

childhood psychotic symptoms have been associated with an increased risk of developing 

mental illnesses later in life (93), we did not identify significant causal effects of 

neighborhood deprivation on other forms of psychopathology (e.g., anxiety disorder, bipolar 

disorder, eating disorder, suicidal behavior, sleep problems). It is plausible that the 

(heterogeneous) effects of early residential adversity on psychiatric disorders other than 

prodromal psychosis may not become apparent until later adolescence. Lastly, future research 

should examine the heterogeneous effects of additional environmental risk factors, such as 

parenting behavior (28) and early life stress (84), to provide a more comprehensive 

understanding of the environmental influences on psychopathology..  

This study highlights the differential effects of neighborhood disadvantage on 

intertemporal economic decisions and psychotic risk during early childhood. Emphasis 

should be placed on identifying heterogeneous treatment effects through the integration of 
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various genetic and environmental factors, with the aim of informing personalized health care 

strategies. Furthermore, we propose that enhancing the childhood environment could 

contribute to the reduction of economic and health inequality gaps. By addressing the root of 

the problem, this indirect approach may assist individuals in developing the capacity to make 

more informed choices, ultimately promoting better outcomes. 

The insights gleaned from our novel analytical methods revive longstanding 

philosophical inquiries: do humans possess reason or free will independent of their 

environment? If not, and the capacity for responsible behavior is contingent upon one's 

external circumstances, how can we justify punishment for criminal and morally 

reprehensible actions? Addressing these questions necessitates further interdisciplinary 

research that encompasses multiple fields of study, illuminating the complex relationship 

between individual agency and environmental factors in the context of ethical and legal 

considerations. 

 

Materials and methods 

Study Participants 

The ABCD Study recruited participants from 21 research sites across the nation, utilizing 

a stratified, probability sampling method to capture the sociodemographic variation of the US 

population (94). We used the baseline, first year, and second year follow-up datasets included 

in ABCD Release 4.0, downloaded on February 10, 2022.  

Of the initial 11,876 ABCD samples, we removed participants without genotype data, 
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MRI data, NIH Toolbox Cognitive Battery, delay discounting, residential address, ADI, PLEs. 

As recommended by the ABCD team (95), Johnson & Bickel’s two-part validity criterion (96) 

was used to exclude subjects with inconsistent responses (i.e., indifferent point for a given 

delay larger than that of an indifference point for a longer delay). Missing values of 

covariates were imputed using k-nearest neighbors. The final samples included 2,135 

multiethnic children.  

 

Data 

Neighborhood Disadvantage 

Neighborhood disadvantage was measured with Residential History Derived Scores 

based on the Census tracts of each respondent’s primary addresses by the ABCD team. 

Consistent with prior research (3, 43), we chose national percentile scores of the Area 

Deprivation Index, calculated from the 2011~2015 American Community Survey 5-year 

summary. It has 17 sub-scores regarding various socioeconomic factors such as median 

household income, income disparity, percentage of population aged more than 25 years or 

more with at least a high school diploma, and percentage of single-parent households with 

children aged less than 18 years, etc. Higher values of the Area Deprivation Index and 

poverty and fewer years of residence indicate greater residential disadvantage. 

 

Delay Discounting 

Delay discounting was measured by the adjusting delay discounting task in the 1-year 
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follow-up ABCD data (95, 97). Each child was asked to make choices between a small 

immediate hypothetical reward or a larger hypothetical $100 delayed reward at multiple 

future time points (6h, one day, one week, one month, three months, one year, and five years). 

By increasing or decreasing the smaller immediate reward depending on the child’s response, 

the task records the indifference point (i.e., the small immediate amount deemed to have the 

same subjective value as the $100 delayed reward) at each of the seven delay intervals. Test-

retest reliability of this delay discounting measure has been validated (98, 99). Studies show 

that preadolescent children are capable of comprehending the delay discounting task and 

show similar patterns of discounting as adults (100).  

To avoid methodological problems regarding mathematical discounting models 

(hyperbolic vs. exponential) and positively skewed parameters of discounting functions (99, 

101), we used the area under the curve, a model-free measure of delay discounting (101). The 

area under the curve measure of delay discounting rates (henceforth discount rates) ranges 

from 0 to 1, with lower values indicating steeper discounting and higher impulsivity.  

 

Psychotic-Like Experiences 

First and second-year follow-up observations of psychotic-like experiences (PLEs) were 

measured using the Prodromal Questionnaire-Brief Child Version (PQ-BC; child-reported). 

PQ-BC has a 21-item scale validated for use with a non-clinical population of children aged 

9-10 years (46, 102). In line with the previous research (3, 46, 78, 102), we computed Total 

Score and Distress Score, each indicating the number of psychotic-like symptoms and levels 

of total distress. Total Score is the summary score of 21 questions ranging from 0 to 21, and 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 1, 2023. ; https://doi.org/10.1101/2023.04.30.23289335doi: medRxiv preprint 

https://doi.org/10.1101/2023.04.30.23289335
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

Distress Score is the weighted sum of responses with the levels of distress, ranging from 0 to 

126. Additionally, to test whether the heterogeneous treatment effects of neighborhood 

adversity differ among psychotic symptoms, Distress Score was divided into two separate 

scores: Delusional Score and Hallucinational Score (2, 103). A higher value indicates greater 

severity of PLEs. 

 

Genome-wide Polygenic Scores 

Children’s genetic predisposition were assessed with genome-wide polygenic scores 

(GPS). Summary statistics from genome-wide association studies were used to generate GPS 

of cognitive intelligence (cognitive performance (104), education attainment (104), IQ (105)), 

psychiatric disorders (major depressive disorder(106), post-traumatic stress disorder (107), 

attention-deficit/hyperactivity disorder(108), obsessive-compulsive disorder (109), anxiety 

(110), depression (111), bipolar disorder (112), autism spectrum disorder (113), schizophrenia 

(114), cross disorder (115)), and health and behavioral traits (BMI (116), neuroticism (117), 

worrying (117), risk tolerance (118), automobile speeding propensity (118), eating disorder 

(119), drinking(118), smoking (118), cannabis use (120), general happiness (121), snoring 

(122), insomnia (122), alcohol dependence (123)). PRS-CSx, a high-dimensional Bayesian 

regression framework that places continuous shrinkage prior on single nucleotide 

polymorphisms effect sizes (124), was applied to enhance cross-population prediction. This 

method has consistently shown superior performance compared to other methods across a 

wide range of genetic architectures in simulation and real data analyses (124). 

Hyperparameter optimization for the GPSs was conducted using a held-out validation set of 
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1,579 unrelated participants. Adjustments for population stratification were performed based 

on the first ten ancestrally informative principal components to account for potential 

confounding effects.  

 

Anatomical Brain Imaging: T1/T2, Freesurfer 6 

Baseline year T1-weighted (T1w) 3D structural MRI acquired in the ABCD study were 

processed following established protocols (125, 126): To maximize geometric accuracy and 

image intensity reproducibility, gradient nonlinearity distortion was corrected (127). After 

correcting intensity nonuniformity using tissue segmentation and spatial smoothing, images 

were resampled to 1 mm isotropic voxels. We used Freesurfer v6.0 

(https://surfer.nmr.mgh.harvard.edu) for the following procedures: cortical surface followed 

by skull-stripping (128), white matter segmentation, and mesh creation (129), correction of 

topological defects, surface optimization (130, 131), and nonlinear registration to a spherical 

surface-based atlas (132). Using Desikan–Killiany atlas (133), a standard atlas for Freesurfer 

and ABCD study, we extracted 399 brain ROI measures, including volumes, surface area, 

thickness, mean curvature, sulcal depth, and gyrification. 

 

Functional MRI (fMRI): Monetary Incentive Delay (MID) task 

The MID task was used measure the neural activation during anticipation and receipt of 

monetary gains and losses. In each trial, participants were shown a graphical cue of the 5 

possible incentive types: large reward ($5), small reward ($0.20), large loss (-$5), small loss 

(-$0.20), or neutral ($0). The incentive cue is presented for 2,000 ms, followed by a jittered 
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anticipatory delay (1,500–4,000 ms). Subsequently, a target to which participants respond to 

gain or avoid losing money was shown (150–500 ms), and feedback of their performance was 

provided (2,000 ms). A total of 40 reward, 40 loss, and 20 neutral trials were presented in 

pseudo-random order across the two task runs. Task parameters was dynamically manipulated 

for each subject to maintain 60% success rate (126). We used baseline year observations of 

average beta weights of the MID task fMRI with Desikan-Killiany parcellations (133).  

 

Covariates 

To adjust for the potential confounding effects, sociodemographic covariates were 

included. Consistent with existing research on psychiatric disorders in ABCD samples (3, 46, 

78, 134), we controlled for the child’s sex, age, race/ethnicity, caregiver’s relationship to a 

child, BMI, parental education, marital status of the caregiver, household income, parent’s 

age, and family history of psychiatric disorders. The family history of psychiatric disorders, 

measured as the proportion of first-degree relatives who experienced psychosis, depression, 

mania, suicidality, previous hospitalization, or professional help for mental health issues (3) 

was included as a covariate. Given that delay discounting and PLEs are associated with an 

individual's neurocognitive capabilities (135-137), NIH Toolbox total intelligence was used 

as a covariate. All covariates were from baseline year observations. 
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Statistical Analyses 

Instrumental Variable Regression 

The IV method controls unobserved confounding bias by identifying an instrumental 

variable Z which causally affects the independent variable of interest X but has no direct 

effect on the dependent variable Y (56). Our instrument variable for ADI was a variable 

indicating whether the state in each subject resides at baseline year has legislation prohibiting 

discrimination by the source of income (SOI laws) in the housing market. According to a 

report by the US Department of Housing and Urban Development, landlords accept housing 

vouchers 20.2%p~59.3%p higher in local areas with SOI laws (138). Research shows 

significant reductions in neighborhood poverty rates in locations with SOI laws (139), and 

those who receive the benefits of housing vouchers in childhood show lower hospitalization 

rates, less impulsive consumption (140), and substantially better mental health (141). Taken 

together, we hypothesized that living in states with SOI laws would lead to more moderate 

discounting of future rewards and fewer PLEs, only through a positive influence on the 

neighborhood socioeconomic conditions of the subjects.  

F-statistic above ten is considered a strong instruments (142). The F-statistic for each 

model was F= 35.1423 (p<0.0001), suggesting that our IV model is not likely to suffer from 

weak instrument bias. Also, testing endogeneity of ADI (i.e., whether ADI as a treatment 

variable or predictor correlates with the error term), we found that the model was 

significantly biased by unobserved confounding (all Hausman test (143) for differences, 

p<0.0089). This justifies the need for the IV regression approach to control for the significant 

confounding effects and to test the causal relationship of neighborhood disadvantage with 
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delay discounting and psychopathology. All continuous variables were standardized (z-

scaled), and analyses were run using ivreg (144) in R version 4.1.2. For all analyses, 

threshold for statistical significance was set at p<0.05, with multiple comparison correction 

based on false discovery rate.  

 

Causal Machine Learning for Treatment Effects 

IV Forest (grf R package version 2.2.1) (57, 58) is a novel causal machine learning 

approach extends from the conventional random forest framework (145) with recursive 

partitioning, subsampling, and random splitting to identify the average treatment effects and 

its heterogeneity. We obtained augmented inverse propensity weighted estimates of average 

treatment effects, a doubly-robust estimator which can capture complex patterns of 

heterogeneity and do not rely on a priori model assumptions (57) such as linearity. This is 

particularly advantageous when the relationship between environmental variables and 

neurocognitive development is likely nonlinear (7, 59, 60). To measure the average outcome 

between treated versus untreated subjects, ADI was binarized (i.e., mean split).  

We evaluated heterogeneous treatment effects using the following procedures: 

1) Divide the data into 5-folds.  

2) Throughout every fold, fit a conditional average treatment effect model on 4 folds, 

and then rank the unseen observations within the held-out fold into quintiles 

according to their predicted treatment effects. 

3) Obtain augmented inverse propensity weighted average treatment effects for each 
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quintile. 

This is very similar to the generic framework proposed by Chernozhukov, Demirer, Duflo 

and Fernández-Val (67), which was also used in a recent study (146), except that we used 5-

fold cross-validation instead of dividing the data into half for conditional average treatment 

effect model fitting and ranking observations into subgroups. 
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Figures and Tables 

Figure 1. Heterogeneous treatment effects of neighborhood socioeconomic adversity on psychotic risk. Subjects were divided into quintiles by their 

relative resilience/vulnerability to the impact of neighborhood deprivation on PLEs (Q1: most resilient~Q5: most vulnerable). Average values of conditional 

average treatment effects (CATE) within more vulnerable subgroups were significantly different from that of the most resilient subgroup (Q1). Statistical 

significance is marked with stars (*: p-FDR<0.05, **: p-FDR<0.005, ***: p-FDR<0.0005). 
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Figure 2. Beeswarm summary plots of Shapley additive explanation (SHAP) values for IV Forest models. Contributions of the top 20 variables of 

highest importance in the IV Forest model for the heterogeneous treatment effects of neighborhood deprivation are shown. Variables are ordered by their 

relative importance in the model. Positive SHAP values indicate greater vulnerability (lower resilience) to the effects of ADI on PLEs; negative values 

indicate lower vulnerability (greater resilience). Contrasts of average beta activations of the given brain ROIs during MID tasks are shown in parenthesis. R 

vs N denote contrasts between any rewards and neutral reward, L vs N, contrasts between any loss and neutral reward. Ventral dc: ventral diencephalon. 
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Figure 3. Additional analyses for the heterogeneous effects of neighborhood deprivation. (A) Reduced model with GPS and brain ROIs jointly 

associated with both delay discounting and PLEs. In the reduced model, the effects of neighborhood deprivation on 1-year follow-up Total Score PLEs 

within more vulnerable subgroups (Q2~Q4) were not significantly from that of the most resilient group (Q1). (B) Symptom-specific analysis with 

Delusional Score and Hallucinational Score PLEs. For both symptoms, the differential effects of neighborhood deprivation were significant. Statistical 

significance is marked with stars (*: p-FDR<0.05, **: p-FDR<0.005, ***: p-FDR<0.0005). CATE: conditional average treatment effects. 
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Figure 4. Beeswarm summary plots of SHAP values of IV Forest models with symptom specific PLEs. Contributions of the top 20 variables of highest 

importance in the IV Forest model for the heterogeneous treatment effects of neighborhood deprivation are shown. Variables are ordered by their relative 

importance in the model. Positive SHAP values indicate greater vulnerability (lower resilience) to the effects of ADI on PLEs; negative values indicate 

lower vulnerability (greater resilience). Contrasts of average beta activations of the given brain ROIs during MID tasks are shown in parenthesis. R vs N 

denote contrasts between any rewards and neutral reward, L vs N, contrasts between any loss and neutral reward. Ventral dc: ventral diencephalon. 
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Table 1. Socioeconomic/demographic characteristics of the participants. Age is rounded to chronological month. Parental Education is measured as the 

highest grade or level of school completed or highest degree received. Family History of Psychiatric Disorders represents the proportion of first-degree 

relatives who experienced mental illness.  

Demographic Characteristics  N Ratio (%) Mean (SD) 

Age  2,135  120.1541 (7.4658) 

Sex 
Male 1,517 53.86% 

 
Female 985 46.14% 

 

Marital Status of the first caregiver 

Married 1,636 76.63% 
 

Widowed 12 0.56% 
 

Divorced 193 9.04% 
 

Separated 62 2.9%  

Never Married 142 6.65%  
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Living with Partner 90 4.22%  

Race/Ethnicity 

White 1,400 65.57%  

Black 136 6.37%  

Hispanic 373 17.47%  

Asian 7 0.33%  

Other 219 10.26%  

Parent’s Identity 

Biological Mother 1,848 86.56%  

Biological Father 215 10.07%  

Adoptive Parent 39 1.83%  

Custodial Parent 12 0.56%  

Other 21 0.98%  

Household Income  2,135  $70,245 (1.937) 

Parental Education  2,135  17.2838 (2.3046) 

BMI  2,135  18.4298 (3.8572) 
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Parental Age  2,135  40.8775 (6.3825) 

Family History of Psychiatric Disorders  2,135  0.0958 (0.1125) 
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Table 2. Causal effects of neighborhood socioeconomic adversity on intertemporal valuation and psychotic risk. Average treatment effects of ADI on 

delay discounting and PLEs in the IV Forest models are shown. All p-values were corrected for multiple comparison using false discovery rate. 

 
IV Forests: Average Treatment Effects 

 
Estimates Std. Error 95% Lower CI 95% Upper CI P-FDR 

Discount Rate 

(1-year follow-up) 
-1.7297 0.7475 -3.1948 -0.2645 0.0258 

Total Score PLE 

(1-year follow-up) 
1.528 0.6432 0.2673 2.7886 0.0258 

Distress Score PLE 

(1-year follow-up) 
1.8721 0.6118 0.6729 3.0712 0.0111 

Total Score PLE 

(2-year follow-up) 
1.3425 0.6152 0.1367 2.5483 0.0291 

Distress Score PLE 

(2-year follow-up) 
1.5042 0.5917 0.3445 2.6638 0.0258 
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SI Appendix 

Fig. S1. Beeswarm summary plots of SHAP values of all covariates. (A) Total Score PLEs 1-year follow-up. (B) Distress Score PLEs 1-year follow-up. 

(C) Total Score PLEs 2-year follow-up. (D) Distress Score PLEs 2-year follow-up. Contributions of all covariates in the IV Forest model for the 

heterogeneous treatment effects of neighborhood deprivation are shown. Variables are ordered by their relative importance in the model. Positive SHAP 

values indicate greater vulnerability (lower resilience) to the effects of ADI on PLEs; negative values indicate lower vulnerability (greater resilience). 

Contrasts of average beta activations of the given brain ROIs during MID tasks are shown in parenthesis. R vs N denote contrasts between any rewards and 

neutral reward, L vs N, contrasts between any loss and neutral reward. Ventral dc: ventral diencephalon. 
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Table S1. Comparison of the sample and national demographics. Since Household income for subjects in the study is presented as deciles, it is 

transformed into a monetary value by considering the income limits for each decile. The data for the US national demographics is available at Data is 

available at https://www.census.gov/en.html.  

 
Mean or Ratio (%) 

Subjects in our study US National Demographics 

Family Income $70,245 $60,336 

Sex Male 53.86% 51.16% 

Ethnicity/Race 

White 65.57% 57.8% 

Black 6.37% 12.1% 

Hispanic 17.47% 18.7% 

Asian 0.33% 6.1% 

Other 10.26% 12.4% 
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Exploratory analyses using conventional linear IV regression.  

In the preliminary exploratory analyses, we conducted a conventional linear IV regression on multiple outcomes, as well as delay discounting and PLEs. 

Children’s neurocognitive ability was measured with uncorrected composite scores of the total, fluid, and crystallized intelligence from the NIH Toolbox 

Cognitive Battery. The NIH Toolbox is composed of seven cognitive instruments for examining executive function, episodic memory, language abilities, 

processing speed, working memory, and attention (1, 2). To assess behavioral problems, we used summary scores from the Child Behavior Checklist 

(CBCL). These included anxious/depressed, withdrawn/depressed, somatic complains, social problems, thought problems, attention problems, rule-breaking 

behavior, aggressive behavior, obsessive-compulsive problems, sluggish cognitive tempo, stress, internalizing problems score, externalizing problems score, 

total problems score, and CBCL DSM-5 scales of depression, anxiety disorders, oppositional defiant, conduct problems, and attention deficit/hyperactivity 

disorder (ADHD) (2, 3). For psychiatric disorders, we used child- and parent-reported Kiddie Schedule for Affective Disorders and Schizophrenia for DSM-

5 (KSADS) diagnosis measures (4). Summary scores of anxiety disorder, bipolar disorder, eating disorder, suicidal behavior, and any psychiatric disorders 

were used. 

 

Table S2. Results of linear IV regression. All p-values were corrected for multiple comparison using false discovery rate. 
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 Conventional Linear IV Regression 

 Estimates Std. Error 95% Lower CI 95% Upper CI P-FDR 

Delay Discounting -0.4946 0.2124 -0.9109 -0.0783 0.02 

PLEs Total Score PLE 

(1-year follow-up) 

0.7985 0.2334 0.341 1.256 0.0015 

Distress Score PLE 

(1-year follow-up) 

0.8822 0.2389 0.414 1.3504 0.001 

Total Score PLE 

(2-year follow-up) 

0.6075 0.2188 0.1787 1.0363 0.0069 

Distress Score PLE 

(2-year follow-up) 

0.7472 0.2268 0.3027 1.1917 0.0017 

NIH Toolbox Total Intelligence 

(Baseline year) 
-0.4178 0.4406 -1.2814 0.4458 0.8714 

Fluid Intelligence 

(Baseline year) 
-0.3932 0.4633 -1.3013 0.5149 0.8714 

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted M

ay 1, 2023. 
; 

https://doi.org/10.1101/2023.04.30.23289335
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2023.04.30.23289335
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

Crystallized Intelligence 

(Baseline year) 
-0.3881 0.4418 -1.254 0.4778 0.8714 

CBCL Anxious/Depressed 

(1-year follow-up) 
-0.8051 0.5063 -1.7974 0.1872 0.7111 

Withdrawn/Depressed 

(1-year follow-up) 
-0.1604 0.4757 -1.0928 0.772 0.8994 

Somatic Complains 

(1-year follow-up) 
0.8369 0.5092 -0.1611 1.8349 0.7111 

Social Problems 

(1-year follow-up) 
0.1461 0.4756 -0.7861 1.0783 0.9071 

Thought Problems 

(1-year follow-up) 
0.0833 0.4762 -0.85 1.0166 0.9472 

Attention Problems  

(1-year follow-up) 
0.1887 0.4749 -0.7421 1.1195 0.8994 

 Rule-breaking Behavior 0.2838 0.4766 -0.6503 1.2179 0.8921 

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted M

ay 1, 2023. 
; 

https://doi.org/10.1101/2023.04.30.23289335
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2023.04.30.23289335
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

(1-year follow-up) 

Aggressive Behavior 

(1-year follow-up) 
0.0965 0.4745 -0.8335 1.0265 0.9468 

Sluggish Cognitive Tempo 

(1-year follow-up) 
-0.3003 0.4816 -1.2442 0.6436 0.8921 

Obsessive-Compulsive Problems 

(1-year follow-up) 
-0.2428 0.4814 -1.1863 0.7007 0.8994 

Stress 

(1-year follow-up) 
-0.4105 0.4775 -1.3464 0.5254 0.8714 

Internalizing Problems 

(1-year follow-up) 
-0.1941 0.4711 -1.1174 0.7292 0.8994 

Externalizing Problems 

(1-year follow-up) 
0.1619 0.4732 -0.7656 1.0894 0.8994 

Total Problems 0.0497 0.4643 -0.8603 0.9597 0.9766 
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(1-year follow-up) 

DSM-5 Depression 

(1-year follow-up) 
0.0444 0.4725 -0.8817 0.9705 0.9766 

DSM-5 Anxiety Disorder 

(1-year follow-up) 
-0.7845 0.5043 -1.7729 0.2039 0.7111 

DSM-5 Somatic Problems 

(1-year follow-up) 
0.6297 0.4978 -0.346 1.6054 0.8714 

DSM-5 ADHD 

(1-year follow-up) 
0.509 0.4857 -0.443 1.461 0.8714 

DSM-5 Oppositional Defiant 

(1-year follow-up) 
-0.1202 0.4778 -1.0567 0.8163 0.9378 

DSM-5 Conduct Problems 

(1-year follow-up) 
0.0937 0.4746 -0.8365 1.0239 0.9468 

Anxious/Depressed 0.1888 0.4784 -0.7488 1.1264 0.8994 
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(2-year follow-up) 

Withdrawn/Depressed 

(2-year follow-up) 
0.6185 0.4979 -0.3574 1.5944 0.8714 

Somatic Complains 

(2-year follow-up) 
0.1816 0.4802 -0.7596 1.1228 0.8994 

Social Problems 

(2-year follow-up) 
1.0335 0.5226 0.0092 2.0578 0.7111 

Thought Problems 

(2-year follow-up) 
-0.0014 0.4746 -0.9316 0.9288 0.9976 

Attention Problems  

(2-year follow-up) 
0.9047 0.5112 -0.0972 1.9066 0.7111 

Rule-breaking Behavior 

(2-year follow-up) 
0.8328 0.5118 -0.1703 1.8359 0.7111 

Aggressive Behavior 

(2-year follow-up) 
0.2914 0.4829 -0.6551 1.2379 0.8921 
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Sluggish Cognitive Tempo 

(2-year follow-up) 
-0.035 0.482 -0.9797 0.9097 0.9766 

Obsessive-Compulsive Problems 

(2-year follow-up) 
0.503 0.4902 -0.4578 1.4638 0.8714 

Stress 

(2-year follow-up) 
0.254 0.4796 -0.686 1.194 0.8994 

Internalizing Problems 

(2-year follow-up) 
0.3753 0.4794 -0.5643 1.3149 0.8921 

Externalizing Problems 

(2-year follow-up) 
0.4841 0.4886 -0.4735 1.4417 0.8714 

Total Problems 

(2-year follow-up) 
0.5887 0.4855 -0.3629 1.5403 0.8714 

DSM-5 Depression 

(2-year follow-up) 
0.2878 0.4821 -0.6571 1.2327 0.8921 
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DSM-5 Anxiety Disorder 

(2-year follow-up) 
0.2384 0.4801 -0.7026 1.1794 0.8994 

DSM-5 Somatic Problems 

(2-year follow-up) 
-0.3499 0.4907 -1.3117 0.6119 0.8921 

DSM-5 ADHD 

(2-year follow-up) 
0.9614 0.5156 -0.0492 1.972 0.7111 

DSM-5 Oppositional Defiant 

(2-year follow-up) 
0.3292 0.4873 -0.6259 1.2843 0.8921 

DSM-5 Conduct Problems 

(2-year follow-up) 
0.4707 0.4895 -0.4887 1.4301 0.8714 

KSADS  

(Child-reported) 

Bipolar Disorder 

(1-year follow-up) 
1.465 0.5858 0.3169 2.6131 0.6875 

Anxiety Disorder 

(1-year follow-up) 
0.4329 0.4944 -0.5361 1.4019 0.8714 
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Eating Disorder 

(1-year follow-up) 
-0.2062 0.4906 -1.1678 0.7554 0.8994 

Suicidal Behavior 

(1-year follow-up) 
-0.2188 0.4897 -1.1786 0.741 0.8994 

Sleep Problems 

(1-year follow-up) 
1.1294 0.545 0.0612 2.1976 0.7111 

Any Psychiatric Disorders 

(1-year follow-up) 
0.5648 0.5002 -0.4156 1.5452 0.8714 

Bipolar Disorder 

(2-year follow-up) 
0.3385 0.4912 -0.6242 1.3012 0.8921 

Anxiety Disorder 

(2-year follow-up) 
0.7801 0.5141 -0.2275 1.7877 0.7111 

Eating Disorder 

(2-year follow-up) 
-0.351 0.4951 -1.3214 0.6194 0.8921 

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted M

ay 1, 2023. 
; 

https://doi.org/10.1101/2023.04.30.23289335
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2023.04.30.23289335
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

Suicidal Behavior 

(2-year follow-up) 
0.5829 0.5018 -0.4006 1.5664 0.8714 

Sleep Problems 

(2-year follow-up) 
-0.0252 0.4873 -0.9803 0.9299 0.9766 

Any Psychiatric Disorders 

(2-year follow-up) 
0.5595 0.4919 -0.4046 1.5236 0.8714 

KSADS 

(Parent-reported) 

Bipolar Disorder 

(1-year follow-up) 
-0.4178 0.4406 -1.2814 0.4458 0.8714 

Anxiety Disorder 

(1-year follow-up) 
-0.3932 0.4633 -1.3013 0.5149 0.8714 

Eating Disorder 

(1-year follow-up) 
-0.3881 0.4418 -1.254 0.4778 0.8714 

Suicidal Behavior 

(1-year follow-up) 
-0.8051 0.5063 -1.7974 0.1872 0.7111 
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Sleep Problems 

(1-year follow-up) 
-0.1604 0.4757 -1.0928 0.772 0.8994 

Any Psychiatric Disorders 

(1-year follow-up) 
0.8369 0.5092 -0.1611 1.8349 0.7111 

Bipolar Disorder 

(2-year follow-up) 
0.1461 0.4756 -0.7861 1.0783 0.9071 

Anxiety Disorder 

(2-year follow-up) 
0.0833 0.4762 -0.85 1.0166 0.9472 

Eating Disorder 

(2-year follow-up) 
0.1887 0.4749 -0.7421 1.1195 0.8994 

Suicidal Behavior 

(2-year follow-up) 
0.2838 0.4766 -0.6503 1.2179 0.8921 

Sleep Problems 

(2-year follow-up) 
0.0965 0.4745 -0.8335 1.0265 0.9468 
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Any Psychiatric Disorders 

(2-year follow-up) 
-0.3003 0.4816 -1.2442 0.6436 0.8921 

 

 

Double ML models 

To confirm robustness of the IV Forest results, we used double machine learning (Double ML). This up-to-date causal machine learning method can 

utilize any state-of-the-art machine learning models to obtain consistent, unbiased estimates of average treatment effects by partialling out the confounding 

effects of covariates (5). It is particularly effective when the covariates are high-dimensional and have complex interactions.  

We used partial linear model and nonparametric instrumental variable model. In the partial linear model, we only assume linearity of the treatment 

variable ADI while the relationships between the outcome variable Y and covariates X and between instrument variable SOI and covariates X remain as an 

unknown function. On the other hand, the nonparametric model does not require any assumptions specifying the relationship between the outcome Y, 

treatment ADI, instrument variable SOI, and covariates X. Below shows the simple mathematical representation of each model: 

� �  ���� � 	
�� � , ��� � �
�� � �      
1� 
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� � �
���, �� � , ��� � �
�� � �             
2� 

Here, Y denote for outcome variable (in our study, delay discounting and psychotic-like experiences), ADI the treatment variable, X multidimensional 

covariates, SOI the instrument variable. 	
 �, �
 �, �
 � are unknown functions and , � are random errors. In the partial linear model (Equation 1), we 

assume that the treatment variable (i.e., ADI) have linear relationship with the outcome variable Y. There are no model assumptions specifying the 

relationship between multidimensional covariates X, outcome Y, and the instrumental variable SOI. The nonparametric model (Equation 2), on the other 

hand, does not assume any relationship between the treatment, outcome, covariates, and the instrument. The only required assumption for the nonparametric 

Double ML model is that the treatment must be a binary variable. Thus, we used ADI as a continuous variable in the partial linear model and a binary 

variable (i.e., above or below mean) in the nonparametric model.  

We built an ensemble machine learning pipeline consisting of elastic net, random forest, XGBoost, support vector machine, and k-Nearest Neighbors 

with parameters tuned via 5-fold cross validation. In general, ensemble methods can improve model performance with lower error and higher accuracy by 

combining several base models (6). For each analysis, all continuous variables were standardized (z-scaled) beforehand to obtain standardized estimates, 

and analyses were run using DoubleML (7) packages in R version 4.1.2. 
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Table S3. Results of Double ML models. All p-values were corrected for multiple comparison using false discovery rate. 

 Double ML Partial Linear IV Regression Double ML Nonparametric IV Regression 

 Estimates Std. Error 95% Lower CI 95% Upper CI P-FDR Estimates Std. Error 95% Lower CI 95% Upper CI P-FDR 

Delay Discounting 

(1-year follow-up) 
-0.4205 0.1905 -0.7939 -0.0471 0.0273 -0.9002 0.3933 -1.6711 -0.1293 0.0221 

Total Score PLE 

(1-year follow-up) 
0.9025 0.1952 0.5199 1.2850 0.0000 1.9331 0.4576 1.0362 2.8299 0.0001 

Distress Score PLE 

(1-year follow-up) 
0.8992 0.1970 0.5131 1.2852 0.0000 1.6598 0.4353 0.8065 2.5130 0.0003 

Total Score PLE 

(2-year follow-up) 
0.7693 0.1890 0.3990 1.1397 0.0001 1.6563 0.4392 0.7955 2.5171 0.0003 

Distress Score PLE 

(2-year follow-up) 
0.7218 0.1829 0.3633 1.0803 0.0001 1.3079 0.4111 0.5021 2.1136 0.0018 
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Random Forest-based Feature Selection using Boruta 

We used Boruta to select GPS and brain ROIs of structural MRI and MID task fMRI significantly associated with delay discounting. Boruta first 

generates shadow attributes, which is irrelevant to the outcome, by shuffling all input features. It then confirms features that have significantly higher 

importance in predicting the outcome than the shadow attributes with 95% confidence level, Bonferroni-corrected two-tailed tests (8). The selected features 

were included as covariates in the IV Forest models for assessing heterogeneous treatment effects of ADI.  

 

Table S4. Results of feature selection with Boruta. 

 
Boruta Feature Selection 

 
meanImp medianImp minImp maxImp normHits decision 

GPS 
Cognitive performance 

GPS 
9.218585214 9.343664516 1.540057892 14.80316571 0.989218329 Confirmed 
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Educational attainment 

GPS 
3.94101317 3.861989404 0.426263498 7.543422156 0.867924528 Confirmed 

IQ GPS 

(2-year follow-up) 
6.797659091 6.806435058 1.974908045 9.841407352 0.994609164 Confirmed 

Structural MRI 

Left rostral anterior 

cingulate area 
6.414094346 6.475070692 -0.035411504 9.672515329 0.986382979 Confirmed 

Area of the left white 

surface area 
4.947047514 4.993043324 -0.651253674 8.319553071 0.965957447 Confirmed 

Right isthmus 

cingulate area 
3.047499629 3.018073772 -1.525770405 6.367472417 0.748085106 Confirmed 

 
Right 

parahippocampal area 
3.54003384 3.596050843 -0.735751779 7.584353291 0.847659574 Confirmed 

 
Right pars opercularis 

area 
2.536130188 2.551497416 -2.732925194 5.521156748 0.596595745 Confirmed 

 Right temporal pole 3.646495297 3.642126503 -1.885893836 6.74382961 0.857021277 Confirmed 
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area 

 Right fusiform volume 4.8304398 4.820901083 -0.219789984 8.108846062 0.96 Confirmed 

 

Right 

parahippocampal 

volume 

2.619089202 2.59585374 -1.650000342 6.456811555 0.644255319 Confirmed 

 
Right pars opercularis 

volume 
4.904158498 4.939247772 -2.183840684 8.229214003 0.968510638 Confirmed 

 Right caudate volume 2.940682064 2.910956975 -1.467310423 6.77699793 0.702978723 Confirmed 

 
Total grey matter 

volume 
5.225675728 5.237263203 -0.894516992 8.807847283 0.977021277 Confirmed 

 
Right Temporal pole 

white matter 
6.748279698 6.804387788 0.408403365 9.862430702 0.987234043 Confirmed 

MID task fMRI 

Left precentral (mean 

beta: any reward vs 

neutral) 

8.541841922 8.545733335 -0.834551762 12.05424853 0.99719944 Confirmed 
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Left supramarginal 

(mean beta: any 

reward vs neutral) 

8.794762008 8.817520479 -0.407425475 13.13555673 0.99719944 Confirmed 

Right posterior cingulate 

(mean beta: any reward 

vs neutral) 

10.08222952 10.10382848 -0.002488899 13.94572714 0.99739948 Confirmed 

Left transverse temporal 

(mean beta: large reward 

vs neutral) 

4.030146815 4.045639319 -1.267815916 7.737267983 0.900780156 Confirmed 

Left supramarginal 

(mean beta: small reward 

vs neutral) 

7.296523513 7.319216174 0.857396979 11.4804468 0.99739948 Confirmed 

Left superior temporal 

(mean beta: large loss vs 

neutral) 

2.78080687 2.781792113 -1.254587471 6.827114058 0.683336667 Confirmed 

Right insula (mean beta: 3.418617309 3.43698343 -1.186087206 7.658281079 0.826165233 Confirmed 

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted M

ay 1, 2023. 
; 

https://doi.org/10.1101/2023.04.30.23289335
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2023.04.30.23289335
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

small loss vs neutral) 

Left thalamus proper 

(mean beta: any reward 

vs neutral) 

7.080539192 7.077726315 -0.078744054 11.13729613 0.99679936 Confirmed 

Right ventral 

diencephalon (mean 

beta: small loss vs 

neutral) 

4.40690639 4.397130598 -1.777232203 9.688916388 0.939387878 Confirmed 

 

 

Table S5. Heterogeneous treatment effects of neighborhood deprivation. Conditional average treatment effects (CATE) in each quintile and the 

difference between more vulnerable subgroup vs the most resilient subgroup.  

 
Heterogeneous Treatment Effects 

Estimates Std. Error 95% Lower CI 95% Upper CI P-FDR 
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Total Score PLEs 

(1-year follow-up) 

CATE: Q1 -32.15662482 0.64177702 -33.41448466 -30.89876497 <0.0001 

CATE: Q2 -6.817450066 0.021258615 -6.859116186 -6.775783946 <0.0001 

CATE: Q3 1.184668187 0.006873392 1.171196586 1.198139788 <0.0001 

CATE: Q4 7.091412153 0.014305152 7.063374571 7.119449736 <0.0001 

CATE: Q5 47.45333454 5.043508208 37.5682401 57.33842899 <0.0001 

CATE Q2 – CATE Q1 25.33917475 3.236311588 18.99612059 31.6822289 <0.0001 

CATE Q3 – CATE Q1 33.341293 3.236311588 26.99823885 39.68434716 <0.0001 

CATE Q4 – CATE Q1 39.24803697 3.236311588 32.90498281 45.59109112 <0.0001 

CATE Q5 – CATE Q1 79.60995936 3.226834813 73.28547934 85.93443938 <0.0001 

Distress Score PLEs 

(1-year follow-up) 

CATE: Q1 -30.69393828 1.324743622 -33.29038807 -28.0974885 <0.0001 

CATE: Q2 -5.591496226 0.016519156 -5.623873176 -5.559119276 <0.0001 

CATE: Q3 0.645898162 0.00602267 0.634093947 0.657702378 <0.0001 

CATE: Q4 5.339078652 0.011558835 5.316423752 5.361733551 <0.0001 

CATE: Q5 50.4702646 12.1598892 26.63731971 74.30320949 <0.0001 

CATE Q2 – CATE Q1 25.10244206 7.786033177 9.842097448 40.36278667 0.0013 
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CATE Q3 – CATE Q1 31.33983645 7.786033177 16.07949184 46.60018106 0.0001 

CATE Q4 – CATE Q1 36.03301694 7.786033177 20.77267233 51.29336155 <0.0001 

CATE Q5 – CATE Q1 81.16420288 7.763233617 65.94854459 96.37986118 <0.0001 

Total Score PLEs 

(2-year follow-up) 

CATE: Q1 -36.71170915 2.501408464 -41.61437965 -31.80903865 <0.0001 

CATE: Q2 -7.817465112 0.022331196 -7.861233452 -7.773696772 <0.0001 

CATE: Q3 0.941876877 0.009278149 0.92369204 0.960061715 <0.0001 

CATE: Q4 7.208218093 0.015365381 7.1781025 7.238333686 <0.0001 

CATE: Q5 51.68416443 4.433107643 42.99543311 60.37289575 <0.0001 

CATE Q2 – CATE Q1 28.89424404 3.240112198 22.54374082 35.24474725 <0.0001 

CATE Q3 – CATE Q1 37.65358602 3.240112198 31.30308281 44.00408924 <0.0001 

CATE Q4 – CATE Q1 43.91992724 3.240112198 37.56942403 50.27043045 <0.0001 

CATE Q5 – CATE Q1 88.39587358 3.230624295 82.06396632 94.72778085 <0.0001 

Distress Score PLEs 

(2-year follow-up) 

CATE: Q1 -33.13492022 2.654282906 -38.33721912 -27.93262132 <0.0001 

CATE: Q2 -6.914493335 0.018873992 -6.951485679 -6.877500992 <0.0001 

CATE: Q3 0.655325164 0.00868485 0.63830317 0.672347157 <0.0001 
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CATE: Q4 5.92002301 0.012630329 5.89526802 5.944778 <0.0001 

CATE: Q5 45.45980748 3.90492866 37.80628795 53.11332702 <0.0001 

CATE Q2 – CATE Q1 26.22042688 3.005525914 20.32970433 32.11114943 <0.0001 

CATE Q3 – CATE Q1 33.79024538 3.005525914 27.89952283 39.68096793 <0.0001 

CATE Q4 – CATE Q1 39.05494323 3.005525914 33.16422068 44.94566577 <0.0001 

CATE Q5 – CATE Q1 78.5947277 2.996724941 72.72125475 84.46820066 <0.0001 

 

 

Table S6. Heterogeneous treatment effects in the reduced model. Conditional average treatment effects (CATE) in each quintile and the difference 

between more vulnerable subgroup vs the most resilient subgroup.  

 
Heterogeneous Treatment Effects 

Estimates Std. Error 95% Lower CI 95% Upper CI P-FDR 

Total Score PLEs CATE: Q1 -148.1543362 18.77935701 -184.9611996 -111.3474728 <0.0001 
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(1-year follow-up) CATE: Q2 -6.53420787 0.020110819 -6.573624351 -6.494791389 <0.0001 

CATE: Q3 0.96022033 0.007885014 0.944765986 0.975674674 <0.0001 

CATE: Q4 7.404490109 0.016378546 7.372388749 7.436591469 <0.0001 

CATE: Q5 410.1435013 224.347071 -29.56867781 849.8556805 0.0675 

CATE Q2 – CATE Q1 141.6201283 143.3047308 -139.2519829 422.4922395 0.323 

CATE Q3 – CATE Q1 149.1145565 143.3047308 -131.7575547 429.9866677 0.323 

CATE Q4 – CATE Q1 155.5588263 143.3047308 -125.3132849 436.4309375 0.323 

CATE Q5 – CATE Q1 558.2978375 142.8850967 278.248194 838.347481 0.0004 

Distress Score PLEs 

(1-year follow-up) 

CATE: Q1 -104.696485 16.64146673 -137.3131604 -72.07980954 <0.0001 

CATE: Q2 -5.536626398 0.017553252 -5.57103014 -5.502222655 <0.0001 

CATE: Q3 0.599742998 0.006478149 0.58704606 0.612439937 <0.0001 

CATE: Q4 5.856716502 0.013778525 5.82971109 5.883721914 <0.0001 

CATE: Q5 118.5487008 28.58248484 62.52805993 174.5693417 <0.0001 

CATE Q2 – CATE Q1 99.15985858 21.05291356 57.89690623 140.4228109 <0.0001 

CATE Q3 – CATE Q1 105.296228 21.05291356 64.03327563 146.5591803 <0.0001 
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CATE Q4 – CATE Q1 110.5532015 21.05291356 69.29024913 151.8161538 <0.0001 

CATE Q5 – CATE Q1 223.2451858 20.99126507 182.1030622 264.3873093 <0.0001 

Total Score PLEs 

(2-year follow-up) 

CATE: Q1 -85.52329015 4.099782963 -93.55871711 -77.4878632 <0.0001 

CATE: Q2 -7.803896033 0.023027295 -7.849028701 -7.758763364 <0.0001 

CATE: Q3 0.934406516 0.009699511 0.915395824 0.953417208 <0.0001 

CATE: Q4 7.591719182 0.016910888 7.558574451 7.624863912 <0.0001 

CATE: Q5 97.89134501 12.72666057 72.94754865 122.8351414 <0.0001 

CATE Q2 – CATE Q1 77.71939412 8.510983276 61.03817343 94.40061481 <0.0001 

CATE Q3 – CATE Q1 86.45769667 8.510983276 69.77647597 103.1389174 <0.0001 

CATE Q4 – CATE Q1 93.11500933 8.510983276 76.43378864 109.79623 <0.0001 

CATE Q5 – CATE Q1 183.4146352 8.486060871 166.7822615 200.0470088 <0.0001 

Distress Score PLEs 

(2-year follow-up) 

CATE: Q1 -119.1798326 12.65102488 -143.9753857 -94.38427946 <0.0001 

CATE: Q2 -6.585759634 0.019441347 -6.623863975 -6.547655293 <0.0001 

CATE: Q3 0.475787123 0.008703222 0.458729122 0.492845125 <0.0001 

CATE: Q4 6.189265297 0.015389133 6.159103151 6.219427443 <0.0001 
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CATE: Q5 144.5306933 32.63574853 80.56580159 208.4955851 <0.0001 

CATE Q2 – CATE Q1 112.594073 22.28009232 68.92589443 156.2622515 <0.0001 

CATE Q3 – CATE Q1 119.6556197 22.28009232 75.98744119 163.3237982 <0.0001 

CATE Q4 – CATE Q1 125.3690979 22.28009232 81.70091936 169.0372764 <0.0001 

CATE Q5 – CATE Q1 263.7105259 22.21485033 220.1702193 307.2508325 <0.0001 

 

 

 

Table S7. Heterogeneous treatment effects of neighborhood adversity on symptom specific PLEs. Conditional average treatment effects (CATE) in 

each quintile and the difference between more vulnerable subgroup vs the most resilient subgroup.  

 
Heterogeneous Treatment Effects 

Estimates Std. Error 95% Lower CI 95% Upper CI P-FDR 

Delusional Score PLEs CATE: Q1 -27.60105671 0.829965542 -29.22775928 -25.97435414 <0.0001 
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(1-year follow-up) CATE: Q2 -5.021312331 0.013628021 -5.048022762 -4.994601901 <0.0001 

CATE: Q3 0.306832641 0.005911669 0.295245983 0.318419298 <0.0001 

CATE: Q4 4.934784124 0.011629989 4.911989763 4.957578484 <0.0001 

CATE: Q5 39.49057073 4.73923139 30.2018479 48.77929357 <0.0001 

CATE Q2 – CATE Q1 22.57974437 3.062631657 16.57709663 28.58239212 <0.0001 

CATE Q3 – CATE Q1 27.90788935 3.062631657 21.9052416 33.91053709 <0.0001 

CATE Q4 – CATE Q1 32.53584083 3.062631657 26.53319308 38.53848857 <0.0001 

CATE Q5 – CATE Q1 67.09162744 3.053663463 61.10655703 73.07669785 <0.0001 

Hallucinational Score PLEs 

(1-year follow-up) 

CATE: Q1 -34.46275535 1.919927574 -38.22574425 -30.69976645 <0.0001 

CATE: Q2 -5.505287059 0.016222743 -5.53708305 -5.473491067 <0.0001 

CATE: Q3 0.576784345 0.00556928 0.565868757 0.587699934 <0.0001 

CATE: Q4 4.790937834 0.010758294 4.769851966 4.812023703 <0.0001 

CATE: Q5 65.58634354 15.81962688 34.5804446 96.59224249 <0.0001 

CATE Q2 – CATE Q1 28.95746829 10.14368045 9.076219942 48.83871664 0.0043 

CATE Q3 – CATE Q1 35.0395397 10.14368045 15.15829135 54.92078805 0.0007 
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CATE Q4 – CATE Q1 39.25369319 10.14368045 19.37244483 59.13494154 0.0002 

CATE Q5 – CATE Q1 100.0490989 10.11397708 80.22606809 119.8721297 <0.0001 

Delusional Score PLEs 

(2-year follow-up) 

CATE: Q1 -30.28312331 2.961479916 -36.08751729 -24.47872933 <0.0001 

CATE: Q2 -5.096447682 0.015524784 -5.126875701 -5.066019664 <0.0001 

CATE: Q3 0.420575848 0.005192211 0.4103993 0.430752395 <0.0001 

CATE: Q4 4.278131763 0.009950812 4.25862853 4.297634996 <0.0001 

CATE: Q5 39.97828539 3.022560578 34.05417551 45.90239526 <0.0001 

CATE Q2 – CATE Q1 25.18667563 2.69358331 19.90734935 30.4660019 <0.0001 

CATE Q3 – CATE Q1 30.70369916 2.69358331 25.42437288 35.98302543 <0.0001 

CATE Q4 – CATE Q1 34.56125507 2.69358331 29.2819288 39.84058135 <0.0001 

CATE Q5 – CATE Q1 70.2614087 2.685695787 64.99754168 75.52527571 <0.0001 

Hallucinational Score PLEs 

(2-year follow-up) 

CATE: Q1 -37.66549065 3.354745615 -44.24067123 -31.09031007 <0.0001 

CATE: Q2 -7.423576439 0.019690386 -7.462168886 -7.384983993 <0.0001 

CATE: Q3 0.573097631 0.011334984 0.550881471 0.59531379 <0.0001 

CATE: Q4 6.537762617 0.013132368 6.512023648 6.563501586 <0.0001 
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CATE: Q5 45.91434074 3.974114501 38.12521945 53.70346204 <0.0001 

CATE Q2 – CATE Q1 30.24191421 3.310519318 23.75341557 36.73041284 <0.0001 

CATE Q3 – CATE Q1 38.23858828 3.310519318 31.75008964 44.72708691 <0.0001 

CATE Q4 – CATE Q1 44.20325326 3.310519318 37.71475463 50.6917519 <0.0001 

CATE Q5 – CATE Q1 83.57983139 3.300825244 77.11033279 90.04932999 <0.0001 

 

 

 

Mediation Analysis 

To test the role of delay discounting as a mediator between ADI and PLEs, we also used a linear mediation analysis. By utilizing mediation (9) package 

in R, we conducted causal mediation analysis by decomposing local average treatment effect (LATE) into local average causal mediation effect (LACME) 

and local average natural direct effect (LANDE). LACME represents the average hypothetical change in the outcome among compliers when the mediator 

is changed from the value under the treatment status to the control status while the treatment variable is fixed. LANDE represents the average hypothetical 
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change in the outcome among compliers when the treatment variable is changed from the treatment status to the control status while the mediator is fixed. 

In order to control unobserved confounding bias, ivmediate function was utilized to incorporate the instrument variable in the causal mediation analysis. In 

this analysis, ADI and delay discounting were transformed as a binary variable (i.e., above or below mean).  

 

Table S8. Results of conventional linear IV mediation.  

   Estimate 95% Lower CI 95% Upper CI 

Total score PLE (1year) 

LACME (control)  -1.526599  -19.800325 15.25005 

LACME (treated)  -0.416918  -4.962959 5.11086 

LANDE (control) 2.506144  -2.827432 6.86333 

LANDE (treated) 3.615825 -12.945040 22.61272 

LATE 2.089226 1.267081 3.36319 

Distress score PLE (1year) 
LACME (control)  -1.389240  -15.157504 18.18372 

LACME (treated)  -0.333498  -4.139243 4.44824 
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LANDE (control) 2.102503  -2.521920 6.09491 

LANDE (treated) 3.158245  -15.919809 17.23908 

LATE 1.769005 0.982177 3.06187 

Total score PLE (2year) 

LACME (control) -0.814506  -10.676019 15.87214 

LACME (treated) -0.815050  -5.909543  6.61236 

LANDE (control) 2.766819  -4.302505 8.82732 

LANDE (treated) 2.766275  -13.972073 13.81020 

LATE 1.951769 1.164251 3.24240 

Distress score PLE (2year) 

LACME (control)  -0.549539  -8.323329 17.92484 

LACME (treated)  -0.747943  -6.554745 6.70680 

LANDE (control) 2.366669  -4.634207 8.66811 

LANDE (treated) 2.168264  -15.899177 10.35562 

LATE 1.618725 0.887667 2.80599 
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