Clinical value of cortical bursting in preterm infants with intraventricular haemorrhage

Tuomas Koskela*, Judith Meek*bc, Angela Huertas-Ceballosb, Giles S Kendallbc, Kimberley Whiteheadbd

* Research IT Services, University College London, London, WC1E 7HB, UK
b Neonatal Intensive Care Unit, Elizabeth Garrett Anderson Wing, University College London Hospitals, London, WC1E6DB, UK
c Academic Neonatology, Institute for Women’s Health, University College London, London, WC1E 6HU, UK
d Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT, UK

*Contributed equally

Corresponding author:
Dr Kimberley Whitehead
2nd Floor, 90 Tottenham Court Road
University College London
London
W1T 4TJ
k.whitehead@ucl.ac.uk

Acknowledgements

This work was supported by Brain Research UK, which had no role in the study design; collection, analysis and interpretation of data; writing of the report; or the decision to submit the article for publication.

We would like to acknowledge the support of the UCL/UCLH Biomedical Research Centre.

Declarations of interest: none.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Objective
In healthy preterm infants, cortical burst rate and temporal dynamics predict important measures such as brain growth. We hypothesised that in preterm infants with germinal matrix-intraventricular haemorrhage (GM-IVH), cortical bursting could provide prognostic information. We determined how cortical bursting was influenced by the injury, and whether this was related to developmental outcome.

Methods
We identified 47 EEGs from 33 infants with GM-IVH ≥ grade II (median gestational age: 25 weeks), acquired between 24-40 weeks corrected gestational age as part of routine clinical care. In a subset of 33 EEGs from 25 infants with asymmetric injury, we used the least-affected hemisphere as an internal control. We tested whether cortical burst rate predicted death or severe motor impairment (median 2 years follow-up; range 1-2 years corrected).

Results
GM-IVH depressed central cortical burst rate. Bursts over the worst-affected hemisphere were less likely to immediately follow (within 1 second) bursts over the least-affected hemisphere than vice versa. Lower burst rate was modestly associated with death or severe motor impairment (specificity 93%, sensitivity 37%).

Conclusions
EEG can quantitatively index the functional injury after GM-IVH.

Significance
Higher cortical burst rate is reassuring for a positive motor outcome over the first 2 years.

Keywords: IVH; Delta brushes; Spontaneous Activity Transients; Morphine; Developmental trajectory

Highlights
- GM-IVH depresses cortical burst rate
- GM-IVH unbalances inter-hemispheric burst dynamics
- Higher burst rate following GM-IVH is associated with positive motor outcome at median 2 years
1. Introduction

In preterm infants, the largest burden of acquired brain injury is intraventricular haemorrhage arising from the germinal matrix (GM-IVH) (Ancel et al., 2015; Gale et al., 2018; de Vries, 2018). This injury can occur spontaneously, or be triggered or exacerbated by acute illness such as sepsis or metabolic acidosis (Horst et al., 2010; Linder et al., 2003; Thorp et al., 2001). The injury is graded on a four-point ascending scale of severity, depending on the worst of serial cranial ultrasound scans. GM-IVH of grade II or higher is associated with worse outcomes relative to gestational age-matched controls, with ventricular dilatation and intraparenchymal involvement conferring additional risk of disability or death (Bolisetty et al., 2014; Cizmeci et al., 2020; Hollebrandse et al., 2021; Mukerji et al., 2015; Patra et al., 2006). However, the grade of structural injury only coarsely predicts outcome, e.g. 20% of infants with intraparenchymal damage have entirely normal outcome (Marret et al., 2013). Complementary prognostic information would help to direct early therapeutic intervention.

At University College London Hospitals (UCLH), infants with GM-IVH are monitored with electroencephalography (EEG) when seizures are suspected, which are known to be associated with the injury (Hellström-Westas et al., 2001, 1991). Additionally, it is possible that the background EEG could contribute to neurological assessment and prognostication, as is customary following brain injury in full-term neonates (Ouwehand et al., 2020). The dominant feature of the neonatal EEG is cortical bursting activity. Cortical bursts reflect excitatory input to pyramidal neurons in animal models (Golbs et al., 2011; Hangau et al., 2007; Minlebaev et al, 2009). Burst rate and dynamics in healthy preterm infants predict subsequent brain growth and microstructure, as well as mental development (Benders et al., 2015; De Wel et al., 2021; Guzzetta et al., 2009; Iyer et al, 2015; Tataranno et al., 2018). Cortical bursts can be attenuated by GM-IVH (Aso et al., 1993, 1989; Chalak et al., 2011; Connell et al., 1988; Greisen et al., 1987; Olischar et al., 2007; Ranasinghe et al., 2015). Thus, we hypothesised that their rate of occurrence and temporal dynamics could index the functional injury and potentially be prognostic.

2. Methods

2.1 Infants

This project was defined as a retrospective service evaluation by the UCLH Research and Development Directorate and therefore individual consent from parents was not required. All clinical data review was conducted by a UCLH-affiliated, state-registered Clinical Neurophysiologist (KW). We identified infants born between 2007 and 2022 who underwent EEG monitoring during the neonatal period (defined here as ≤40 weeks corrected gestational age (CGA)) which was available for review. Selection criteria comprised gestational age <35 weeks (Ancel et al., 2015; Aso et al., 1993; Connell et al., 1988; Radvanyi-Bouvet et al., 1987) and evidence of ≥grade II GM-IVH on routine cranial imaging. Exclusion criteria included evidence of intrapartum hypoxic-ischemic insult, or acute severe metabolic disturbance at the time of EEG. This resulted in a total sample of 34 infants with median gestational age 25+5 weeks+d.ays.

2.2 EEG monitoring for suspected seizures

A minimum of 4 Ag/AgCl recording electrodes were positioned at bilateral central and frontal sites (C4, C3, F4, F3), according to the international 10/20 electrode placement system. Eight/34 infants had more than one EEG. This resulted in a total of 52 recordings (Table 1), which were all reviewed for electrographic seizures (Pressler et al., 2021).
Table 1: Infant demographics

<table>
<thead>
<tr>
<th>Total no. of infants with GM-IVH</th>
<th>34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade II</td>
<td>7/34</td>
</tr>
<tr>
<td>Ventricular dilatation</td>
<td>5/34</td>
</tr>
<tr>
<td>With intraparenchymal lesion(s)</td>
<td>22/34</td>
</tr>
<tr>
<td>Total asymmetric injury</td>
<td>26/34 (5 grade II, 2 ventricular dilatation, 19 with intraparenchymal lesion(s))</td>
</tr>
</tbody>
</table>

Sex (female: male)	12:22
Median (range) birth weight (grams)	821 (533 - 1999)
Median (range) gestational age (weeks+days)	25+5 (23+4 - 34+2)
Median (range) Apgar score at 1 minute	4 (1 - 9)
Median (range) Apgar score at 5 minutes	8 (2 - 10)
No. of EEGs	52 EEGs from 34 infants
Median (range) corrected gestational age (weeks+days) at discharge home from hospital (in survivors)	42+6 (36+5 - 56+3)
No. of EEGs suitable for analysis of cortical bursting	47 EEGs from 33 infants
Median (range) postnatal age (days)	20 (2 - 104)
Median (range) corrected gestational age (weeks+days)	30+1 (24+0 - 40+1)
Morphine exposure	27/47
Anti-seizure drug exposure	16/47

*a Defined here as dilatation ≥97th centile and/or anterior horn width >6mm (Kido-Kono et al., 2014; Leijser et al., 2018; Vries et al., 2002).

*b The infant without any EEG suitable for bursting analysis died on postnatal day 1; they had asymmetric GM-IVH with intraparenchymal lesion. In cases of >1 EEG being analysed from the same infant, the mean inter-recording interval was 10 days, which does not underestimate the variance of EEG-level analyses (see the supplemental information in (Fabrizi et al., 2011)).

*c At which analysed EEG ended. Corrected gestational age = Gestational age + postnatal age.

*d Phenobarbital, 3 Benzodiazepine, 2 Phenytin, 1 Levetiracetam, 1 Paraldehyde. (Total adds up to >16 because 6 EEGs were acquired during exposure to 2 anti-seizure drugs).
between 8–30Hz, using sliding 400-ms intervals (Antony et al., 2018; Hartley et al., 2012; Ranasinghe et al., 2015). We identified segments for each channel that were consecutively above a set threshold (1.5 times the standard deviation of its RMS signal over the whole recording (Antony et al., 2018; Vanhatalo et al., 2005)) for ≥0.5 seconds (Conde et al., 2005; Omidvarnia et al., 2014), using ‘detec tevent’ in EEGLAB (for illustration, see (Koskela et al., 2021b)). Please see Supplementary Information for further details about data pre-processing.

2.3.3 Burst temporal dynamics

The relative timing of cortical bursts overlying different brain regions offers insight into functional connections (Leikos et al., 2020; Tokariiev et al., 2012). To examine whether GM-IVH influenced the temporal relationship between burst onsets at recording channels overlying different regions, we represented their latencies with a gaussian window of 3 standard deviations around each value, using ‘gauss’ in EEGLAB. We then calculated cross-correlations for 6 positive and 6 negative lag values between -1500 and +1500 ms, normalised to the autocorrelation between identical burst latencies (i.e. correlation of 1.00 at lag 0 ms) (Hartley et al., 2012; Koskela et al., 2021a; Leroy-Terquem et al., 2017).

2.3.4 Burst magnitude

The magnitude of bursts can be indexed by their power (µV²). To characterise power changes of detected bursts relative to baseline, we convoluted the EEG signal with a Morlet wavelet between 0.1–45Hz using an increasing range of cycles (3–270), employing ‘newtimef’ in EEGLAB. For bursts detected at each channel, we extracted the 8-30Hz power at that channel over the course of the burst, and then normalised this value by dividing by its duration in seconds (Koskela et al., 2021a).

2.3.5 Cortical bursting and motor outcome

Positive neurodevelopmental outcome was specified as survival without severe impairment (defined here as Bayley Scales of Infant Development 3rd edition motor composite score ≤70/100, or unable to be assessed using Bayley Scales because of severe global delay and cerebral visual impairment; median 2 years follow-up, range 1-2 years corrected).

2.4 Statistical analysis

To assess differences between matched intra-subject variables or unpaired variables we used paired and unpaired t tests respectively. To test for associations between two continuous variables we used Pearson correlations.

To investigate multiple factors potentially underlying variance in cortical bursting, we conducted a hierarchical linear regression in which CGA was entered as the first explanatory variable given its known large effect (Whitehead et al., 2016). After that, we examined whether adding further EEG-level variables of morphine or anti-seizure drug(s) exposure, or electrographic seizure(s) during the analysed segment (all yes/no) improved model fit (Bell et al., 1993; Ranasinghe et al., 2015; Tataranno et al., 2020). Finally, we tested whether adding the infant-level variable of intraparenchymal lesion(s) optimised model fit.

To examine whether cortical bursting predicted survival without impairment, we conducted a receiver operating characteristic (ROC) analysis and i) calculated the area under the curve (AUC) which is a combined measure of sensitivity and specificity: an AUC of 0.5 indicates prediction no better than chance and serves as the null hypothesis, while 1.0 would reflect a perfect predictor, and
then ii) examined ROC curve coordinates to identify cut-off thresholds which were optimally predictive. Statistical analysis was performed using IBM SPSS v. 26 and significance was set at $p < .05$.

3. Results

3.1 Seizures

At the EEG-level, 17/52 (33%) EEGs included electrographic seizures. At the infant-level, 15/34 (44%) infants had electrographic seizures recorded during at least one EEG. These seizures were recorded between postnatal days 0-104 and 25-40 weeks CGA, in line with previous reports that seizures can occur many weeks after the initial injury (Pisani et al., 2018, 2008; Scher et al., 1993). Please see Supplementary Fig. 1 for a seizure example.

3.2 Characterisation of cortical bursts

In 33/34 infants, at least one EEG was suitable for bursting analysis (see Table 1 for demographic and medication information). The analysed EEGs were of median duration 8 hours (minimum 0.5 hours in 45/47 recordings). Cortical bursts had mean duration 1.6 seconds. These bursts comprised an increase in power which peaked between 8-30Hz as expected, coupled to a less pronounced but longer-duration increase in slower frequencies (Fig. 1). For bursts identified at each channel, the largest changes in 8-30Hz power were at that channel as anticipated, although bursts involved other channels also, especially for slower frequencies (Fig. 1).

3.3 Cortical burst rate was depressed by GM-IVH

To examine whether injury altered cortical burst rate, we first took advantage of a subgroup of 33 EEGs from 25 infants with asymmetric injury, for whom we could use the least-affected hemisphere as an internal control. There were fewer central (but not frontal) bursts per minute over the worst-affected hemisphere (central: mean 7.9 vs. 9.3, [95% CI of difference -2.10 to -0.62], p = .001, Fig. 2; frontal: $p = .648$). This inter-hemispheric difference in central burst rate did not significantly narrow with postnatal age ($p = .415$) or CGA ($p = .169$, Fig. 2). In comparison and as expected, there was no inter-hemispheric difference in central burst rate in symmetric injury ($p = .204$, Fig. 2), when inter-hemispheric bursting ratio was more equal than in asymmetric injury (mean ratio 1.04 vs. 0.85, [95% CI of ratio difference 0.09 to 0.28], $p < .001$).

Central bursts over the worst-affected hemisphere were less likely to follow bursts over the least-affected hemisphere than vice versa (negative lags had lower cross-correlations than their paired positive lag between 250-1000 ms (e.g. -500 vs. +500 ms) ($p \leq .014$, Fig. 3). In comparison and as expected, in symmetric injury inter-hemispheric central burst onsets were balanced (no significant differences between the cross-correlations of paired lags: $p \geq .374$, Fig. 3).

In asymmetric injury, greater depression of central burst rate predicted higher mean central burst power at the worst-affected hemisphere (inter-hemispheric ratio of central burst rate vs. power: $r = -.608$, $p < .001$), but not the least-affected hemisphere ($p = .350$). Pooling EEGs from all infants together, with either asymmetric or symmetric injury, also showed an association between lower burst rate and higher mean burst power at that same region ($r = -.390$ to -.569, $p \leq .007$).

3.4 Lower cortical burst rate was associated with adverse outcome
Central burst rate over the worst- or equally-affected hemisphere increased with CGA, and was slightly reduced by morphine exposure (but not by anti-seizure drug exposure, or proximal electrographic seizures) (Table 2). We reasoned that lower burst rate than expected after accounting for these factors could reflect worse functional injury, and predict adverse outcome. To test this, we calculated standardised residuals (z-scores) after fitting the CGA + morphine model: a z-score above 0 indicates that burst rate was higher than predicted by the model, a z-score below 0 indicates that burst rate was lower than predicted by the model.

Of 33 infants with bursting analysed, 27 infants - who had 41 EEGs in total - had outcome information available (six infants died after redirection of care, and outcome was available for 21/27 surviving infants). Lower central burst rate was modestly associated with adverse outcome (AUC .648, specificity and sensitivity 93% and 37% respectively using an optimal cut-off threshold of -0.77; Fig. 4a).

After adding presence (yes/no) of intraparenchymal lesion(s) (IPL) to the CGA + morphine model explaining burst rate, model fit was improved because IPL attenuated burst rate (Table 2; visualised in Fig. 4b), and the residuals no longer predicted outcome (AUC .540). This suggests that the association between burst rate and outcome is partially mediated by whether GM-I VH is associated with IPL. However, Fig. 4a shows that burst rate can also provide unique information: in three instances of IPL but relatively high burst rate, the cut-off threshold correctly predicted that the infant did not suffer an adverse outcome.

Table 2: Hierarchical linear models of variables influencing central burst rate over the worst- or equally-affected hemisphere

<table>
<thead>
<tr>
<th>Model 1: CGA</th>
<th>B [95% CI]</th>
<th>s.e.</th>
<th>p</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGA</td>
<td>.637 [.412 .861]</td>
<td>.111</td>
<td><.001</td>
<td>.421</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model 2: CGA + morphine*</th>
<th>B [95% CI]</th>
<th>s.e.</th>
<th>p</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGA</td>
<td>.596 [.382 .810]</td>
<td>.106</td>
<td><.001</td>
<td>.495</td>
</tr>
<tr>
<td>Morphine</td>
<td>-2.046 [-4.27 -3.664]</td>
<td>.803</td>
<td>.014</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model 3: CGA + morphine + IPL</th>
<th>B [95% CI]</th>
<th>s.e.</th>
<th>p</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGA</td>
<td>.639 [.433 .845]</td>
<td>.102</td>
<td><.001</td>
<td>.557</td>
</tr>
<tr>
<td>Morphine</td>
<td>-2.114 [-5.78 -3.650]</td>
<td>.762</td>
<td>.008</td>
<td></td>
</tr>
<tr>
<td>IPL</td>
<td>-2.007 [-3.51 -3.664]</td>
<td>.822</td>
<td>.019</td>
<td></td>
</tr>
</tbody>
</table>

* Anti-seizure drug exposure and Electrographic seizures were both excluded from the model: p = .168 and .301 respectively.

IPL = Intraparenchymal lesion(s)

4. Discussion

GM-I VH depresses burst rate over the sensitive period equivalent to the third trimester of gestation when cortical bursting refines neural circuits in animal models (Lebedeva et al., 2017; Molnár et al., 2020; Ranasinghe et al., 2015; Tolner et al., 2012). This is also when activity-dependent emergence of bilateral cortical networks occurs, which could be disrupted by skewed inter-hemispheric cortical burst dynamics when one hemisphere is injured relative to the other (Allievi et al., 2016; Marcano-Reik et al., 2010; Tokariev et al., 2012; Whitehead et al., 2022, 2019). These abnormalities of burst initiation (rate) and propagation (inter-hemispheric dynamics) are likely to reflect the grey matter
and white matter damage associated with GM-IVH grade II or higher (Omidvania et al., 2015; Tortora et al., 2018; Vasileiadis et al., 2004).

Burst rate was modestly associated with outcome, which to our knowledge is the only recent report that the background EEG is prognostic in infants with GM-IVH, since two much earlier papers when neonatal intensive care was very different (Connell et al., 1988; Hellström-Westas et al., 2001). Therefore, EEG could be used to track prognostic information over time. This has the potential to provide real time monitoring of the effect of clinical interventions delivered on the neonatal unit after the injury, e.g. to support sleep cycling as it emerges from approximately 28-31 weeks CGA (Supplementary Fig. 2) (Georgoulas et al., 2021; van den Hoogen et al., 2017).

Our results indicate that the background EEG could contribute to neurological assessment and prognostication after brain injury in preterm infants, as is customary in full-term infants. Indeed, in both cohorts injury is associated with sparser, higher power cortical bursts, suggesting some similarity in how the insult impacts brain function (Koskela et al., 2021b; Lamblin et al., 2013; Whitehead et al., 2020).

This work has some limitations. The sample was varied, but this is a true reflection of our clinical population and much of the inter-subject heterogeneity was controlled for by use of intra-subject analyses. We successfully used this intra-subject approach to show that burst rate was depressed over the worst- vs. least-affected hemisphere, but a cleaner control would have been a matched group with no GM-IVH. Furthermore, the sample underwent EEG recordings because seizures were suspected; proximal seizures could contribute to the depression of inter-ictal cortical bursting and therefore the sample may not be representative of the total population of infants with GM-IVH. In the future, a multi-centre study could be conducted to model predictors of outcome across this wider population, e.g. 52 infants from four centres allowed to create a four-variable model of outcome after GM-IVH in (Luyt et al. 2020).

In summary, clinical EEG recordings can index the functional injury after GM-IVH, with higher cortical burst rate reassuring for a positive motor outcome over the first 2 years. This analysis has the potential to provide complementary prognostic information, but also to be used as a cotside non-invasive monitor of cortical health and development, particularly during therapeutic interventions.
Fig. 1: Grand average time-frequency changes associated with cortical bursts. Bursts identified at the central channel overlying the least-affected brain hemisphere (or right hemisphere in the case of symmetric injury) (upper panel) and worst-affected brain hemisphere (or left hemisphere in the case of symmetric injury) (lower panel). Power changes between 0.1-45Hz (logarithmic scale) are shown in decibels, relative to the mean power preceding burst onset (black vertical line), where increased power is red and decreased power is blue.

Fig. 2: Cortical burst rate was depressed by GM-I VH. Left: Central burst rate over the two hemispheres when injury is symmetric (n = 14 EEGs) or asymmetric (n = 33 EEGs). Each EEG is represented by one line. Right: Scatter plot of inter-hemispheric burst rate ratio against corrected gestational age at EEG. For infants with symmetric injury, the hemispheric ratio is left: right hemisphere. Each EEG is represented by one dot.

Fig. 3: Inter-hemispheric cortical burst dynamics were altered by asymmetric GM-I VH. The relative timing of central burst occurrence over the two hemispheres when injury is symmetric (n = 14 EEGs) or asymmetric (n = 33 EEGs). Central bursts over the worst-affected hemisphere were less likely to immediately follow bursts over the least-affected hemisphere than vice versa. * = p < .05. 95% confidence intervals are denoted by error bars.

Fig. 4: Burst occurrence rate and incidence of death or severe motor impairment. a) Distribution of standardised residual of burst occurrence rate after corrected gestational age and morphine exposure controlled for in infants who did or did not survive without severe motor impairment. Each EEG is represented by a dot (n = 41). The optimal cut-off threshold to predict death or severe impairment is represented by a black dashed line, and the adjacent ROC curve illustrates how this threshold was derived. Data are colour-coded by whether the infant had intraparenchymal lesion(s) (IPL), to demonstrate the degree to which this factor co-varied with burst rate and outcome. Right: For illustrative purposes, the cross-sectional developmental trajectory of burst rate is fitted separately for three subgroups to demonstrate how IPL and morphine exposure reduced burst rate.
References

Worst- or equally-affected hemisphere

Least- or equally-affected hemisphere

Burst detected at this channel

-3 -2 0 1 3 Sec

-1 2

0.1 Hz

-3 -2 -1 0 1 2 3

DECIBELS

2.81 0 -2.81
Symmetric injury
Inter-central channels

Equally-affected hemisphere
bursts after equally-affected (left) hemisphere

Asymmetric injury
Inter-central channels

Worst-affected hemisphere
bursts after least-affected (right) hemisphere

Equally-affected hemisphere
bursts before equally-affected (right) hemisphere

Worst-affected hemisphere
bursts before least-affected (right) hemisphere

Mean difference cross-correlation
of positive vs. paired negative lag

Lag (msec)
250 500 750 1000 1250 1500

0.06
0.04
0.02
0.00
-0.02
-0.04
-0.06

Lag (msec)
-1500 0 1500

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

Lag (msec)
0 500 1000 1500

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

* * * *
Central bursts per min (residual)
Worst- or equally-affected hemisphere
Death or severe impairment
Survival without severe impairment

Optimal cut-off threshold

Sensitivity (%)
Specificity (%)

Corrected gestational age

medRxiv preprint doi: https://doi.org/10.1101/2023.04.25.23289131; this version posted April 26, 2023. The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.