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Abstract

Delay discounting is linked to developmental trgjectories of cognition and the brain, as
well as psychopathology, such as psychosis. Although childhood socioeconomic deprivation
is associated with both increased delay discounting and a higher incidence of psychotic
disorders, the genetic and neural basis of these associations remains unclear. This study
examined the causal relationships between neighborhood socioeconomic deprivation, delay
discounting, and psychotic-like experiences (PLES) in 2,135 preadolescent children using
machine learning-based causal inference methods. We found that neighborhood deprivation,
as measured by the Area Deprivation Index, had significant causal effects on delay
discounting (B= -1.7297, p-FDR= 0.0258) and 1-year and 2-year follow-up PLEs (B=
1.3425~1.8721, p-FDR< 0.0291). Furthermore, our analysis revealed significant
heterogeneous causal effects of neighborhood deprivation on PLEs (p-FDR<0.005). The
subgroups most vulnerable to these causal effects exhibited steeper discounting of future
rewards, higher polygenic scores for educational attainment, reduced structural
volume/area/lwhite matter in the parahippocampal, right temporal pole, and right pars
opercularis, and greater functional activation in the limbic system during Monetary Incentives
Delay tasks. Our findings highlight the importance of a bioecological framework and the
involvement of the mesocorticolimbic system in the causal relaionship between
socioeconomic deprivation and the risk of psychosis during childhood. Overall, our results
support that enhancing the residential socioeconomic environment could positively influence

child development.
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Significance Statement

Discerning the complex interplay of genetic, neural, and environmental factors within the
relationship between childhood environment and psychopathology is essential for developing
personalized health care. To provide optimal health care for each patient, identifying the
biological and socioeconomic characteristics of the most vulnerable population is necessary.
Through the application of state-of-the-art causal machine learning methods, this study shows
that children with genetic and neural associates of impatient reward valuation are at a
heightened risk of developing psychosis when exposed to neighborhood socioeconomic
adversity. These findings underscore the significance of enhancing the childhood

environment as a means to address social and health disparities.
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I ntroduction

In Critique of Practical Reason, Immanuel Kant posits the inherent power of human
reason, asserting that it is an a priori capacity independent of external factors, enabling
individuals to engage in responsible actions (1). However, contemporary scientific research
conducted over the past several decades has accumulated considerable evidence that
challenges the assertions of this 18th-century philosopher. Specificaly, the environment in

which individuals develop exerts a substantial influence on their identities and actions.

Adverse childhood environments, such as low family income, inadequate nutrition,
physical or sexua abuse, and unsafe neighborhoods, have been correlated with an elevated
risk of pathologies, including schizophrenia (2-4), impoverished cognitive ability (5-7),
anxiety, bipolar disorder, self-harm, depression (3, 4, 8), substance abuse, and obesity (9, 10).
Furthermore, these environments are associated with negative social outcomes, such as poor
academic performance (11, 12), low income, unemployment (13-18), incarceration, teen
pregnancy (19). Additionally, childhood adversity has been linked to risky behaviors,
encompassing criminal activity (20), excessive consumption of calorie-dense foods (21),

substance use (22, 23), deficient self-control (24), and disrupted reward processing (25).

But what is the complex correlation between adverse childhood environment,
irresponsible behavior, and negative social and health outcomes? We hypothesized that
childhood adversity causes impairment in one's valuation system, leading to negative life
outcomes. Children who experienced social adversities such as poverty show steeper

discounting of future rewards in adulthood and have greater risk of psychosis (2, 3, 26-28).
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Lower socioeconomic status positively correlates with functional brain activity concordance
and grey matter volume within reward-related aress (i.e., ventral striatum, putamen, caudate
nucleus, orbital frontal cortex) and negatively with executive-related areas (i.e., frontal,
medial frontal cortex) (29). A recent study reported that neuroanatomical features including
total cortical volume, surface area, and thickness mediates the association of environmental

risk factors and psychotic-like experiences (PLES) in children (3).

In addition, individuals with steeper discounting of future rewards (i.e., value present
rewards much higher than future rewards) were inclined to save less, invest less in education,
more likely to engage in criminal behavior, exhibit lower academic performance, and have
less economic wealth (30-33). Impairment of the intertemporal valuation system is associated
with psychiatric disorders, including schizophrenia, attention deficit/hyperactivity disorder
(ADHD), Parkinson’s disease, and drug addiction (34, 35). Particularly, schizophrenia can be
seen as an aberrant neural response towards irrelevant rewards due to increased tonic
dopamine (34, 36-38). Blunted dopaminergic projections from the ventral tegmental area to
the mesocorticolimbic regions disrupt reward anticipation and perception (36, 37), causing
delusions or hallucinations. This is supported by consistent reports of steeper delay

discounting in schizophrenia patients (39-41).

In the present study, our primary objective was to investigate the causal impact of
neighborhood socioeconomic deprivation on adolescents’ delay discounting, which pertains
to individuals' intertemporal decision-making and impulsive behavior, as evidenced by the
extent to which they discount future rewards. Additionally, this study aimed to investigate the
impact of such deprivation on adolescents psychotic-like experiences (PLES). Exposure to

adversities at the neighborhood level during childhood has been shown to negatively
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influence neurocognitive development, subsequently resulting in psychiatric disorders and
unfavorable social outcomes, such as decreased income, reduced probability of college
attendance, and limited employment opportunities (3, 7, 17, 28, 42-45). This phenomenon is
particularly pronounced in societies where discrimination based on family income or
race/ethnicity restricts underprivileged families from selecting neighborhoods that present

greater opportunities for upward social mobility, as observed in the United States (17).

It is crucial to note that PLES, which are considered as a clinically significant risk
indicator for schizophrenia and general psychopathology (2, 3, 46), exhibit the strongest
association with environmental risk factors in comparison to other internalizing/externalizing
symptoms during early adolescence (3). The present study endeavors to contribute to a deeper
understanding of the potential causal mechanisms underlying these associations, with the aim

of informing policy and intervention strategies.

Our second aim was to test whether the causal effects of neighborhood deprivation on
children’s PLEs are heterogeneous based on individual’s delay discounting and its genetic,
neura correlates. The heterogeneous nature of psychopathology has long posed significant
challenges for clinical diagnosis and treatment (47, 48). Given that the genetic and neural
correlates of delay discounting substantially overlap with those of schizophrenia (38, 49, 50),
the shared biological foundations between reward valuation and schizophrenia may result in
heterogeneous effects of environmental exposure on an individual's psychotic symptoms. By
investigating these potential variations, this study seeks to enhance the understanding of the
complex interplay between environmental factors and individual predispositions in the

development of psychopathol ogy.
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Identifying heterogeneity of treatment/exposure is crucia for the development of
personalized health care. Delivering optimal health care for each patient necessitates the
recognition of genetic markers and demographic characteristics associated with individual
variations in treatment effects (51, 52). However, previous studies employing traditional
methods of testing treatment effect heterogeneity have often been unsuccessful in discerning
the intricate interplay between genetic and environmental factors (53, 54). Linear models
with interaction terms of features selected a priori by the researcher may not fully reflect the
complex and elusive gene-environment interplay, particularly in genetic and neuroscience

research where the input features are usually high dimensional.

To address this knowledge gap, the present study employed an inductive approach to
assess heterogeneous treatment effects using a state-of-the-art nonparametric causal machine
learning algorithm. Furthermore, the study utilized multimodal magnetic resonance imaging
(MRI) data from 11,876 preadolescent children aged 9 to 12 years old, who participated in
the Adolescent Brain Cognitive Development (ABCD) Study. The ABCD Study represents
the largest longitudinal investigation of children's neurodevelopment in the United States. By
integrating innovative analytical techniques and a large, diverse sample, this study aims to
advance the understanding of the complex interactions between genetic and environmental
factors, ultimately contributing to the development of more effective personalized health care

strategies.
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Results

The demographic characteristics of the final sample (N=2,135) are presented in Table 1.
Within the sample, 46.14% were female and 53.86% were male, 76.63% of participants had
married parents, the mean family income was $70,245, and 65.57% identified their
race/ethnicity as white. To ensure the representativeness of the final sample, a supplementary
table comparing the sample's demographic characteristics with those of the general United
States population is provided in the SI Appendix (Table S1). This comparison serves to

reinforce the validity and generalizability of the study's findings.

A non-randomized observational study, such as the ABCD study, greatly benefits from
rigorous confound modeling when examining associative and causal relationships among
variables. For example, GPS, environmental variables, and phenotypic outcomes often share
common unobserved causes (55). We used instrumental variable (1V) regression to adjust for
unobserved confounding bias in identifying the unbiased causal effects of neighborhood
socioeconomic adversity (measured with Area Deprivation Index, henceforth ADI) on delay
discounting and PLEs (56). Utilizing such a methodological approach contributes to the

robustness of the findings and enhances the validity of the study's conclusions.

In an initial exploratory analysis, conventional linear instrumental variable (V)
regression (56) was conducted to identify potential causal effects of the Area Deprivation
Index (ADI) on various neurocognitive, behavioral, and psychiatric outcomes, including
cognitive intelligence, depression, and bipolar disorder. Among all the assessed outcomes,
delay discounting and PLEs demonstrated significant causal associations with ADI (S|

Appendix, Table S2). This preliminary analysis provided a foundation for further
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investigation into the causal relationships between neighborhood socioeconomic adversity

and these specific outcomes.

Average Treatment Effects of Neighborhood Socioeconomic Adversity on

Delay Discounting and PLEs

In the primary analyses, we used IV random forest (henceforth, 1V Forest) (57, 58) to
obtain nonparametric, doubly robust estimates of average treatment effects of ADI on delay
discounting and PLEs. The IV Forest method allows us to assess non-biased causa
relationships between variables that are likely nonlinear—such as environmental risks and
neurocognitive development (7, 59, 60)—using non-randomized, observationa data (57). IV
Forest analyses revealed that a higher ADI significantly correlated with a lower delay
discounting rate (= -1.7297, p-FDR= 0.0258) and ahigher PLE (3= 1.3425~1.8721, p-FDR<

0.0291) (Table 2).

Supplementary analyses were conducted using an aternative causal machine learning
method (i.e.,, Double ML (61, 62)) to validate the results. We built a partial-linear 1V model
and a nonparametric interactive 1V model. The findings from both 1V-based Double ML
models were consistent with those obtained from the IV Forest (SI Appendix, Table S3),

further supporting the primary analyses and conclusions drawn from the study.

Heterogeneous Treatment Effects of Neighborhood Socioeconomic

Adversity on PLESs, conditioned on the Genetic and Neural Correlates of
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Delay Discounting

Next, we tested whether the impact of ADI was heterogeneous across children, and, if so,
how the biological correlates of intertemporal valuation conferred the heterogeneity.
Children’s genetic liability and neural representation were assessed using genome-wide
polygenic scores (GPS) and structura MRI and monetary incentive delay (MID) task fMRI
data. To find the best subset of genetic and neural correlates of delay discounting, we first
selected GPS and MRI brain regions of interest (ROIs) specifically related to delay
discounting. To analyze the nonparametric correlations of multiple input variables, we used a
random forest-based feature selection Boruta algorithm (63). Its robustness and effectiveness
in selecting relevant features in high dimensional, intercorrelated biomedical data (e.g., MRI)
has been validated (63) and consistently applied in genetics and neuroscience research (64-
66). The variables significantly correlated with delay discounting (p-Bonferroni<0.05) were
GPS of cognitive performance, 1Q, and education attainment; anatomical features (e.g.,
surface area, volume) in the limbic system (temporal pole, parahippocampal gyrus, caudate
nucleus, rostral anterior cingulate, isthmus cingulate), inferior frontal gyrus (pars opercularis),
and fusiform gyrus; mean beta activations of rewards/losses versus neutral feedback in the
midbrain areas (thalamus proper, ventral diencephalon), precentral gyrus, supramarginal
gyrus, temporal lobe (transverse temporal gyrus, superior temporal gyrus), and insula (Sl

Appendix, Table $4).

We then tested the heterogeneous treatment effects of ADI with the selected GPS and
brain ROIs as covariates. To identify resilient/vulnerable groups, we conducted 5-fold cross-
validation model fitting to obtain honest, unbiased estimates of conditional average treatment

effect (CATE) and ranked observations into quintiles by the CATE estimates (Q1: most
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resilient ~ Q5: most vulnerable). After 100 iterations, we tested whether the predicted ADI
effect in the lowest quintile is significantly different from the others (58, 67). We found
significant heterogeneity of the ADI effects on 1-year and 2-year follow-up PLESs across the

five subgroups (all p-FDR<0.005) (Fig. 1 and SI Appendix, Table S5).

To examine the role of each genetic and neura correlates within the heterogeneous
effects of ADI, we obtained Shapley additive explanation (SHAP) scores (68). SHAP scores
show each variable’s positive or negative contribution to the differential causal effects of ADI
between resilient and vulnerable groups. In the 1-year follow-up PLES, more vulnerable
subgroups of children (i.e., a greaster negative impact of ADI on PLES) had steeper
discounting of future rewards, smaller right parahippocampal area and volume, smaller right
temporal pole white matter and area, smaller intracranial volume, smaller right pars
opercularis volume and area, smaller total grey matter volume, lower total intelligence, lower
BMI, lower 1Q GPS, lower cognitive performance GPS, younger parents, less likely to be
Hispanic, larger right caudate volume, larger right fusiform volume, and higher educational
attainment GPS. During MID tasks, regardless of the size of reward or loss, more vulnerable
children had greater neural activation in the right posterior cingulate, right ventral
diencephalon, left thalamus proper, and left precentral gyrus, and decreased activation in the
left superior temporal gyrus. Some of these associations were reversed in the 2-year follow-
up PLEs: more vulnerable children had smaller right fusiform volume, larger
parahippocampal area, larger intracranial volume, and greater activation in the superior
temporal gyrus, and less activation in the precentral gyrus and thalamus proper during MI1D
tasks. They also had smaller left white surface area, lower family income, greater activation

in the insula during MID tasks compared to more resilient subgroups (Fig. 2).
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We conducted three additional analyses to validate the robustness of the results. Firstly,
we built an alternative 1V Forest model with GPS and brain ROIs that were jointly associated
to delay discounting and PLEs. This reduced model was unable to capture the heterogeneous
effects of ADI across participants as effectively as the main IV Forest model (Total Score
PLEs 1-year follow-up: p-FDR>0.05) (Fig. 3A and SI Appendix, Table S6). Secondly, we
tested whether the heterogeneous effects of neighborhood adversity varied among psychotic
symptoms. ADI exhibited significant heterogeneous treatment effects across delusional PLES
and hallucinational PLEs (all p-FDR<0.005) (Fig. 3B and SI Appendix, Table S7). Contrary
to those of hallucinational symptoms, children more vulnerable to delusional symptoms when
exposed to neighborhood adversity had decreased activation in the left precentral gyrus
during MID tasks, larger left white surface area, smaller isthmus cingulate area, higher family
income, and lower BMI (Fig. 4). Lastly, we conducted linear IV mediation analyses to test
whether the role of delay discounting between the causal impact of ADI on PLES can be
captured with a conventional linear mediation model (69). This model showed no significant
mediation effects of delay discounting (B= -1.5266 [95% CI, -19.8003~15.25] ~ -0.3335 [95%

Cl, -4.1392~4.4482]) (Sl Appendix, Table S8).
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Discussion

In this study, we examined the relationship between neighborhood socioeconomic
deprivation and intertemporal choice behavior (delay discounting) as well as
psychopathology in children, while considering the diverse influences of neighborhood
deprivation and its underlying biological, environmental, and behavioral determinants. Our
findings can be categorized into two main aspects. Frstly, a more disadvantaged
neighborhood environment was associated with steeper delay discounting (lower impulse
control) and higher PLEs. The association remained significant after adjusting for known,
observed (e.g., familial socioeconomic status), and unobserved confounding factors. Secondly,
the impact of disadvantaged neighborhood environments on PLES was heterogeneous,
depending not only on delay discounting but also on genetic propensity for cognitive capacity,
family history of psychiatric disorders, and brain morphometry and functioning (task
activation). The conditions identified in the causal machine learning models may represent
vulnerability or resilience factors, thereby rendering the impact of neighborhood adversity

heterogeneous.

Our findings hold implications for social science. Using causal machine learning models,
such as IV Forest and Double ML, we provide consistent and robust evidence that residential
adversity during childhood leads to steeper discounting of future rewards. This outcome
challenges the prevailing assumption in economics that an individual's rate of discounting
future rewards (time preference) is an exogenous parameter of intertemporal choice, given a
priori, and cannot be influenced by external factors (32). Thus far, limited attention has been

devoted to examining whether the development of an individual's parameter for intertemporal
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choice is affected by environmental determinants (33), although one study in economics

made theoretical suggestions about the endogenous nature of temporal discounting (70).

We address this knowledge gap by identifying the potential causal influence of
neighborhood environment on intertemporal choice using longitudinal observations of
preadolescent children aged 9-10 years—a critical period for neurocognitive development.
Given that an individual's intertempora valuation of rewards contributes to economic and
health disparities between individuals (30, 34, 50), early socioeconomic deprivation may
result in a behavioral poverty trap (33), wherein individuals raised in impoverished
environments tend to exhibit shortsighted behavior, making it increasingly difficult to escape
poverty. Economic policies promoting positive intertemporal choice (e.g., increased savings,
healthy diet) have predominantly focused on paternalistic welfare policies in adulthood,
based on the assumption that an individual's delay discounting is exogenous (32). Our
findings suggest that policies amed at enhancing the socioeconomic environment during
childhood may foster improved intertemporal choice behavior, thereby reducing economic

(33) and health inequality (23, 71).

Our second findings highlight the heterogeneous effects of the neighborhood deprivation
on PLEs. Children exposed to residential deprivation with a higher risk of psychosis
exhibited steeper discounting of future rewards, lower cognitive intelligence, smaller
volume/area/lwhite matter in the right parahippocampal, right temporal pole, right pars
opercularis, and total grey matter, and increased activation in the limbic system (e.g., right
posterior cingulate and right ventral diencephalon) during MID tasks. Additionally, children
with higher risk of delusional symptoms had decreased activation in the precentral gyrus and

smaller isthmus cingulate area whereas opposite associations were found in those with higher
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risk of halucinational symptoms. Although speculative, it is plausible that the influence of
neighborhood deprivation on both delay discounting and the risk for psychosis targets a
shared neural substrate, namely, reduced structural volume/area/white matter and heightened
functional activation associated with dysregulation of glucocorticoid and dopamine, leading

to an increased risk of psychosis.

Maladaptive valuation of intertemporal rewards (i.e., excessive discounting of future
rewards) arises from dysregulation of the mesocorticolimbic dopaminergic system (34, 38,
41). Anima models show adverse social environments triggers chronic dysregulation of
glucocorticoid signaling through epigenetic control and consequently leads to disrupted
dopaminergic circuit during adolescence (72). This finding is supported by recent human
studies (25, 73, 74). Childhood exposure to social adversity may contribute to
psychopathology via abnormal development of the striatum and orbitofrontal cortex
(dopamine pathway), and the hippocampus, amygdala, and media prefrontal cortex
(glucocorticoids pathway) (74). Young adults with a history of childhood social deprivation
exhibit impaired reward processing, particularly in the cingulate, striatum, and inferior frontal

gyrus (25, 73).

It is worth noting that the age of our sample (9-12 years old) corresponds to a critical
period during which these mesocorticolimbic regions undergo significant changes (75, 76).
Additionally, dysfunction of the dopaminergic system has been consistently implicated in
psychiatric disorders such as psychosis and schizophrenia among adolescents and adults (34-
38, 41, 77). Collectively, our findings on the heterogeneous effects of neighborhood
deprivation contribute to the growing body of evidence suggesting that negative

environmental impacts on economic decision-making and psychopathology share a common
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neural basis.

We found that with the presence of residential disadvantage, children more vulnerable to
having PLEs when exposed to neighborhood deprivation had lower GPS of cognitive
performance and 1Q, and higher educational attainment GPS. At first, this finding may seem
incongruous with prior reports indicating a negative association between PLEs and

educational attainment GPS (28, 78, 79).

The heterogeneous relationship between the genetic liability to educational attainment
and PLE depending on the existence of residential disadvantage may be elucidated using the
bioecological model and the Scarr-Rowe hypothesis of gene-environment interactions (80-82).
These frameworks propose that genetic influences are attenuated in adverse environments. An
analogy to this model is that in infertile soil, plants are unable to access adequate nutrients,
leading to stunted growth overriding their genetic predisposition for height (83). In the
absence residential disadvantage, children with higher GPS related to educational attainment
exhibit increased genetic resilience against psychosis. However, exposure to residential
disadvantage weakens the gene-psychosis association, and the genetic resilience is
diminished. Consequently, individuals with higher educational attainment GPS experience a
more significant loss of potential genetic resilience, rendering them more susceptible to the

deleterious effects of ADI on PLES.

In concordance with our findings, recent large-scale studies have demonstrated that
genetic influences on brain structure, cognition, and psychopathology are less potent in
adverse environments (e.g., abuse) (84, 85) and more pronounced in enriched environments

(e.g., high socioeconomic status) (81, 86, 87). These studies, in conjunction with our study,
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may provide novel insights into the genetic and environmental underpinning of
psychopathology in children. Furthermore, while the GPS of cognitive performance and 1Q
are mostly related to cognitive skills, the polygenic signals of educationa attainment are
more widely associated with noncognitive and social skills (88), and a variety of social
outcomes including social mobility (89) and wealth inequality (90). This may be the reason
why the bioecological model was prominent in educational attainment GPS, but not in GPS

of cognitive performance and 1Q.

Our ability to identify the heterogeneous negative impact of neighborhood deprivation on
childhood psychopathology was facilitated by our innovative utilization of recent rigorous
causal machine learning modeling techniques. Using the IV Forest method, we found
evidence that residential deprivation may exert differential effects on children’s risk of
psychosis, contingent upon a variety of genetic factors (e.g., GPS of cognitive performance,
educational attainment, and 1Q (28, 49, 78, 79)) and environmental risk factors (e.g., family
income (3, 45)) previously identified in the literature. Our results were adjusted for potential
biases from observed and unobserved variables. The machine learning algorithm effectively
modeled the intricate patterns of gene-environment interactions. Conversely, conventional
linear mediation analysis—a traditional deductive statistical approach that relies on
predefined interaction terms—failed to reveal a significant mediation of delay discounting

between ADI and PLEs.

The IV Forest model enables data-driven feature selection and dtratification of
heterogeneous treatment effects (57, 58), thereby inductively assessing nonlinear patterns of
heterogeneous treatment effects not predefined by the investigator, in contrast to traditional

deductive statistical approaches. Prior studies relying on the deductive approach often suffer
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from low statistical power and bias (55, 91), inadequately reflecting the complexity of gene-
environment interactions (53, 54). Consequently, we posit that causal modeling approaches
that assess heterogeneous treatment effects hold significant potential as powerful tools for

advancing precision science in psychology and medicine.

Several limitations of this study warrant consideration. First, interpretations of our
findings as true causality should be approached with caution. Although we employed both
conventional and state-of-the-art causal inference methods to minimize bias from unobserved
variables, the ABCD study is a non-randomized, observational investigation. Second, the
majority of participants identified their race/ethnicity as white (63.76%), which may limit the
generalizability of our findings. However, a recent study (92) suggests that measures of
temporal discounting remain robust across 61 countries worldwide (n=13,629). Third, while
childhood psychotic symptoms have been associated with an increased risk of developing
mental illnesses later in life (93), we did not identify significant causal effects of
neighborhood deprivation on other forms of psychopathology (e.g., anxiety disorder, bipolar
disorder, eating disorder, suicidal behavior, sleep problems). It is plausible that the
(heterogeneous) effects of early residential adversity on psychiatric disorders other than
prodromal psychosis may not become apparent until later adolescence. Lastly, future research
should examine the heterogeneous effects of additional environmental risk factors, such as
parenting behavior (28) and early life stress (84), to provide a more comprehensive

understanding of the environmental influences on psychopathology..

This study highlights the differential effects of neighborhood disadvantage on
intertemporal economic decisions and psychotic risk during early childhood. Emphasis

should be placed on identifying heterogeneous treatment effects through the integration of
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various genetic and environmental factors, with the aim of informing personalized health care
strategies. Furthermore, we propose that enhancing the childhood environment could
contribute to the reduction of economic and health inequality gaps. By addressing the root of
the problem, this indirect approach may assist individuals in developing the capacity to make

more informed choices, ultimately promoting better outcomes.

The insights gleaned from our novel analytica methods revive longstanding
philosophical inquiries: do humans possess reason or free will independent of ther
environment? If not, and the capacity for responsible behavior is contingent upon one's
external circumstances, how can we justify punishment for crimina and morally
reprehensible actions? Addressing these questions necessitates further interdisciplinary
research that encompasses multiple fields of study, illuminating the complex relationship
between individual agency and environmental factors in the context of ethical and legal

considerations.

M aterials and methods

Study Participants

The ABCD Study recruited participants from 21 research sites across the nation, utilizing
astratified, probability sampling method to capture the sociodemographic variation of the US
population (94). We used the baseline, first year, and second year follow-up datasets included

in ABCD Release 4.0, downloaded on February 10, 2022.

Of the initia 11,876 ABCD samples, we removed participants without genotype data,
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MRI data, NIH Toolbox Cognitive Battery, delay discounting, residential address, ADI, PLEs.
As recommended by the ABCD team (95), Johnson & Bickel’s two-part validity criterion (96)
was used to exclude subjects with inconsistent responses (i.e., indifferent point for a given
delay larger than that of an indifference point for a longer delay). Missing values of
covariates were imputed using k-nearest neighbors. The final samples included 2,135

multiethnic children.

Data

Neighborhood Disadvantage

Neighborhood disadvantage was measured with Residential History Derived Scores
based on the Census tracts of each respondent’s primary addresses by the ABCD team.
Consistent with prior research (3, 43), we chose national percentile scores of the Area
Deprivation Index, calculated from the 2011~2015 American Community Survey 5-year
summary. It has 17 sub-scores regarding various socioeconomic factors such as median
household income, income disparity, percentage of population aged more than 25 years or
more with at least a high school diploma, and percentage of single-parent households with
children aged less than 18 years, etc. Higher values of the Area Deprivation Index and

poverty and fewer years of residence indicate greater residential disadvantage.

Delay Discounting

Delay discounting was measured by the adjusting delay discounting task in the 1-year
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follow-up ABCD data (95, 97). Each child was asked to make choices between a small
immediate hypothetical reward or a larger hypothetical $100 delayed reward a multiple
future time points (6h, one day, one week, one month, three months, one year, and five years).
By increasing or decreasing the smaller immediate reward depending on the child’s response,
the task records the indifference point (i.e., the small immediate amount deemed to have the
same subjective value as the $100 delayed reward) at each of the seven delay intervals. Test-
retest reliability of this delay discounting measure has been validated (98, 99). Studies show
that preadolescent children are capable of comprehending the delay discounting task and

show similar patterns of discounting as adults (100).

To avoid methodological problems regarding mathematical discounting models
(hyperbolic vs. exponential) and positively skewed parameters of discounting functions (99,
101), we used the area under the curve, a model-free measure of delay discounting (101). The
area under the curve measure of delay discounting rates (henceforth discount rates) ranges

from O to 1, with lower values indicating steeper discounting and higher impulsivity.

Psychotic-Like Experiences

First and second-year follow-up observations of psychotic-like experiences (PLES) were
measured using the Prodromal Questionnaire-Brief Child Version (PQ-BC; child-reported).
PQ-BC has a 21-item scale validated for use with a non-clinical population of children aged
9-10 years (46, 102). In line with the previous research (3, 46, 78, 102), we computed Total
Score and Distress Score, each indicating the number of psychotic-like symptoms and levels

of total distress. Total Score is the summary score of 21 questions ranging from O to 21, and
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Distress Score is the weighted sum of responses with the levels of distress, ranging from 0 to
126. Additionally, to test whether the heterogeneous treatment effects of neighborhood
adversity differ among psychotic symptoms, Distress Score was divided into two separate
scores: Delusional Score and Hallucinational Score (2, 103). A higher value indicates greater

severity of PLES.

Genome-wide Polygenic Scores

Children’s genetic predisposition were assessed with genome-wide polygenic scores
(GPS). Summary statistics from genome-wide association studies were used to generate GPS
of cognitive intelligence (cognitive performance (104), education attainment (104), 1Q (105)),
psychiatric disorders (major depressive disorder(106), post-traumatic stress disorder (107),
attention-deficit/hyperactivity disorder(108), obsessive-compulsive disorder (109), anxiety
(120), depression (111), bipolar disorder (112), autism spectrum disorder (113), schizophrenia
(124), cross disorder (115)), and health and behavioral traits (BMI (116), neuroticism (117),
worrying (117), risk tolerance (118), automobile speeding propensity (118), eating disorder
(119), drinking(118), smoking (118), cannabis use (120), general happiness (121), snoring
(122), insomnia (122), alcohol dependence (123)). PRS-CSx, a high-dimensional Bayesian
regression framework that places continuous shrinkage prior on single nuclectide
polymorphisms effect sizes (124), was applied to enhance cross-population prediction. This
method has consistently shown superior performance compared to other methods across a
wide range of genetic architectures in simulation and real data analyses (124).

Hyperparameter optimization for the GPSs was conducted using a held-out validation set of
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1,579 unrelated participants. Adjustments for population stratification were performed based
on the first ten ancestrally informative principal components to account for potential

confounding effects.

Anatomical Brain Imaging: T1/T2, Freesurfer 6

Baseline year T1-weighted (T1w) 3D structural MRI acquired in the ABCD study were
processed following established protocols (125, 126): To maximize geometric accuracy and
image intensity reproducibility, gradient nonlinearity distortion was corrected (127). After
correcting intensity nonuniformity using tissue segmentation and spatial smoothing, images
were resampled to 1 mm isotropic voxels. We used Freesurfer Vv6.0

(https://surfer.nmr.mgh.harvard.edu) for the following procedures: cortical surface followed

by skull-stripping (128), white matter segmentation, and mesh creation (129), correction of
topological defects, surface optimization (130, 131), and nonlinear registration to a spherical
surface-based atlas (132). Using Desikan—Killiany atlas (133), a standard atlas for Freesurfer
and ABCD study, we extracted 399 brain ROl measures, including volumes, surface area,

thickness, mean curvature, sulcal depth, and gyrification.

Functional MRI (fMRI): Monetary I ncentive Delay (MID) task

The MID task was used measure the neural activation during anticipation and receipt of
monetary gains and losses. In each trial, participants were shown a graphical cue of the 5
possible incentive types: large reward ($5), small reward ($0.20), large loss (-$5), small loss

(-$0.20), or neutral ($0). The incentive cue is presented for 2,000 ms, followed by a jittered


https://doi.org/10.1101/2023.04.30.23289335
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2023.04.30.23289335; this version posted May 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

anticipatory delay (1,500-4,000 ms). Subsequently, a target to which participants respond to
gain or avoid losing money was shown (150-500 ms), and feedback of their performance was
provided (2,000 ms). A total of 40 reward, 40 loss, and 20 neutral trials were presented in
pseudo-random order across the two task runs. Task parameters was dynamically manipulated
for each subject to maintain 60% success rate (126). We used baseline year observations of

average beta weights of the MID task fMRI with Desikan-Killiany parcellations (133).

Covariates

To adjust for the potential confounding effects, sociodemographic covariates were
included. Consistent with existing research on psychiatric disorders in ABCD samples (3, 46,
78, 134), we controlled for the child's sex, age, race/ethnicity, caregiver’s relationship to a
child, BMI, parental education, marital status of the caregiver, household income, parent’'s
age, and family history of psychiatric disorders. The family history of psychiatric disorders,
measured as the proportion of first-degree relatives who experienced psychosis, depression,
mania, suicidality, previous hospitalization, or professiona help for mental health issues (3)
was included as a covariate. Given that delay discounting and PLEs are associated with an
individual's neurocognitive capabilities (135-137), NIH Toolbox total intelligence was used

as acovariate. All covariates were from baseline year observations.


https://doi.org/10.1101/2023.04.30.23289335
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2023.04.30.23289335; this version posted May 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Statistical Analyses

Instrumental Variable Regression

The IV method controls unobserved confounding bias by identifying an instrumental
variable Z which causally affects the independent variable of interest X but has no direct
effect on the dependent variable Y (56). Our instrument variable for ADI was a variable
indicating whether the state in each subject resides at baseline year has legislation prohibiting
discrimination by the source of income (SOI laws) in the housing market. According to a
report by the US Department of Housing and Urban Development, landlords accept housing
vouchers 20.2%p~59.3%p higher in local areas with SOI laws (138). Research shows
significant reductions in neighborhood poverty rates in locations with SOI laws (139), and
those who receive the benefits of housing vouchers in childhood show lower hospitalization
rates, less impulsive consumption (140), and substantially better mental health (141). Taken
together, we hypothesized that living in states with SOI laws would lead to more moderate
discounting of future rewards and fewer PLEs, only through a positive influence on the

neighborhood socioeconomic conditions of the subjects.

F-statistic above ten is considered a strong instruments (142). The F-statistic for each
model was F= 35.1423 (p<0.0001), suggesting that our 1V model is not likely to suffer from
weak instrument bias. Also, testing endogeneity of ADI (i.e., whether ADI as a treatment
variable or predictor correlates with the error term), we found that the model was
significantly biased by unobserved confounding (all Hausman test (143) for differences,
p<0.0089). This justifies the need for the IV regression approach to control for the significant

confounding effects and to test the causal relationship of neighborhood disadvantage with
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delay discounting and psychopathology. All continuous variables were standardized (z-
scaled), and analyses were run using ivreg (144) in R version 4.1.2. For al analyses,
threshold for statistical significance was set at p<0.05, with multiple comparison correction

based on false discovery rate.

Causal Machine L earningfor Treatment Effects

IV Forest (grf R package version 2.2.1) (57, 58) is a novel causal machine learning
approach extends from the conventional random forest framework (145) with recursive
partitioning, subsampling, and random splitting to identify the average treatment effects and
its heterogeneity. We obtained augmented inverse propensity weighted estimates of average
treatment effects, a doubly-robust estimator which can capture complex patterns of
heterogeneity and do not rely on a priori model assumptions (57) such as linearity. This is
particularly advantageous when the relationship between environmental variables and
neurocognitive development is likely nonlinear (7, 59, 60). To measure the average outcome

between treated versus untreated subjects, ADI was binarized (i.e., mean split).
We evaluated heterogeneous treatment effects using the following procedures:
1) Dividethe datainto 5-folds.

2) Throughout every fold, fit a conditional average treatment effect model on 4 folds,
and then rank the unseen observations within the held-out fold into quintiles

according to their predicted treatment effects.

3) Obtain augmented inverse propensity weighted average treatment effects for each
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quintile.

This is very similar to the generic framework proposed by Chernozhukov, Demirer, Duflo
and Fernandez-Val (67), which was also used in a recent study (146), except that we used 5-
fold cross-validation instead of dividing the data into half for conditional average treatment

effect model fitting and ranking observations into subgroups.
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Figuresand Tables

Figure 1. Heterogeneous treatment effects of neighborhood socioeconomic adversity on psychotic risk. Subjects were divided into quintiles by their
relative resilience/vulnerability to the impact of neighborhood deprivation on PLES (Q1: most resilient~Q5: most vulnerable). Average values of conditional
average treatment effects (CATE) within more vulnerable subgroups were significantly different from that of the most resilient subgroup (Q1). Statistical

significance is marked with stars (*: p-FDR<0.05, **: p-FDR<0.005, ***: p-FDR<0.0005).
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Figure 2. Beeswarm summary plots of Shapley additive explanation (SHAP) values for 1V Forest models. Contributions of the top 20 variables of
highest importance in the IV Forest model for the heterogeneous treatment effects of neighborhood deprivation are shown. Variables are ordered by their
relative importance in the model. Positive SHAP values indicate greater vulnerability (lower resilience) to the effects of ADI on PLES; negative values
indicate lower vulnerability (greater resilience). Contrasts of average beta activations of the given brain ROIs during MID tasks are shown in parenthesis. R

vs N denote contrasts between any rewards and neutral reward, L vs N, contrasts between any loss and neutral reward. Ventral dc: ventral diencephalon.
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Figure 3. Additional analyses for the heterogeneous effects of neighborhood deprivation. (A) Reduced model with GPS and brain ROIs jointly
associated with both delay discounting and PLEs. In the reduced model, the effects of neighborhood deprivation on 1-year follow-up Total Score PLES
within more vulnerable subgroups (Q2~Q4) were not significantly from that of the most resilient group (Q1). (B) Symptom-specific analysis with
Delusional Score and Hallucinationa Score PLEs. For both symptoms, the differential effects of neighborhood deprivation were significant. Statistical

significance is marked with stars (*: p-FDR<0.05, **: p-FDR<0.005, ***: p-FDR<0.0005). CATE: conditional average treatment effects.
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Figure 4. Beeswarm summary plots of SHAP values of 1V Forest models with symptom specific PLEs. Contributions of the top 20 variables of highest
importance in the IV Forest model for the heterogeneous treatment effects of neighborhood deprivation are shown. Variables are ordered by their relative
importance in the model. Positive SHAP values indicate greater vulnerability (lower resilience) to the effects of ADI on PLES; negative values indicate
lower vulnerability (greater resilience). Contrasts of average beta activations of the given brain ROIs during MID tasks are shown in parenthesis. R vs N

denote contrasts between any rewards and neutral reward, L vs N, contrasts between any loss and neutral reward. Ventral dc: ventral diencephalon.
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Table 1. Socioeconomic/demogr aphic characteristics of the participants. Age is rounded to chronological month. Parental Education is measured as the

highest grade or level of school completed or highest degree received. Family History of Psychiatric Disorders represents the proportion of first-degree

relatives who experienced mental illness.

Demographic Characteristics N Ratio (%) Mean (SD)
Age 2,135 120.1541 (7.4658)
Male 1,517 53.86%
Sex
Female 985 46.14%
Married 1,636 76.63%
Widowed 12 0.56%
Marital Statusof thefirst caregiver Divorced 193 9.04%
Separated 62 2.9%
Never Married 142 6.65%
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Living with Partner 90 4.22%

White 1,400 65.57%

Black 136 6.37%

Race/Ethnicity Hispanic 373 17.47%

Asian 7 0.33%

Other 219 10.26%

Biological Mother 1,848 86.56%

Biological Father 215 10.07%

Parent’s | dentity Adoptive Parent 39 1.83%

Custodial Parent 12 0.56%

Other 21 0.98%
Household Income 2,135 $70,245 (1.937)
Parental Education 2,135 17.2838 (2.3046)
BMI 2,135 18.4298 (3.8572)
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Table 2. Causal effects of neighborhood socioeconomic adver sity on intertemporal valuation and psychotic risk. Average treatment effects of ADI on

delay discounting and PLEs in the IV Forest models are shown. All p-values were corrected for multiple comparison using false discovery rate.
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Sl Appendix

Fig. S1. Beeswarm summary plots of SHAP values of all covariates. (A) Total Score PLES 1-year follow-up. (B) Distress Score PLES 1-year follow-up.
(C) Total Score PLEs 2-year follow-up. (D) Distress Score PLES 2-year follow-up. Contributions of al covariates in the IV Forest model for the
heterogeneous treatment effects of neighborhood deprivation are shown. Variables are ordered by their relative importance in the model. Positive SHAP
values indicate greater vulnerability (lower resilience) to the effects of ADI on PLEs; negative values indicate lower vulnerability (greater resilience).
Contrasts of average beta activations of the given brain ROIs during MID tasks are shown in parenthesis. R vs N denote contrasts between any rewards and

neutral reward, L vs N, contrasts between any loss and neutral reward. Ventral dc: ventral diencephalon.
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Table S1. Comparison of the sample and national demographics. Since Household income for subjects in the study is presented as deciles, it is

transformed into a monetary value by considering the income limits for each decile. The data for the US national demographics is available a Data is

available at https://www.census.gov/en.html.

Mean or Ratio (%)

Subjectsin our study

US National Demogr aphics

Family Income $70,245 $60,336

Sex Male 53.86% 51.16%
White 65.57% 57.8%

Black 6.37% 12.1%

Ethnicity/Race Hispanic 17.47% 18.7%
Asian 0.33% 6.1%

Other 10.26% 12.4%
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Exploratory analyses using conventional linear 1V regression.

In the preliminary exploratory analyses, we conducted a conventional linear IV regression on multiple outcomes, as well as delay discounting and PLEs.

Children’s neurocognitive ability was measured with uncorrected composite scores of the total, fluid, and crystalized intelligence from the NIH Toolbox
Cognitive Battery. The NIH Toolbox is composed of seven cognitive instruments for examining executive function, episodic memory, language abilities,
processing speed, working memory, and attention (1, 2). To assess behavioral problems, we used summary scores from the Child Behavior Checklist
(CBCL). These included anxious/depressed, withdrawn/depressed, somatic complains, social problems, thought problems, attention problems, rule-breaking
behavior, aggressive behavior, obsessive-compulsive problems, sluggish cognitive tempo, stress, internalizing problems score, externalizing problems score,
total problems score, and CBCL DSM-5 scales of depression, anxiety disorders, oppositional defiant, conduct problems, and attention deficit/hyperactivity
disorder (ADHD) (2, 3). For psychiatric disorders, we used child- and parent-reported Kiddie Schedule for Affective Disorders and Schizophreniafor DSM-
5 (KSADS) diagnosis measures (4). Summary scores of anxiety disorder, bipolar disorder, eating disorder, suicidal behavior, and any psychiatric disorders

were used.

Table S2. Results of linear 1V regression. All p-values were corrected for multiple comparison using false discovery rate.
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Conventional Linear 1V Regression

Estimates Std. Error 95% L ower CI 95% Upper CI P-FDR
Delay Discounting -0.4946 0.2124 -0.9109 -0.0783 0.02
PLEs Total Score PLE 0.7985 0.2334 0.341 1.256 0.0015
(1-year follow-up)
Distress Score PLE 0.8822 0.2389 0.414 1.3504 0.001
(1-year follow-up)
Total Score PLE 0.6075 0.2188 0.1787 1.0363 0.0069
(2-year follow-up)
Didress Score PLE 0.7472 0.2268 0.3027 1.1917 0.0017
(2-year follow-up)
NIH Toolbox Total Intelligence
-0.4178 0.4406 -1.2814 0.4458 0.8714
(Baseline year)
Fluid Intelligence
-0.3932 0.4633 -1.3013 0.5149 0.8714

(Baseline year)
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Crystallized Intelligence

-0.3881 0.4418 -1.254 0.4778 0.8714
(Baseline year)
CBCL Anxious/'Depressed
-0.8051 0.5063 -1.7974 0.1872 0.7111
(1-year follow-up)
Withdrawn/Depressed
-0.1604 0.4757 -1.0928 0.772 0.8994
(1-year follow-up)
Somatic Complains
0.8369 0.5092 -0.1611 1.8349 0.7111
(1-year follow-up)
Social Problems
0.1461 0.4756 -0.7861 1.0783 0.9071
(1-year follow-up)
Thought Problems
0.0833 0.4762 -0.85 1.0166 0.9472
(1-year follow-up)
Attention Problems
0.1887 0.4749 -0.7421 1.1195 0.8994
(1-year follow-up)
Rule-breaking Behavior 0.2838 0.4766 -0.6503 1.2179 0.8921
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(1-year follow-up)

Aggressive Behavior

0.0965 0.4745 -0.8335 1.0265 0.9468
(1-year follow-up)
Sluggish Cognitive Tempo
-0.3003 0.4816 -1.2442 0.6436 0.8921
(1-year follow-up)
Obsessive-Compulsive Problems
-0.2428 0.4814 -1.1863 0.7007 0.8994
(1-year follow-up)
Stress
-0.4105 0.4775 -1.3464 0.5254 0.8714
(1-year follow-up)
Internalizing Problems
-0.1941 04711 -1.1174 0.7292 0.8994
(1-year follow-up)
Externalizing Problems
0.1619 0.4732 -0.7656 1.0894 0.8994
(1-year follow-up)
Total Problems 0.0497 0.4643 -0.8603 0.9597 0.9766
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(1-year follow-up)

DSM-5 Depression

0.0444 0.4725 -0.8817 0.9705 0.9766
(1-year follow-up)
DSM-5 Anxiety Disorder
-0.7845 0.5043 -1.7729 0.2039 0.7111
(1-year follow-up)
DSM-5 Somatic Problems
0.6297 0.4978 -0.346 1.6054 0.8714
(1-year follow-up)
DSM-5 ADHD
0.509 0.4857 -0.443 1461 0.8714
(1-year follow-up)
DSM-5 Oppositional Defiant
-0.1202 0.4778 -1.0567 0.8163 0.9378
(1-year follow-up)
DSM-5 Conduct Problems
0.0937 0.4746 -0.8365 1.0239 0.9468
(1-year follow-up)
AnxiousDepressed 0.1888 0.4784 -0.7488 1.1264 0.8994
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(2-year follow-up)

Withdrawn/Depressed
0.6185 0.4979 -0.3574 1.5044 0.8714
(2-year follow-up)
Somatic Complains
0.1816 0.4802 -0.7596 1.1228 0.8994
(2-year follow-up)
Social Problems
1.0335 0.5226 0.0092 2.0578 0.7111
(2-year follow-up)
Thought Problems
-0.0014 0.4746 -0.9316 0.9288 0.9976
(2-year follow-up)
Attention Problems
0.9047 0.5112 -0.0972 1.9066 0.7111
(2-year follow-up)
Rule-breaking Behavior
0.8328 0.5118 -0.1703 1.8359 0.7111
(2-year follow-up)
Aggressive Behavior
0.2914 0.4829 -0.6551 1.2379 0.8921

(2-year follow-up)
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Sluggish Cognitive Tempo
-0.035 0.482 -0.9797 0.9097 0.9766
(2-year follow-up)
Obsessive-Compulsive Problems
0.503 0.4902 -0.4578 1.4638 0.8714
(2-year follow-up)
Stress
0.254 0.4796 -0.686 1.194 0.8994
(2-year follow-up)
Internalizing Problems
0.3753 0.4794 -0.5643 1.3149 0.8921
(2-year follow-up)
Externalizing Problems
0.4841 0.4886 -0.4735 1.4417 0.8714
(2-year follow-up)
Total Problems
0.5887 0.4855 -0.3629 1.5403 0.8714
(2-year follow-up)
DSM-5 Depression
0.2878 0.4821 -0.6571 1.2327 0.8921

(2-year follow-up)
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DSM-5 Anxiety Disorder

0.2384 0.4801 -0.7026 1.1794 0.8994
(2-year follow-up)
DSM-5 Somatic Problems
-0.3499 0.4907 -1.3117 0.6119 0.8921
(2-year follow-up)
DSM-5ADHD
0.9614 0.5156 -0.0492 1972 0.7111
(2-year follow-up)
DSM-5 Oppositional Defiant
0.3292 0.4873 -0.6259 1.2843 0.8921
(2-year follow-up)
DSM-5 Conduct Problems
0.4707 0.4895 -0.4887 1.4301 0.8714
(2-year follow-up)
KSADS Bipolar Disorder
1.465 0.5858 0.3169 2.6131 0.6875
(Child-reported) (1-year follow-up)
Anxiety Disorder
0.4329 0.4944 -0.5361 1.4019 0.8714

(1-year follow-up)
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Eating Disorder
-0.2062 0.4906 -1.1678 0.7554 0.8994
(1-year follow-up)
Suicidal Behavior
-0.2188 0.4897 -1.1786 0.741 0.8994
(1-year follow-up)
Sleep Problems
1.1294 0.545 0.0612 2.1976 0.7111
(1-year follow-up)
Any Psychiatric Disorders
0.5648 0.5002 -0.4156 1.5452 0.8714
(1-year follow-up)
Bipolar Disorder
0.3385 0.4912 -0.6242 1.3012 0.8921
(2-year follow-up)
Anxiety Disorder
0.7801 0.5141 -0.2275 1.7877 0.7111
(2-year follow-up)
Eating Disorder
-0.351 0.4951 -1.3214 0.6194 0.8921

(2-year follow-up)
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Suicidal Behavior
0.5829 0.5018 -0.4006 1.5664 0.8714

(2-year follow-up)

Sleep Problems
-0.0252 0.4873 -0.9803 0.9299 0.9766

(2-year follow-up)

Any Psychiatric Disorders

0.5595 0.4919 -0.4046 1.5236 0.8714

(2-year follow-up)

KSADS Bipolar Disorder
-0.4178 0.4406 -1.2814 0.4458 0.8714

(Parent-reported) (1-year follow-up)

Anxiety Disorder
-0.3932 0.4633 -1.3013 0.5149 0.8714

(1-year follow-up)

Eating Disorder
-0.3881 0.4418 -1.254 0.4778 0.8714

(1-year follow-up)

Suicidal Behavior
-0.8051 0.5063 -1.7974 0.1872 0.7111

(1-year follow-up)
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Sleep Problems
-0.1604 0.4757 -1.0928 0.772 0.8994
(1-year follow-up)
Any Psychiatric Disorders
0.8369 0.5092 -0.1611 1.8349 0.7111
(1-year follow-up)
Bipolar Disorder
0.1461 0.4756 -0.7861 1.0783 0.9071
(2-year follow-up)
Anxiety Disorder
0.0833 0.4762 -0.85 1.0166 0.9472
(2-year follow-up)
Eating Disorder
0.1887 0.4749 -0.7421 1.1195 0.8994
(2-year follow-up)
Suicidal Behavior
0.2838 0.4766 -0.6503 1.2179 0.8921
(2-year follow-up)
Sleep Problems
0.0965 0.4745 -0.8335 1.0265 0.9468

(2-year follow-up)

* 3SUB2I| [euoeWIBIU| 0 AN-DN-AG-DD € Japun 3|qejiene apeuw si |

‘Aimadiad ui uudaid ayy Aejdsip 01 asuadl| e AIxgpaw pajuelb sey oym ‘1apunyioyine ayl si (mainal 1aad Ag paljiliad 10U sem yaiym)
udaud siys oy Japjoy 1ybuAdoo ay "€z20z ‘T L8N palsod UOISIaA SIUL 'GEE682EZ 0E 70 €202/TOTT 0T/B10 10p//:sdny :1op Jundaid Aixypaw


https://doi.org/10.1101/2023.04.30.23289335
http://creativecommons.org/licenses/by-nc-nd/4.0/

Any Psychiatric Disorders
-0.3003
(2-year follow-up)

0.4816

-1.2442

0.6436

0.8921

Double ML models

To confirm robustness of the IV Forest results, we used double machine learning (Double ML). This up-to-date causal machine learning method can

utilize any state-of-the-art machine learning models to obtain consistent, unbiased estimates of average treatment effects by partialling out the confounding

effects of covariates (5). It is particularly effective when the covariates are high-dimensional and have complex interactions.

We used partial linear model and nonparametric instrumental variable model. In the partia linear model, we only assume linearity of the treatment
variable ADI while the relationships between the outcome variable Y and covariates X and between instrument variable SOl and covariates X remain as an

unknown function. On the other hand, the nonparametric model does not require any assumptions specifying the relationship between the outcome Y,

treatment ADI, instrument variable SOI, and covariates X. Below shows the simple mathematical representation of each model:

Y = uADI + g(X) +¢,

SOl =m(X)+v

ey
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Y = f(ADL,X) + ¢, SOl =m(X)+v (2)

Here, Y denote for outcome variable (in our study, delay discounting and psychotic-like experiences), ADI the treatment variable, X multidimensional
covariates, SOI the instrument variable. g(), m(), f() are unknown functions and &, v are random errors. In the partial linear model (Equation 1), we
assume that the treatment variable (i.e., ADI) have linear relationship with the outcome variable Y. There are no model assumptions specifying the
relationship between multidimensional covariates X, outcome Y, and the instrumental variable SOI. The nonparametric model (Equation 2), on the other
hand, does not assume any relationship between the treatment, outcome, covariates, and the instrument. The only required assumption for the nonparametric
Double ML model is that the treatment must be a binary variable. Thus, we used ADI as a continuous variable in the partial linear model and a binary

variable (i.e., above or below mean) in the nonparametric model.

We built an ensemble machine learning pipeline consisting of elastic net, random forest, XGBoost, support vector machine, and k-Nearest Neighbors
with parameters tuned via 5-fold cross validation. In general, ensemble methods can improve model performance with lower error and higher accuracy by
combining several base models (6). For each analysis, all continuous variables were standardized (z-scaled) beforehand to obtain standardized estimates,

and analyses were run using DoubleML (7) packagesin R version 4.1.2.
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Table S3. Results of Double ML models. All p-values were corrected for multiple comparison using false discovery rate.

Double ML Partial Linear 1V Regression

Double ML Nonparametric IV Regression

Estimates | Std. Error | 95% Lower Cl | 95% Upper Cl | P-FDR | Estimates | Std. Error | 95% Lower Cl | 95% Upper Cl | P-FDR
Delay Discounting
-0.4205 0.1905 -0.7939 -0.0471 0.0273] -0.9002 0.3933 -1.6711 -0.1293 0.0221
(1-year follow-up)
Total Score PLE
0.9025 0.1952 0.5199 1.2850 0.0000 | 1.9331 0.4576 1.0362 2.8299 0.0001
(1-year follow-up)
Distress Score PLE
0.8992 0.1970 0.5131 1.2852 0.0000 | 1.6598 0.4353 0.8065 2.5130 0.0003
(1-year follow-up)
Total Score PLE
0.7693 0.1890 0.3990 1.1397 0.0001 | 1.6563 0.4392 0.7955 25171 0.0003
(2-year follow-up)
Distress Score PLE
0.7218 0.1829 0.3633 1.0803 0.0001| 1.3079 0.4111 0.5021 2.1136 0.0018
(2-year follow-up)
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Random Forest-based Feature Selection using Bor uta

We used Boruta to select GPS and brain ROIs of structural MRI and MID task fMRI significantly associated with delay discounting. Boruta first
generates shadow attributes, which is irrelevant to the outcome, by shuffling all input features. It then confirms features that have significantly higher

importance in predicting the outcome than the shadow attributes with 95% confidence level, Bonferroni-corrected two-tailed tests (8). The selected features

were included as covariatesin the IV Forest models for assessing heterogeneous treatment effects of ADI.

Table $4. Results of featur e selection with Bor uta.

Boruta Feature Selection

meanlmp

medianlmp

minlmp

maxi mp

normHits

decision

GPS

Cognitive performance

GPS

9.218585214

9.343664516

1.540057892

14.80316571

0.989218329

Confirmed
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Educational attainment

3.94101317 3.861989404 0.426263498 7.543422156 0.867924528 Confirmed
GPS
1Q GPS
6.797659091 6.806435058 1.974908045 9.841407352 0.994609164 Confirmed
(2-year follow-up)
Left rostral anterior
6.414094346 6.475070692 -0.035411504 9.672515329 0.986382979 Confirmed
cingulate area
Areaof the left white
Structural MRI 4.947047514 4.993043324 -0.651253674 8.319553071 0.965957447 Confirmed
surface area
Right ishmus
3.047499629 3.018073772 -1.525770405 6.367472417 0.748085106 Confirmed
cingulate area
Right
3.54003384 3.596050843 -0.735751779 7.584353291 0.847659574 Confirmed
parahippocampal area
Right pars opercularis
2.536130188 2.551497416 -2.732925194 5.521156748 0.596595745 Confirmed
area
Right temporal pole 3.646495297 3.642126503 -1.885893836 6.74382961 0.857021277 Confirmed
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area
Right fusiform volume 4.8304398 4.820901083 -0.219789984 8.108846062 0.96 Confirmed
Right
parahippocampal 2.619089202 259585374 -1.650000342 6.456811555 0.644255319 Confirmed
volume
Right pars opercularis
4.904158498 4.939247772 -2.183840684 8.229214003 0.968510638 Confirmed
volume
Right caudate volume 2.940682064 2.910956975 -1.467310423 6.77699793 0.702978723 Confirmed
Total grey matter
5.225675728 5.237263203 -0.894516992 8.807847283 0.977021277 Confirmed
volume
Right Temporal pole
6.748279698 6.804387788 0.408403365 9.862430702 0.987234043 Confirmed
white matter
Left precentral (mean
MID task fMRI beta: any reward vs 8.541841922 8.545733335 -0.834551762 12.05424853 0.99719944 Confirmed

neutral)
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Left supramarginal
(mean beta: any

reward vs neutral)

8.794762008

8.817520479

-0.407425475

13.13555673

0.99719944

Confirmed

Right posterior cingulate
(mean beta: any reward

vs neutral)

10.08222952

10.10382848

-0.002488899

13.94572714

0.99739948

Confirmed

Left transverse temporal
(mean beta: large reward

vs neutral)

4.030146815

4045639319

-1.267815916

7.737267983

0.900780156

Confirmed

Left supramarginal
(mean beta: small reward

vs neutral)

7.296523513

7.319216174

0.857396979

11.4804468

0.99739948

Confirmed

L eft superior temporal
(mean beta: large loss vs

neutral)

2.78080687

2781792113

-1.254587471

6.827114058

0.683336667

Confirmed

Right insula (mean beta:

3418617309

3.43698343

-1.186087206

7.658281079

0.826165233

Confirmed
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small loss vs neutral)

L eft thalamus proper
(mean beta: any reward 7.080539192 7.077726315 -0.078744054 11.13729613 0.99679936 Confirmed
vs neutral)
Right ventral
diencephalon (mean
4.40690639 4.397130598 -1.777232203 9.688916388 0.939387878 Confirmed

beta: small lossvs

neutral)

Table S5. Heterogeneous treatment effects of neighborhood deprivation. Conditional average treatment effects (CATE) in each quintile and the

difference between more vulnerable subgroup vs the most resilient subgroup.

Heter ogeneous Treatment Effects

Estimates Std. Error 95% Lower Cl | 95% Upper CI P-FDR
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CATE: Q1 -32.15662482 0.64177702 -33.41448466 -30.89876497 <0.0001
CATE: Q2 -6.817450066 0.021258615 -6.859116186 -6.775783946 <0.0001
CATE: Q3 1.184668187 0.006873392 1.171196586 1.198139788 <0.0001
CATE: Q4 7.091412153 0.014305152 7.063374571 7.119449736 <0.0001

Total Score PLEs
CATE: Q5 47.45333454 5.043508208 37.5682401 57.33842899 <0.0001

(1-year follow-up)
CATEQ2-CATEQ1| 25.33917475 3.236311588 18.99612059 31.6822289 <0.0001
CATEQ3-CATEQ1 33.341293 3.236311588 26.99823885 39.68434716 <0.0001
CATEQ4-CATEQ1 | 39.24803697 3.236311588 32.90498281 45.59109112 <0.0001
CATEQ5—-CATEQ1| 79.60995936 3.226834813 73.28547934 85.93443938 <0.0001
CATE: Q1 -30.69393828 1.324743622 -33.29038807 -28.0974885 <0.0001
CATE: Q2 -5.591496226 0.016519156 -5.623873176 -5.559119276 <0.0001
Distress Score PLESs CATE: Q3 0.645898162 0.00602267 0.634093947 0.657702378 <0.0001
(1-year follow-up) CATE: Q4 5.339078652 0.011558835 5.316423752 5.361733551 <0.0001
CATE: Q5 50.4702646 12.1598892 26.63731971 74.30320949 <0.0001
CATEQ2-CATEQ1 ] 25.10244206 7.786033177 9.842097448 40.36278667 0.0013
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CATEQ3-CATEQ1| 31.33983645 7.786033177 16.07949184 46.60018106 0.0001
CATEQ4-CATEQL1| 36.03301694 7.786033177 20.77267233 51.29336155 <0.0001
CATEQ5-CATEQ1| 81.16420288 7.763233617 65.94854459 96.37986118 <0.0001
CATE: Q1 -36.71170915 2.501408464 -41.61437965 -31.80903865 <0.0001
CATE: Q2 -7.817465112 0.022331196 -7.861233452 -7.773696772 <0.0001
CATE: Q3 0.941876877 0.009278149 0.92369204 0.960061715 <0.0001
CATE: Q4 7.208218093 0.015365381 7.1781025 7.238333686 <0.0001

Total Score PLEs
CATE: Q5 51.68416443 4.433107643 42.99543311 60.37289575 <0.0001

(2-year follow-up)
CATEQ2-CATEQL1| 28.89424404 3.240112198 22.54374082 35.24474725 <0.0001
CATEQ3-CATEQ1| 37.65358602 3.240112198 31.30308281 44.00408924 <0.0001
CATEQ4—-CATEQ1| 43.91992724 3.240112198 37.56942403 50.27043045 <0.0001
CATEQ5-CATEQ1| 88.39587358 3.230624295 82.06396632 9472778085 <0.0001
CATE: Q1 -33.13492022 2.654282906 -38.33721912 -27.93262132 <0.0001

Distress Score PLEs

CATE: Q2 -6.914493335 0.018873992 -6.951485679 -6.877500992 <0.0001

(2-year follow-up)
CATE: Q3 0.655325164 0.00868485 0.63830317 0.672347157 <0.0001
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CATE: Q4 5.92002301 0.012630329 5.89526802 5.944778 <0.0001
CATE: Q5 45.45980748 3.90492866 37.80628795 53.11332702 <0.0001
CATEQ2-CATEQ1| 26.22042688 3.005525914 20.32970433 32.11114943 <0.0001
CATEQ3-CATEQ1| 33.79024538 3.005525914 27.89952283 39.68096793 <0.0001
CATEQ4-CATEQ1| 39.05494323 3.005525914 33.16422068 44.94566577 <0.0001
CATEQ5-CATEQ1 78.5947277 2.996724941 72.72125475 84.46820066 <0.0001

between more vulnerable subgroup vs the most resilient subgroup.

Table S6. Heterogeneous treatment effects in the reduced model. Conditional average treatment effects (CATE) in each quintile and the difference

Heter ogeneous Treatment Effects

Estimates

Std. Error

95% L ower CI

95% Upper CI

P-FDR

Total Score PLEs

CATE: Q1

-148.1543362

18.77935701

-184.9611996

-111.3474728

<0.0001
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(1-year follow-up) CATE: Q2 -6.53420787 0.020110819 -6.573624351 -6.494791389 <0.0001
CATE: Q3 0.96022033 0.007885014 0.944765986 0.975674674 <0.0001
CATE: Q4 7.404490109 0.016378546 7.372388749 7.436591469 <0.0001
CATE: Q5 410.1435013 224.347071 -29.56867781 849.8556805 0.0675
CATEQ2-CATEQ1| 141.6201283 143.3047308 -139.2519829 422.4922395 0.323
CATEQ3-CATEQ1 ] 149.1145565 143.3047308 -131.7575547 429.9866677 0.323
CATEQ4-CATEQ1 ] 155.5588263 143.3047308 -125.3132849 436.4309375 0.323
CATEQ5—-CATEQ1| 558.2978375 142.8850967 278.248194 838.347481 0.0004
CATE: Q1 -104.696485 16.64146673 -137.3131604 -72.07980954 <0.0001
CATE: Q2 -5.536626398 0.017553252 -5.57103014 -5.502222655 <0.0001
CATE: Q3 0.599742998 0.006478149 0.58704606 0.612439937 <0.0001
Distress Score PLEs
CATE: Q4 5.856716502 0.013778525 5.82971109 5.883721914 <0.0001
(1-year follow-up)
CATE: Q5 118.5487008 28.58248484 62.52805993 174.5693417 <0.0001
CATEQ2-CATEQ1 ] 99.15985858 21.05291356 57.89690623 140.4228109 <0.0001
CATEQ3-CATEQ1 105.296228 21.05291356 64.03327563 146.5591803 <0.0001

* 3SUB2I| [euoeWIBIU| 0 AN-DN-AG-DD € Japun 3|qejiene apeuw si |

‘Aimadiad ui uudaid ayy Aejdsip 01 asuadl| e AIxgpaw pajuelb sey oym ‘1apunyioyine ayl si (mainal 1aad Ag paljiliad 10U sem yaiym)
udaud siys oy Japjoy 1ybuAdoo ay "€z20z ‘T L8N palsod UOISIaA SIUL 'GEE682EZ 0E 70 €202/TOTT 0T/B10 10p//:sdny :1op Jundaid Aixypaw


https://doi.org/10.1101/2023.04.30.23289335
http://creativecommons.org/licenses/by-nc-nd/4.0/

CATEQ4-CATEQ1| 1105532015 21.05291356 69.29024913 151.8161538 <0.0001
CATEQ5-CATEQ1| 223.2451858 20.99126507 182.1030622 264.3873093 <0.0001
CATE: Q1 -85.52329015 4.099782963 -93.55871711 -77.4878632 <0.0001
CATE: Q2 -7.803896033 0.023027295 -7.849028701 -7.758763364 <0.0001
CATE: Q3 0.934406516 0.009699511 0.915395824 0.953417208 <0.0001
CATE: Q4 7.591719182 0.016910888 7.558574451 7.624863912 <0.0001

Total Score PLEs
CATE: Q5 97.89134501 12.72666057 72.94754865 122.8351414 <0.0001

(2-year follow-up)
CATEQ2-CATEQ1| 77.71939412 8.510983276 61.03817343 94.40061481 <0.0001
CATEQ3—-CATEQ1| 86.45769667 8.510983276 69.77647597 103.1389174 <0.0001
CATEQ4-CATEQ1| 93.11500933 8.510983276 76.43378864 109.79623 <0.0001
CATEQ5-CATEQ1| 183.4146352 8.486060871 166.7822615 200.0470088 <0.0001
CATE: Q1 -119.1798326 12.65102488 -143.9753857 -94.38427946 <0.0001
Distress Score PLEs CATE: Q2 -6.585759634 0.019441347 -6.623863975 -6.547655293 <0.0001
(2-year follow-up) CATE: Q3 0.475787123 0.008703222 0.458729122 0.492845125 <0.0001
CATE: Q4 6.189265297 0.015389133 6.159103151 6.219427443 <0.0001
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CATE: Q5 144.5306933 32.63574853 80.56580159 208.4955851 <0.0001
CATEQ2-CATEQ1 112.594073 22.28009232 68.92589443 156.2622515 <0.0001
CATEQ3-CATEQ1| 119.6556197 22.28009232 75.98744119 163.3237982 <0.0001
CATEQ4-CATEQ1| 125.3690979 22.28009232 81.70091936 169.0372764 <0.0001
CATEQ5-CATEQ1| 263.7105259 22.21485033 220.1702193 307.2508325 <0.0001

Table S7. Heterogeneous treatment effects of neighborhood adversity on symptom specific PLEs. Conditional average treatment effects (CATE) in

each quintile and the difference between more vulnerable subgroup vs the most resilient subgroup.

Heter ogeneous Treatment Effects

Estimates

Std. Error

95% L ower CI

95% Upper CI

P-FDR

Delusional Score PLEs

CATE: Q1

-27.60105671

0.829965542

-20.22775928

-25.97435414

<0.0001
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(1-year follow-up) CATE: Q2 -5.021312331 0.013628021 -5.048022762 -4.994601901 <0.0001
CATE: Q3 0.306832641 0.005911669 0.295245983 0.318419298 <0.0001
CATE: Q4 4.934784124 0.011629989 4.911989763 4,957578484 <0.0001
CATE: Q5 39.49057073 4.73923139 30.2018479 48.77929357 <0.0001
CATEQ2-CATEQ1| 2257974437 3.062631657 16.57709663 28.58239212 <0.0001
CATEQ3-CATEQ1| 27.90788935 3.062631657 21.9052416 33.91053709 <0.0001
CATEQ4-CATEQ1| 32.53584083 3.062631657 26.53319308 38.53848857 <0.0001
CATEQ5-CATEQ1| 67.09162744 3.053663463 61.10655703 73.07669785 <0.0001
CATE: Q1 -34.46275535 1.919927574 -38.22574425 -30.69976645 <0.0001
CATE: Q2 -5.505287059 0.016222743 -5.53708305 -5.473491067 <0.0001
CATE: Q3 0.576784345 0.00556928 0.565868757 0.587699934 <0.0001
Hallucinational Score PLEs

CATE: Q4 4.790937834 0.010758294 4.769851966 4.812023703 <0.0001

(1-year follow-up)
CATE: Q5 65.58634354 15.81962688 34.5804446 96.59224249 <0.0001
CATEQ2-CATEQ1| 28.95746829 10.14368045 9.076219942 48.83871664 0.0043
CATEQ3-CATEQ1] 35.0395397 10.14368045 15.15829135 54.92078805 0.0007
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CATEQ4-CATEQ1| 39.25369319 10.14368045 19.37244483 59.13494154 0.0002
CATEQ5-CATEQ1| 100.0490989 10.11397708 80.22606809 119.8721297 <0.0001
CATE: Q1 -30.28312331 2.961479916 -36.08751729 -24.47872933 <0.0001
CATE: Q2 -5.096447682 0.015524784 -5.126875701 -5.066019664 <0.0001
CATE: Q3 0.420575848 0.005192211 0.4103993 0.430752395 <0.0001
CATE: Q4 4.278131763 0.009950812 4.25862853 4.297634996 <0.0001

Delusional Score PLEs
CATE: Q5 39.97828539 3.022560578 34.05417551 45.90239526 <0.0001
(2-year follow-up)

CATEQ2-CATEQ1| 25.18667563 2.69358331 19.90734935 30.4660019 <0.0001
CATEQ3—-CATEQ1| 30.70369916 2.69358331 25.42437288 35.98302543 <0.0001
CATEQ4-CATEQ1| 34.56125507 2.69358331 29.2819288 39.84058135 <0.0001
CATEQ5-CATEQ1| 70.2614087 2.685695787 64.99754168 75.52527571 <0.0001
CATE: Q1 -37.66549065 3.354745615 -44.24067123 -31.09031007 <0.0001
Hallucinational Score PLEs CATE: Q2 -7.423576439 0.019690386 -7.462168886 -7.384983993 <0.0001
(2-year follow-up) CATE: Q3 0.573097631 0.011334984 0.550881471 0.59531379 <0.0001
CATE: Q4 6.537762617 0.013132368 6.512023648 6.563501586 <0.0001
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CATE: Q5 45.91434074 3.974114501 38.12521945 53.70346204 <0.0001
CATEQ2-CATEQ1| 30.24191421 3.310519318 23.75341557 36.73041284 <0.0001
CATEQ3-CATEQ1| 38.23858828 3.310519318 31.75008964 4472708691 <0.0001
CATEQ4-CATEQ1| 44.20325326 3.310519318 37.71475463 50.6917519 <0.0001
CATEQS5-CATEQ1|]| 83.57983139 3.300825244 77.11033279 90.04932999 <0.0001

Mediation Analysis

To test the role of delay discounting as a mediator between ADI and PLES, we also used alinear mediation analysis. By utilizing mediation (9) package
in R, we conducted causal mediation analysis by decomposing local average treatment effect (LATE) into local average causal mediation effect (LACME)
and local average natural direct effect (LANDE). LACME represents the average hypothetical change in the outcome among compliers when the mediator

is changed from the value under the treatment status to the control status while the treatment variable is fixed. LANDE represents the average hypothetical
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change in the outcome among compliers when the treatment variable is changed from the treatment status to the control status while the mediator is fixed.

In order to control unobserved confounding bias, ivmediate function was utilized to incorporate the instrument variable in the causal mediation analysis. In

this analysis, ADI and delay discounting were transformed as a binary variable (i.e., above or below mean).

Table S8. Results of conventional linear |V mediation.

Edimate 95% Lower CI 95% Upper CI

LACME (contral) -1.526599 -19.800325 15.25005

LACME (treated) -0.416918 -4.962959 5.11086

Total score PLE (lyear) LANDE (control) 2.506144 -2.827432 6.86333
LANDE (treated) 3.615825 -12.945040 22.61272

LATE 2.089226 1.267081 3.36319

LACME (contral) -1.389240 -15.157504 18.18372

Distress score PLE (lyear)

LACME (treated) -0.333498 -4.139243 4.44824
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LANDE (control) 2.102503 -2.521920 6.09491
LANDE (treated) 3.158245 -15.919809 17.23908

LATE 1.769005 0.982177 3.06187
LACME (control) -0.814506 -10.676019 15.87214
LACME (treated) -0.815050 -5.909543 6.61236

Total score PLE (2year) LANDE (control) 2.766819 -4.302505 8.82732

LANDE (treated) 2.766275 -13.972073 13.81020

LATE 1.951769 1.164251 3.24240
LACME (contral) -0.549539 -8.323329 17.92484
LACME (treated) -0.747943 -6.554745 6.70680

Distress score PLE (2year) LANDE (control) 2.366669 -4.634207 8.66811

LANDE (treated) 2.168264 -15.899177 10.35562

LATE 1.618725 0.887667 2.80599
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