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Abstract 

  

Heterogeneity in type 2 diabetes presentation, progression and treatment has the 

potential for precision medicine interventions that can enhance care and outcomes for 

affected individuals. We undertook a systematic review to ascertain whether strategies 

to subclassify type 2 diabetes are associated with improved clinical outcomes, show 

reproducibility and have high quality evidence. We reviewed publications that deployed 

‘simple subclassification’ using  clinical features, biomarkers, imaging or other routinely 

available parameters or ‘complex subclassification’ approaches that used machine 

learning and/or genomic data. We found that simple stratification approaches, for 

example, stratification based on age, body mass index or lipid profiles, had been widely 

used, but no strategy had been replicated and many lacked association with meaningful 

outcomes. Complex stratification using clustering of simple clinical data with and without 

genetic data did show reproducible subtypes of diabetes that had been associated with 

outcomes such as cardiovascular disease and/or mortality. Both approaches require a 

higher grade of evidence but support the premise that type 2 diabetes can be 

subclassified into meaningful groups. More studies are needed to test these 

subclassifications in more diverse ancestries and prove that they are amenable to 

interventions.  
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Introduction  

Type 2 diabetes is a global health problem posing a significant burden on healthcare 

systems. By 2045, ~11% of the world's population (783 million individuals) is projected 

to have a diagnosis of type 2 diabetes1. The prevention, better treatment and improved 

outcomes for people with type 2 diabetes is a major health priority. 

 

The diagnosis of type 2 diabetes is based on  haemoglobin (HbA1c), fasting plasma 

glucose, or oral glucose tolerance test coupled with the absence of clinical features that 

may indicate an alternative diabetes subtype (such as type 1 diabetes, monogenic, 

pancreatic or medication-induced)2. A diagnostic label of type 2 diabetes is therefore 

either arrived at through exclusion of other subtypes or in most cases, is the default 

diagnosis. Following a diagnosis of type 2 diabetes, most national and international 

guidelines have advocated the same treatment algorithms irrespective of individual 

patient characteristics and treatment choice has been based on features such as cost, 

side effects, or desire of weight loss, that are not necessarily related to the underlying 

pathophysiology. More recently international guidelines have suggested differential 

glucose-lowering therapies on the basis of higher body mass index (BMI) (favouring use 

of glucagon-like peptide analogue, GLP-1) and presence or absence of cardiovascular 

and/or renal disease and/or heart failure (GLP-1 and/or sodium-glucose co-transporter 

2, SGLT-2 inhibitors)3.  

 

Significant heterogeneity in the clinical presentation, individual characteristics and 

progression of patients with type 2 diabetes, is recognised at the clinical interface, 

including differences in degree of obesity, age, dyslipidaemia, presence of metabolic 

syndrome and’or body fat distribution4–6. Approaches such as clustering methods, to 

categorise this heterogeneity have been deployed and shown differences in progression 

to complications or need for insulin treatment. These approaches consider 

characteristics at diagnosis7 or combined clinical information with genetic data to 

demonstrate disease heterogeneity8,9. There is now growing recognition that type 2 

diabetes heterogeneity may reflect variability in the underlying pathophysiology, 
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environmental contributors and the genetic risk of affected individuals; that the risk 

factors and mechanisms leading to the development of type 2 diabetes may differ 

significantly from one individual to another and this could impact treatments. . 

 

The goal to individualise care with more precise treatment in order to achieve better 

outcomes drives the impetus to capture and categorise this heterogeneity.g. Such a 

goal has been realised in part for monogenic diabetes, where  treatments can be 

tailored to genetic subtype to deliver precision diabetes care achieving better outcomes 

than standard care10. Given the complex pathophysiology of type 2 diabetes and its 

variable polygenic risk, applying precision medicine approaches to the care of affected 

individuals is more challenging but may still be achievable. Critical to this endeavour is a 

better understanding of specific subtypes in order to achieve precise subclassification of 

type 2 diabetes.  

 

Studies of type 2 diabetes subtypes have spanned a long time period and included a 

multitude of approaches based on the presence, absence or a specific threshold of one 

or more simple clinical features or biomarkers and, recently, more sophisticated 

methods that deploy machine learning (ML) and/or genetic or other ‘omics data. 

‘Simpler’ approaches have potential merit in being easily deployed across all resource 

settings, whilst complex approaches may have greater benefit in drilling deeper beyond 

outward clinical features to decipher and classify heterogeneity. The breadth and scope 

of the evidence in favour of type 2 diabetes subclassification has not to date been 

thoroughly examined.  

 

In this systematic review for the Precision Medicine in Diabetes Initiative (PMDI) we 

aimed to provide a comprehensive and critical assessment of the evidence to date for 

type 2 diabetes subclassification using (i) simple approaches based on clinical features, 

biomarkers, imaging, or other routinely available parameters, and (ii) complex 

subclassification approaches that incorporate ML, genomic data, and clinical data. We 

aimed to identify areas where further research is needed to develop more accurate, 

cost-effective, and clinically relevant strategies for the subclassification of type 2 
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diabetes, ultimately leading to improved patient outcomes and a more efficient 

allocation of healthcare resources.   

 

The PMDI was established in 2018 by the American Diabetes Association (ADA) in 

partnership with the European Association for the Study of Diabetes (EASD). The 

ADA/EASD PMDI includes global thought leaders in precision diabetes medicine who 

are working to address the burgeoning need for better diabetes prevention and care 

through precision medicine11. This Systematic Review is written on behalf of the 

ADA/EASD PMDI as part of a comprehensive evidence evaluation in support of the 2nd 

International Consensus Report on Precision Diabetes Medicine [crossref Tobias et al, 

Nat Med]. 

 

 

Methods 

This systematic review was written and conducted in accordance with our pre-

established protocol (PROSPERO ID CRD42022310539) and reported using the 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement 

(PRISMA)12. We systematically reviewed papers to address two research questions 

devised by an expert working group;  1) What are the main subtypes of type 2 diabetes 

defined using simple clinical criteria and/or routinely available laboratory tests (simple 

approaches), and 2) What subphenotypes of type 2 diabetes can be reproducibly 

identified using ML and/or genomics approaches in different populations (complex 

approaches)? The quality of each paper was reported, and the aggregate of data 

evaluated using the GRADE system13.  

Study Eligibility Criteria 

We included English-language studies of all designs that undertook analysis of 

populations with prevalent or new-onset type 2 diabetes and attempted in some way to 

stratify or subgroup type 2 diabetes. We used broad terms to identify stratification 
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studies and all approaches to stratification (the exposure) were included (see 

supplementary). We excluded studies examining risk for the development of type 2 

diabetes, use of glycemia alone to stratify, or studies of stratification in types of diabetes 

other than type 2 diabetes, and review articles or case reports. 

 

Simple approaches were defined as follows: 

1) The exposure used inputs from any of the following 

a) a routine blood or urine biomarker that was widely available in most 

clinic settings  

b) a blood or urine biomarker that might not be routinely available now 

but could have the potential to become easily accessible 

c) any routinely available imaging modality 

d) any physiological assessment that could be undertaken in an 

outpatient setting 

e) results from routinely available dynamic tests 

2) The stratification approach was 

a) a cut-off or categorisation based on one or more of the above 

b) if an index, ratio, trend or other analysis was undertaken, it could be 

calculated without complex mathematics 

3) Outcomes 

a) All outcomes were accepted 

 

Complex approaches were defined as follows: 

 

1) The exposure used 

a) Any of the inputs for the simple approach outlined above and/or 

b) Any form of genetic data 

2) The stratification approach either 

a) Deployed ML approaches or 

b) Used other complex statistical approaches for stratification 

3) Outcomes 
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a) All outcomes were accepted 

Literature Search & Selection Strategy 

PUBMED and EMBASE databases were searched from their inception to May 2022 for 

relevant articles using a strategy devised by expert health sciences librarians (see 

appendix for search terms used). We undertook two separate searches for each 

systematic review question. Each abstract and subsequently, full text paper, were 

screened by two independent team members for eligibility. In addition to the initial 

exclusion criteria, at the full-text review stage, we further excluded studies where the 

only stratification modality was a measure of glycaemic control, where exposures were 

not clearly defined and/or if the data on outcomes of the stratification were not available 

in results or supplementary material. Conflicts were resolved by group consensus 

and/or a third independent reviewer. 

Data Extraction 

Data were manually extracted from each full-text paper by individual team members and 

cross-checked by an independent team member at the data synthesis stage. We 

extracted relevant data on study design (observational or clinical trial), analysis design  

(cross-sectional or prospective), study population characteristics, stratification method 

(exposure), outcomes assessed, and study quality assessment. For population 

characteristics we extracted data on whether the type 2 diabetes population was new-

onset or prevalent, the sample size, the ethnicity and gender of those studied, the 

duration of diabetes (for cross-sectional analysis) and duration of follow-up (for 

longitudinal follow-up). For exposure, we extracted the number of subgroups identified, 

the approach to stratification and subgroups identified. For outcomes, we documented 

the type of outcome studied and the findings according to stratified subgroup.  

Data Synthesis 

Following full-text data extraction, we undertook a qualitative analysis of exposures 

(measures used to stratify individuals with type 2 diabetes) for each systematic review 

question. For simple approaches to subclassification, we extracted the details of 
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stratification criteria in each paper (see supplementary table 1), then agreed on the 

category of exposure this fell into (e.g. blood / urine test, imaging, age etc). After data 

extraction, these exposures were further refined into subcategories based on common 

emerging themes (e.g. use of pancreatic autoantibodies, BMI categories, measures of 

beta-cell function, use of lipid profiles, etc.). For complex approaches, the exposure was 

both the input clinical and/or genetic data used and the ML approach to analysis (e.g. k-

means, hierarchical clustering, latent-class analysis, etc.), deployed. In both simple and 

complex systematic reviews, outcomes studied were heterogeneous. These outcomes 

were later broadly categorised where possible. Due to the variability in exposures and 

outcomes, it was not possible to undertake meta-analysis of any outcomes, however 

main conclusions of the relationship between exposures and outcomes in similar 

studies were evaluated. All coding, categorisation and thematic analysis was 

undertaken and agreed by at least three members of the research team. 

Quality Assessment 

The GRADE system was used to assess the quality of the studies extracted13. As well 

as assessing whether exposures and outcomes were clearly defined, valid and reliable, 

at least two members of the research team assessed whether confounders were 

appropriately accounted and adjusted for. Recognising the majority of studies were 

observational or case control, assessors used these two assessments, along with broad 

assessment of  study limitations, inconsistency of results, imprecision and reporting bias 

to assign GRADE certainty rating as very low, low, moderate and high14. 

Results 

Search and screening (for Q1 and Q2) 

The first question examined simple stratification approaches using clinical variables that 

may explain diabetes heterogeneity. A total of 6097 studies met the inclusion criteria 

and were screened (see figure 1a). 183 studies were included for full text data review 

of which 132 studies were subsequently excluded. The most common reasons for 

exclusion at the full-text review stage, were studies in  populations without prevalent or 
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incident type 2 diabetes, a study design that used ML approaches or stratification 

approaches that used HbA1c or diabetes medications. In total  51 studies underwent 

full-text data extraction.   

 

The second question aimed to identify papers with complex approaches, mostly ML 

based strategies, to identify subgroups of type 2 diabetes (see figure 1b). A total of 

6639 studies were screened, of which 106 were found eligible for full-text review. The 

most common reasons for exclusion were study populations not comprising participants 

with type 2 diabetes or classification approaches not using ML. After full-text screening, 

62 papers were included in the systematic review. 

Use of simple approaches to subclassify type 2 diabetes 

Description of extracted studies 

The 51 studies using simple type 2 diabetes subclassification approaches incorporated 

1,751,350 participants with prevalent or new-onset type 2 diabetes. 39% (20/51) of 

studies included participants of white European ancestry, 43% (22/51) incorporated 

exclusively participants from non-white European ancestries and 17% (9/51) included 

mixed ancestry groups (supplementary Table 1). The majority of the studies (78%, 

40/51) were conducted in populations with prevalent type 2 diabetes, and 22% (11/51) 

in new-onset type 2 diabetes. Approximately half the studies had a prospective design 

(25/51), the remaining half had a cross-sectional (26/51) design. For longitudinal 

studies, the follow-up period ranged from <1 year to 22 years.  

 

Studies included  wide range of exposures (see Figure 2 for summary) based on 

routine clinical measurements with standard cut-offs or groupings; continuous 

assessment of individual routine clinic based measurements e.g. variability over time; 

composite stratification incorporating 2 or more tiers of criteria e.g. cut-offs or groupings 

with one or more biomarkers or anthropometric measurements; stratification using 

alternate modalities including non-routine but clinically available biomarkers or imaging 

or clinical scores or responses to oral glucose tolerance tests (OGTT). The associations 
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of stratified exposure characteristics were investigated with various outcomes: 1) 

measures of glycaemia, 2) clinical characteristics, 3) measures of diabetes progression 

such as time-to-insulin treatment or development of microvascular complications and 4) 

cardiovascular outcomes and/or mortality. 

 

Description of categorised subgroups  

Simple approaches to classification included use of lipid profiles (n=8), BMI (n=6), 

pancreatic beta-cell related measures (n=6), pancreatic auto-antibodies (n=6), age at 

diagnosis (n=2), OGTT data (n=4), cardiovascular measures (n=3), other biomarkers in 

urine or blood and alternative approaches (n=5) (see Table 2 for summary).  

 

Different categories of triglycerides, low-density lipoprotein (LDL) cholesterol, high-

density lipoprotein (HDL) cholesterol, atherogenic small dense lipoproteins with and 

without features of metabolic syndrome were used to stratify type 2 diabetes in 8 

studies. Cardiovascular disease outcomes were assessed in 3/8 of the studies15–17 

which showed that a more atherogenic metric of the specific lipid exposure (e.g. higher 

LDL cholesterol) was associated with a greater frequency of CVD outcomes. Other 

outcomes included pulsewave velocity18 or clinical characteristics; age, BMI, presence 

of metabolic syndrome in specific subgroups. 

 

The six studies assessing pancreatic autoantibodies focused on GAD-65 levels. Studies 

used positive versus negative status or high versus low titre, and one study sub-

stratified by age. Outcomes included time-to-insulin treatment 19,20, associations with 

other clinical characteristics such as lipid profiles, BMI and blood pressure21–23 and 

measures of beta-cell function. There was no consistency in study design and most 

were observational with low to moderate evidence grade; two studies showed that GAD-

65 positivity was associated with faster-time-to insulin treatment19,20.  

 

Patients with type 2 diabetes were stratified according to their BMI in six studies, either 

by itself (n=5) or in combination with HbA1c. The number of BMI categories varied 
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between two and six in the identified studies. The association between BMI and 

glycaemic outcomes (change in HbA1c from baseline) were assessed in four studies 

either as primary or secondary outcomes5,24,24,25. We  graded the quality of evidence as 

very low to moderate, and there was no consistency of effect observed. In one 

secondary analysis of a randomised control trial, higher BMI at baseline was associated 

with faster progression to renal outcomes, however this was not replicated in any other 

study26. 

 

Age at diagnosis of type 2 diabetes was assessed as a stratification tool in two studies; 

younger age (mean age 33 years) was associated with higher rates of peripheral 

retinopathy in an observational study with 12 months follow-up versus older aged (mean 

50 years)4. In a second study, people aged 60-75 versus those >75 years had a high 

risk of CVD and mortality when stratified by cholesterol levels6.  

 

OGTT was  an exposure in four studies. The specific stratification approach applied to 

OGTT profiles was different in each study and based on cut-offs of fasting glucose 

levels, glucose gradients after stimulation and responses to different drug treatments. 

Outcomes included clamp-derived insulin sensitivity and differences in the shape of 

glucose profiles between youth and adults27.  

 

Beta-cell measures were assessed in six studies including C-peptide levels and 

homeostasis model assessment-2  indices for beta-cell function  (HOMA2-B) or insulin 

resistance (HOMA2-IR). C-peptide was defined using variable cut-offs. Outcomes  

included clinical phenotype data, response to medication, and microvascular or 

macrovascular complications.  

 

Other exposure variables included less routine biomarkers, pulse wave velocity, 

ketosis/ketoacidosis and other disease indices, however single studies prevented 

grouping of these exposures - all data summarised in Table 1. 

Of the 51 studies assessed, 55% were graded as  very low, or low GRADE certainty, 

45% had moderate certainty and none achieved high certainty. 
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Use of complex approaches to subclassify type 2 diabetes 

Description of extracted studies 

There were 62 studies of complex/ML approaches to type 2 diabetes subclassification in 

a total of 793,291 participants (Table 2). Over half of the studies included non- 

European ancestry in relevant proportions (>20%). Only ~30% (19 out of 62) of the 

studies analysed participants with new-onset diabetes. Mean diabetes duration ranged 

from recent onset (within 1 year) to over 36 years. Most data were from observational 

studies (46 out of 62), with some post-hoc analyses of clinical trials (10), survey data (4) 

and mixed study types (2). Half of the studies had prospective design (31 out of 62) with 

a mean follow-up duration ranging from 1 year to 11.6 years. K-means clustering was 

the most commonly applied ML approach (30/62). Eight studies used established 

centroids7 to assign participants to clusters. Two studies decomposed combinations of 

genetic variants and their association with clinical and laboratory phenotypes into 

genotype-phenotype clusters by using Bayesian non-negative matrix factorization. 

 

Description of the categorised subgroups  

Following up on the seminal work by Ahlqvist et al. 7, multiple studies used the variables 

age of diabetes onset, HbA1c, BMI, HOMA2-B, HOMA2-IR and GAD-65 antibody for 

diabetes subclassification (Table 2). The majority of these studies employed C-peptide-

based homeostasis model assessment indices (HOMA, or its updated variant, HOMA2 

(which require measurement of fasting insulin and glucose), as surrogates for insulin 

resistance (HOMA2-IR) and insulin secretion (HOMA2-B). Twenty-two studies 

replicated identification of the five diabetes subtypes described in Ahlqvist et al.7 in 

different contexts and populations: severe insulin-deficient diabetes (SIDD), severe 

insulin resistant diabetes (SIRD), mild obesity-related diabetes (MOD) and mild age-

related diabetes (MARD) with or without the GAD-positive severe autoimmune diabetes 

(SAID) subtype. Associations of these subtypes with clinical outcomes including 
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glycaemic traits, microvascular and macrovascular outcomes and death replicated in 12 

studies (Table 3).  

 

Thirteen additional papers used variations of the original set of variables from Ahlqvist 

et al. 7 by substituting HOMA with C-peptide, adding lipid traits e.g. HDL, or 

approximating the clusters from different / simplified variable sets by applying advanced 

statistical learning approaches such as self-normalizing neural networks. These 

approaches identified some type 2 diabetes subgroups resembling the clusters from 

Ahlqvist et al. and also novel subgroups related to the additional variables (Figure 3). 

Several of the novel subgroups were associated with clinical outcomes, however, these 

findings were not replicated in other studies (Table 2).  

 

Additional papers (n=27) assessed various sets of phenotypic inputs for ML 

approaches. These studies, grouped here into five categories of inputs, identified many 

subtypes of diabetes and associations with clinical outcomes; however, they all lacked 

replication (Table 2). Four papers applied complex ML methods to a set of less than ten 

clinical variables such as systolic blood pressure, waist circumference, BMI, fasting 

plasma glucose, and age at diabetes diagnosis, and resulting subgroups were 

associated with outcomes such as mortality. Eleven studies used a larger set of more 

than ten clinical features as inputs for classification, including data from electronic 

health records28,29, and identified subgroups with associated clinical outcomes, including 

risk of cardiovascular disease. Two other studies specifically employed cardiovascular 

traits including ECG30 and echocardiographic31 for ML algorithm inputs, and each 

identified subgroups with different associations with risk of cardiovascular disease. 

Finally, four studies involved inputs of change of glycaemic variables (HbA1c 

trajectories, glycaemia during a mixed meal test, continuous glucose monitoring 

features), 32–34 one study focused on fasting GLP-1, GIP and ghrelin levels35, and two 

studies focused on behavioural traits such as novelty seeking, harm avoidance, and 

hospital anxiety and depression scale.  
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Two sets of papers utilised genomic data to identify diabetes subtypes, either in the 

form of inherited common genetic variation 8,36 or gene expression data from muscle 

biopsies37 (Table 2). The former approach started with genetic variants associated with 

type 2 diabetes, and clustered their genotype-phenotype associations to identify 

subsets of variants predicted to act in shared mechanistic processes. Using these sets 

of genetic variants, “process-specific” or “partitioned polygenic scores” were constructed 

in individuals with type 2 diabetes, yielding clusters for insulin resistance and insulin 

secretion that were associated with differences in clinical features and prevalence of 

metabolic outcomes, with replication across multiple cohorts. Of note, however, despite 

reaching statistical significance, the associations observed between genetic subtypes 

(defined as individuals with the top 10% of process-specific polygenic risk) and others 

with type 2 diabetes were too small for clinical utility at the individual level.  

  

Overall, half of the studies had cross-sectional designs, and the other half involved 

prospective follow-up(Table 2). Around 70% of the studies had moderate evidence 

certainty. 

Discussion 

Summary of Findings 

This systematic review comprehensively and qualitatively analysed two broad 

approaches to the subclassification of type 2 diabetes to identify clinically meaningful 

subtypes and advance precision diagnostics. Simple approaches to subclassification 

were common and included diabetes-related urine and blood biomarkers, 

anthropometric measures, clinical data such as age at diagnosis, surrogate beta-cell 

metrics derived from C-peptide or insulin along with other less intuitive exposures such 

as non-diabetes related biomarkers (e.g. bilirubin levels) or pulse wave velocity. 

Approaches to subclassification were diverse; some studies used dichotomous 

separation of a  a continuous variable based on a clinical cut-point; in others, two or 

more criteria were applied in a composite approach and analysis of variability or trends 

of continuous data were also used e.g. change in eGFR over time.   
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Although many exposures were tested, the study designs, specific cut-offs used and 

outcomes were heterogenous and no studies were of high quality GRADE certainty. It 

was not possible to assess reproducibility of type 2 diabetes subtypes using data from 

studies that deployed simple approaches, however, some studies discovered 

biologically plausible type 2 diabetes subgroups. For example, in our qualitative 

analysis, subclassifications derived using BMI, beta-cell function, lipid profiles and age 

appeared to be associated with a number of meaningful outcomes which could be 

helpful in clinical practice. These potential subclassifications need to be pursued in 

better designed studies (see section on additional supporting literature). Other evidence  

not specifically included in our systematic review questions do support the role of simple 

variables in stratifying diabetes, for example, younger age at diagnosis is reproducibly 

associated with worse cardiorenal outcomes in a number of epidemiological analysis38.  

 

Machine learning approaches yielded some reproducible subtypes of type 2 diabetes 

using a variety of clinical and genetic variables. The best-replicated subtypes were the 

five clusters first described in Ahlqvist et al.7, which were replicated in 22 studies 

including approximately  88,000 individuals of diverse ancestry. Additionally, there was 

replication of genetic subtypes of type 2 diabetes from Udler et al.8 with clinical features 

seen in multiple cohorts across almost  454,000 individuals36. However, these 

associations involved small absolute effects which challenges  clinical utility for 

individual patient management, and these studies were restricted to European ancestry 

individuals. While there was replication of the clusters from Ahlqvist et al. across 

studies, the generated clusters appeared to be dependent on the characteristics of the 

underlying populations, especially factors such as distribution of ancestry, age, duration 

of diabetes, anthropometric trait variability as in BMI, and the variety of variable terms 

included in learning models. Nevertheless, at least some of the resulting subtypes 

appeared to be robust to differences in specific ML method, input variables, and 

populations (Figure 3).  

 

Many of the input variables for the complex ML subtyping approaches were also used in 

studies involving simple approaches to subclassification, recapitulating the biological 
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plausibility of specific clustering variables in defining type 2 diabetes subtypes. One 

study directly compared a simple clinical approach to the clustering approach from 

Ahlqvist et al. and found that simple single clinical measures analysed in a quantitative 

(rather than categorical) framework could better predict relevant clinical outcomes, such 

as incidence of chronic kidney disease and glycemic response to medications39. Thus, 

further research is needed to determine whether assigning a patient to one of the 

clusters from Ahlqvist et al. offers additional clinical benefit beyond evaluation of simple 

clinical measures and also beyond current standard of care. For example, high quality 

randomised controlled trial evidence is needed to prove that for differential treatment 

and/or clinical care pathways knowledge of a patient’s cluster membership makes a 

material difference.  

Study Quality  

No studies included in our systematic review had above moderate certainty of evidence. 

Strengths of the included studies were their large sample sizes, the diversity of 

variables considered, and inclusion of both prevalent and new-onset cases of type 2 

diabetes. However, the varied study designs and lack of  replicationblimits the ability to 

draw clear conclusions about the most effective approaches to subclassification. Most 

variables used for subclassification capture momentary metabolic states, and cluster 

assignment can change over time, therefore lacking stability and sufficient predictive 

accuracy40,41. Additionally, most studies focused on European-ancestry populations, 

and the clinical value of these approaches may vary across different ancestries. It was 

positive to see that some ancestries have representations such as East Asians, 

however replication in Black, south Asian and Hispanic populations is definitely 

required. This is particularly important, as four out of five people with type 2 diabetes 

hail from marginalised groups or live in low or middle income countries. Finally, most 

studies were retrospective, and there are no data involving subtype-stratified clinical 

trials or “real world” implementation of approaches. Future precision diagnostic 

interventions should address, not widen inequalities.  
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Additional supporting literature  

Since our literature search was conducted, new publications have advanced our 

understanding of type 2 diabetes subclassification. 

Two recent studies applied ML approaches to stratify diabetes heterogeneity, both 

considering  continuous approaches rather than with discrete clusters42,43. Nair et al. 

(2022) used a non-linear transformation and visualisation of nine variables onto a tree-

like structure43 and with replication in two large datasets42. This approach linked 

underlying disease heterogeneity to risk of complications, e.g. those at risk of 

cardiovascular disease had a different phenotype to those with microvascular 

complications and to drug response, and also demonstrated associations of gradients 

across the tree with the genetic process-specific scores from Udler et al.8. Wesolowska-

Andersen et al. performed soft-clustering from 32 clinical variables which yielded 4 

diabetes archetypes comprising ~⅓ of the study population. The remaining study 

population was deemed as mixed-phenotype. This study has not been replicated42.  

Additionally, one of the first clinical trials to assess precision medicine approaches for 

diabetes management was published. The Trimaster Study tested dichotomised BMI 

and eGFR strata in a three-period crossover trial using three pharmacologic 

interventions with the primary hypothesis being stratum-specific differences in HbA1c44. 

Participants with obesity (BMI > 30 kg/m2) showed a glycemic benefit on pioglitazone 

vs. sitagliptin and participants with lower eGFR (between 60 and 90 ml/min/1.73m2) 

responded with lower HbA1c to sitagliptin as compared to canagliflozin. In a secondary 

analysis, drug-choice corresponding to patient preferences yielded lower glycemia than 

a random allocation, suggesting that “listening to patients” is critical in informing 

therapeutic decisions45. Ramifications of this study are limited by the non-comparable 

pharmacologic doses used, and the primary focus on glycaemia which may not be 

indicative of long-term therapeutic success and/or prevention of complications. Yet, 

these studies have generated higher quality evidence linking type 2 diabetes 

heterogeneity to treatment and disease outcomes, and it remains to be seen if these 

can be replicated in other ancestries and translated into ‘usable products’ for healthcare 

professionals.  
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It is worth noting that ketosis-prone type 2 diabetes, an established type 2 diabetes 

subtype, was not captured adequately in our systematic review;  only one study 

evaluated ketosis-prone type 2 diabetes as an exposure46. Study designs for ketosis-

prone type 2 diabetes are usually analyses of cohorts with diabetic ketoacidosis at 

presentation, rather than as an exposure in people with type 2 diabetes. Since our 

search was designed to identify studies stratifying type 2 diabetes, these distinct cohort 

studies were not captured. Like many other ‘simple’ criteria for classification, the clinical 

characteristics of people with diabetic ketoacidosis at presentation of type 2 diabetes 

have been studied, but prospective follow-up analyses are few47 and even then, moving 

forwards beyond phenotype to differences in outcomes or treatment, have not been 

realised.  

Age-at-diagnosis as a simple approach to stratification also did not feature strongly in 

our search results. The body of literature that outlines higher risk of microvascular or 

macrovascular complications in early-onset type 2 diabetes has focussed on comparing 

people with type 2 diabetes to those without diabetes in different age groups38,48 or 

studied cohorts of early-onset cases in isolation49 and thus would not have been 

captured in our search strategy. Recent epidemiological publications have not directly 

compared outcomes between early and late age onset strata50,51 showcasing higher 

risks of cardiorenal outcomes with early-age at onset, but these are retrospective 

analyses of health record databases and are potentially confounded by age-related risk 

of complications and duration of diabetes. To move forward, prospective studies 

stratifying different interventions (e.g. tighter treatment targets or better cardiovascular 

risk reduction) by age-at-diagnosis are needed, to prove clinical benefit of age-related 

subclassication. 

Findings in context 

Our analysis has shown that simple features have not been evaluated to a high enough 

standard to subclassify type 2 diabetes into subtypes more precisely and reproducibly. 

Perhaps this is not surprising as many studies were not necessarily conducted with 

‘precision diagnosis’ in mind, but rather as studiess of clinical phenotypes spanning a 

time period before the concept of ‘precision diagnosis’ evolved. These studies have ‘set 
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the scene’, but the field needs more robust evidence. It is important to note that many of 

the simple clinical criteria studied, do have other bodies of evidence supporting 

associations with outcomes, such as age-at-diagnosis as outlined above.  

In contrast, ‘complex’ methods (which emerged with a precision diagnosis label very 

much in mind) have shown better reproducibility, have been linked to a variety of 

meaningful clinical outcomes more consistently, and more recently have been able to 

demonstrate differential treatment responses related to stratification.  

What does this mean for a precision medicine approach to type 2 diabetes diagnosis? 

Ideally these strategies should be deployed at diagnosis of type 2 diabetes on the basis 

of clinical characteristics and/or ‘omics, such that people in different subgroups or with 

‘different flavours’ of type 2 diabetes could be treated differently. One key question is 

whether such efforts would actually improve clinical outcomes compared to the current 

standard of care and clinical usefulness and cost-effectiveness of such approaches 

would need to be evaluated. 

 

For most subclassification approaches described, there is a need for replication in 

independent datasets, assessment in more diverse populations, in people with both 

new-onset and prevalent diabetes, and investigation using prospective data, ideally in 

the form of randomised clinical trials. Additionally, high-quality evidence regarding the 

therapeutic utility of diabetes subphenotypes could be obtained from randomised 

controlled studies examining cluster-specific treatment effects, which are yet to be 

carried out. Ideally, subphenotyping should lead to stratification of complication risks, 

and such approaches should incorporate the prevention of diabetes complications as 

endpoints. However, conducting these studies may be challenging due to the necessity 

for extensive follow-ups, large sample sizes, and significant resource requirements. 

There is a pressing need for innovative strategies to generate high-quality evidence on 

treatment options tailored to specific diabetes subtypes in diverse populations. These 

data will be critical to determine generalizability of findings and amenability for clinical 

translation. 
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Clinical Applicability 

The current evidence supports that there are  robust subtypes of type 2 diabetes and 

that these subtypes are associated with clinical outcomes. However, the low to 

moderate quality of existing studies and the need for replication in ancestry-diverse 

studies make it difficult to identify a strongly evidence-based, universally applicable 

approach.  

The most clinically valuable methods are likely to be those that are easy and 

inexpensive to implement. For more complex approaches, decision support tools will 

need to be developed and assessed for feasibility and utility. Although the evidence 

supporting complex approaches has, effectively, leap-frogged the evidence in favour of 

more simplified approaches, there is still likely to be a place for simple approaches that 

can be more accessible at diverse clinical interfaces. While stratifying patients with 

diabetes into discrete subtypes might result in information loss compared to continuous 

risk modelling39, discrete clusters might facilitate informing clinical decisions41.    

Limitations 

The limitations of this review reflect the limitations of the literature. To manage the 

breadth of literature analysed in this systematic review, we focussed on studies 

incorporating ‘genomic data’ rather than proteomics or metabolomics. We also did not 

include studies in participants at risk of type 2 diabetes, although we recognise that a 

body of evidence is emerging to stratify type 2 diabetes incidence risk using multiple 

approaches that are similar to those for established type 2 diabetes as reported here. 

Since we focused on studies that attempted to subgroup type 2 diabetes, we also did 

not capture analyses of independent cohorts with a particular type 2  diabetes 

phenotype at baseline, for example, studies of young people with type 2 diabetes or 

those with ketosis-prone type 2 diabetes (as outlined above). 

Next Steps  and Recommendations 

Future research should aim to identify and validate clinically useful and cost-effective 

methods for type 2 diabetes subclassification that can be applied across diverse 

populations. Such research will involve replication of a given approach in independent 
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datasets, including from diverse ancestral populations, to ensure generalisability. For 

simple stratification approaches there is still much that can be done - agreement on 

standardised study designs for precision diagnostics studies could be a first step. 

Prospective studies focusing on stratification of new-onset diabetes cases may provide 

valuable insights into the progression and development of distinct subtypes. Once a 

given approach has been appropriately replicated, additional research is required to 

demonstrate clinical benefit gained by applying a given subclassification approach, 

ideally in the form of clinical trials, and testing in diverse populations 

Finally, as ML approaches require real-time computation, the development of strategies 

to overcome resource constraints in implementing these methods should be explored. 

 

Conclusion 

In this first systematic review of the evidence underpinning type 2 diabetes 

subclassification, multiple approaches have been identified under the banner of simple 

criteria based on fundamental categorisation of mostly routine measures and complex 

approaches with multitrait (including genetic) inputs that require ML or computation. 

Whilst simple approaches are likely to be more easily deployed in the future, the study 

designs and level of evidence currently limits any firm conclusions regarding the utility of 

such approaches. The clinical variables and data incorporated into ‘complex’ 

approaches have yielded reproducible subclassifications and a growing body of 

evidence supports clinically meaningful associations to outcomes and treatment 

responses. This is a rapidly evolving field with higher quality evidence emerging all the 

time. It is clear that clinically relevant heterogeneity in type 2 diabetes presentations and 

progression is ripe for precision medicine interventions. It will be crucial to develop 

interventions that target diverse populations and that shall be feasible in all resource 

settings to prevent widening existing inequalities in the care of people with type 2 

diabetes.  
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Figure 1. A, B: Systematic review attrition diagram. Left panel (A) for simple approaches to subclassification and right

panel (B), complex approaches.

 

 

ght 

es. 

 

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

(w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
T

he copyright holder for this preprint
this version posted A

pril 20, 2023. 
; 

https://doi.org/10.1101/2023.04.19.23288577
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2023.04.19.23288577


 

Figure 2: Schematic overview of approaches used to subclassify type 2 diabetes 

Left panel depicting ‘simple approaches’ to type 2 diabetes subclassification and right panel ‘complex approaches’. HbA1c, glycated

haemoglobin; BMI, body mass index; GAD-65, glutamic acid decarboxylase-65 antibodies. 
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Figure 3: Main characteristics of diabetes clusters derived using different clustering variables, compared to

original ‘Alhqvist’ clusters. Clustering variables denoted in blue are consistent across the different studies, those in black are

unique to the particular study outlined. A greyed out box indicates that the indicated diabetes cluster was replicated from the Ahlqvis

study, a dark blue box indicates a new diabetes cluster. 
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Table 1 

Approach Total n / % Female / 

Mean age (years) 

% Race/ethnicity 

breakdown 

% Presentation of 

T2D, n (%) 

% Prospective 

vs Cross 

sectional, n (%) 

Duration follow-

up (years) 

Machine learning 

approach 

Exposure category T2D subclassified Groups identified Outcome category, n (%) Overall quality, n (%) References () 

Simple: Pancreatic 

autoantibodies  

(n=6 studies) 

8350 participants   

42.2% female   

54.6 years 

87% White 

European  

11% Korean  

2% Nigerian 

Prevalent (n=5, 

83%) 

New onset (n=1, 

17%) 

Prospective 

(n=2, 33%) 

Cross-sectional 

(n=4, 67%) 

6 years n/a GAD-65 antibody 

positivity and/or titre 

alone (n=5) or in 

combination with age 

(n=1) 

1) GAD antibody positive vs negative 

2) GAD status substratified by age 

3) High and low titre GAD positivity 

1) Earlier time to insulin treatment, 

n=2, 33% 

2) Association with variable clinical 

characteristics, n=3, 50%  

3) Beta-cell function physiological 

measure, n=1, 17%) 

 
Moderate (n=4, 67%) 

Low (n=1, 17%) 

Very low (n=1, 17%) 

19
;
22

;
21

;
52

;
20

; 
23

 

Simple: Beta-cell 

related measure or 

index  

(n=6 studies) 

17,881 participants 

38% female 

30-65 years 

European (n=1, 

17%) 

Asian (n=5, 83%) 

Prevalent (n=4, 

66%) 

New onset (n=2, 

33%) 

Prospective 

(n=1, 17%) 

Cross-sectional 

(n=5, 83%) 

3 months n/a Fasting c-peptide or 

insulin level (n=3) 

HOMA assessment 

(n=2) 

Urinary c-peptide 

creatinine ratio (n=1) 

1) High versus normal / low fasting insulin/C-peptide 

level/UCPCR level  

2) Insulin sensitive versus resistant 

1) Biochemical measures (n=1, 

16%) 

2) Micro/macrovascular disease 

(n=3, 50%) 

3) Response to medications (n=2, 

33%) 

Moderate (n=2, 33%) 

Very low (n=4, 66%) 

one study not 

in PubMed 
72

 

53
 
54

 
55

 
56

 

Simple: Age at 

diagnosis 

(n=2 studies) 

1535 participants   

48% female 

Mean age not 

reported 

57% European  

43% Asian  

Prevalent (n=2, 

100%) 

Prospective 

(n=2, 100%) 

12 months (n=1) 

median 9.8 years 

(n=1) 

n/a Age, diabetes 

duration, lipid profile 

Age at diagnosis 

1) Age 60-75 years vs. >75 years. Secondary analysis 

further stratified by diabetes duration: <6 years vs. >=6 

years.  

2) Age at diagnosis < 25 years v. >25 years 

1. Total and cardiovascular 

mortality (n=1, 50%) 

2. Severity of retinal disease (n=1, 

50%) 

Low (n=2, 100%) 
6
 
4
 

Simple: BMI 

(n=6 studies) 

74,104 participants  

47% female   

50-65 years 

25% European  

23% Asian 

(including Chinese, 

South Asian, Other) 

2% non-White 

50% not reported 

Prevalent (n=6, 

100%) 

Prospective 

(n=4, 67%) 

Cross-sectional 

(n=2, 33%) 

0.5 - 5 years n/a BMI alone (n=3) or in 

combination with 

HbA1c (n=1), with 

high triglycerides 

(n=1), or with sex 

(n=1) 

1) BMI categories (<18.5, 18.5-24.9, 25-25.9, 30-34.9, 

35-39.9, >=40 kg/m2); (<25, 25-30, >30 kg/m2); (<18, 

18-22.9, >=23 kg/m2)  

2) BMI <=30 vs >30 kg/m2 and HbA1c <7% vs >=7%  

3) BMI >=30 vs <30 kg/m2 and TG >=2.3vs <2.3 mmol/l  

4) sex-stratified BMI >=30 vs <30 kg/m2 

1) Physiological measure (n=1, 

17%) 

2) T2D complication other than 

CVD (n=1, 17%)  

3) Glucose control (n=4, 67%) 

Moderate (n=5, 83%) 

Very low (n=1, 17%) 

5
 
26

 
24

 
57

 
25,58

 

 Simple: Lipid profile 

/ metabolic 

syndrome  

(n=8 studies) 

23,933 participants 

41% female 

Mean age 61.7 years 

52% 

European/White, 

32% Asian (all 

Chinese) 

16% non-White 

Prevalent (n=7, 

87.5%) 

New-onset (n=1, 

12.5%) 

Prospective 

(n=3, 37.5%) 

Cross-sectional 

(n=5, 62.5%) 

Range: 2-5 years  

mean 4.8 years 

n/a Metabolic syndrome 

(yes/no) (n=2), 

circulating lipid levels 

or atherogenicity 

indices calculated 

using lipids (n=5), 

combination of 

hypertriglyceridemia 

with abdominal 

obesity (n=1)  

1) Presence or absence of atherogenic dyslipidemia 

(triglycerides ≥2.26 mmol/L and HDL cholesterol ≤0.88 

mmol/L in those with LDL-c <3.35 mmol/L) 

2) Tertiles of triglyceride-glucose index 

3) Quartiles of small dense LDL-cholesterol 

4) Triglyceride-glucose index and visceral adiposity 

index (below vs above median) 

5) Atherogenic index of plasma <0.034 (low) vs >0.034 

(high) (AIP=log(TG/HDL-c)) 

6) Hypertriglyceridemic waist phenotype (waist 

circumference ≥94 cm (men) and ≥80 cm (women) and 

triglycerides ≥150 mg/dL 

7) Low vs. high triglyceride levels 

8) Metabolic syndrome (presence vs absence 

according to 3/5 criteria by AHA/NHLBI definition) 

1) CVD event (n=3, 37.5%) 

2) Physiological measure (brachial-

ankle PWV, metabolic syndrome; 

n=2, 25%) 

3) Glucose control (n=1, 12.5%) 

4) More than one of the above 

(n=2, 25%) 

Moderate (n=2, 25%) 

Low (n=4, 50%) 

Very low (n=2, 25%) 

15–17,17,18,59–61
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Simple: OGTT data  

(n=4 studies) 

1,399 participants 

~30% female 

~14-60 years 

~35% White 

~10% Black 

~15% Hispanic 

40% Japanese 

Prevalent (n=1, 

25%) 

New onset (n=3, 

75%) 

Prospective 

(n=2, 50%) 

Cross-sectional 

(n=2, 50%) 

1 - ~14 years n/a Fasting and 2hr 

glucose (n=2) 

Trial treatment 

assignment and OGTT 

profiles (n=1) 

OGTT profiles (n=1) 

1) Categorized by fasting and 2hr glucose: 

(n=1: FPG >=7 mmol/L and 2-hr PG <7.8 mmol/L vs. 

FPG <7 mmol/L and 2-hr PG >=7.8 mmol/L vs. FPG >=7 

mmol/L and 2-hr PG >=7.8 mmol/L); (n=1: FG ≥7·0 

mmol/L, 2 h glucose <11·1 mmol/L vs. FG <7·0 mmol/L, 

2 h glucose ≥11·1 mmol/L; vs. FG ≥7·0 mmol/L, 2 h 

glucose ≥11·1 mmol/L) 

2) Treatment assignment (metformin alone for 12mo 

vs glargine for 3mo followed by metformin for 9mo) 

and OGTT profile (monophasic, biphasic, and upward 

curve) 

3) OGTT profiles: monophasic curve (gradual increase 

in glucose between 30-90 min until peak, followed by 

subsequent decline by ≥0.25 mmol/L); biphasic curve 

(rise of glucose to a peak followed by a fall but then 

second rise of ≥0.25 mmol/L); upward curve defined as 

continuous increase in plasma glucose during 2 hr of 

OGTT 

1) CVD event (n=1, 25%)  

2) Glucose control (n=1, 25%) 

3) Physiological measure (glucose 

response, insulin sensitivity, 

insulinogenic index; n=2, 50%) 

Moderate (n=2, 50%) 

Low (n=2, 50%) 

27,62–64
 

 

 

Simple: Alternative 

approach to 

stratification (n=5 

studies) 

1,572,942 

participants 

45.2% female 

58.6 years 

99.7% Korean 

0.28% 

European/White 

0.03% Black 

Prevalent (n=4, 

80%) 

New-onset (n=1, 

20%) 

Prospective 

(n=3, 60%) 

Cross-sectional 

(n=2, 40%) 

Range: 5-22.5 

years 

mean: 5.7 years 

n/a Clinical illness burden 

index (n=1), imaging-

based (n=1), fasting 

glucose or ketones 

measured in blood 

(n=2), diabetes 

duration (n=1) 

1) Total illness burden index (< vs ≥12) 

2) Diabetic retinopathy (yes/no) 

3) Ketosis-prone defined as new-onset diabetes 

without precipitating events, with significant ketosis 

(urine ketones ≥13.7 mmol/l)  

4) Severe hypoglycemia (yes/no) & number of glycemic 

episodes (none, 1, 2, 3+)  

5) Diabetes duration (<5, 5-10, 10-15, 15+ years) 

1) CVD event (n=3, 60%)  

2) Clinical biomarker (n=1, 20%) 

3) Physiological measure (n=1, 

20%) 

Moderate (n=1, 20%) 

Low (n=4, 80%) 

46,65–

68
 

Simple: 

Cardiovascular 

features  

(n=3 studies) 

8,793 participants 

53.4% female 

62.3 years 

75% 

European/White 

16.4% Asian 

(Chinese, Malay, 

Indian) 

8.6% Black 

Prevalent (n=3, 

100%) 

Prospective 

(n=2, 66.6%) 

Cross-sectional 

(n=1, 33.3%) 

Range: 3-5 years  

mean: 4.3 years 

n/a Pulse pressure (n=1),  

Pulse wave velocity 

(n=1),  

Cardiomyopathy (n=1) 

1) Office pulse pressure quartiles (<49, 49-55, 56-65, 

>65),  

2) Pulse wave velocity tertiles 

3) Cardiomyopathy (present/absent) 

1) CVD event (n=2, 66.6%) 

2) T2D complication other than 

CVD (CKD progression, n=1, 33.3%) 

Moderate (n=2, 66.6%) 

Low (n=1, 33.3) 

69–71
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Simple: Other blood 

or urine test  

(n=11 studies) 

71,609 participants 

%47.4 female 

62.2 years 

70.6% 

European/White 

9.6% Chinese 

5.0% Taiwanese 

1.2% Black 

0.9% Japanese 

0.6% Hispanic 

0.1 Egyptian (or 

Middle-Eastern?) 

11.3% non-White 

0.7% Other 

Prevalent (n=8, 

72.7%) 

New-onset (n=3, 

27.3%) 

Prospective 

(n=6, 54.5%) 

Cross-sectional 

(n=5, 45.5%) 

Range: 1.6-7 

years 

mean: 4.8 years 

n/a Measures of kidney 

damage or filtration or 

glucosuria (n=4),  

Serum markers of 

inflammation or 

fibrosis (n=3), 

Bilirubin or bile acids 

(n=2), 

Haptoglobin 

phenotype (n=1), 

HbA1c, total 

cholesterol, and BP 

(n=1) 

1) UACR <30 (no albuminuria), 30-300 

(microalbuminuria), >300 (macroalbuminuria) (n=2) 

2) eGFR < vs. ≥60 ml/min/1.73m2 (n=1) 

3) Glycosuria categories: low, no fasting glycosuria and 

nighttime blood glucose ≥10 mmol/L; high, urinary 

glucose >5.5 mmol/L and nighttime blood glucose <8 

mmol/L (n=1) 

4) Serum CRP quartiles (≤2.7 mg/L, 2.8-4.6 mg/L, 4.7-

9.1 mg/L, ≥9.2 mg/L) (n=1) 

5) Vaspin and adiponectin levels < vs. ≥ mean 

according to sex (n=1) 

6) Quartiles of fibrosis index, stratified by albuminuria 

(n=1) 

7) TBA levels (<3.6 umol/L, 3.6 - 10 umol/L, 10+ mol/L) 

(n=1) 

8) log(bilirubin) levels, higher vs. lower (n=1) 

9) Hp2-2 phenotype, yes vs no (n=1) 

10) Number of factors (HbA1c, total cholesterol, blood 

pressure) at goal on average (none, 1, 2, all 3) (n=1) 

1) Clinical biomarker (n=4, 36.4%) 

2) CVD event (n=3, 27.3%) 

3) T2D complication other than 

CVD (n=2, 18.2%) 

4) Death (n=2, 18.2%) 

 
Moderate (n=5, 46%)  

Low (n=3, 27.3%)  

Very low (n=3, 27.3%)  

73–82
 
83
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Table 2 

 

Approach Total n / % Female / 

Mean age (years) 

% Race/ethnicity 

breakdown 

% Presentation of 

T2D, n (%) 

% prospective 

vs Cross 

sectional, n (%) 

Duration 

follow-up 

(years) 

Machine learning approach Exposure category T2D subclassified Groups identified Outcome category, n (%) Overall quality, n (%) References 

Complex: Ahlqvist 

and directly 

replicated Ahlqvist 

clusters 

(n=22 studies) 

88,197 participants 

43% female 

55.28 years 

81% Non-Hispanic 

White, 

11% East Asian, 

4% Hispanic, 

3% South Asian, 

<1% Black, 

<1% Other 

Prevalent (n=11, 

50%), 

New onset (n=11, 

50%) 

Prospective 

(n=8, 36.6%), 

Cross-sectional 

(n=14, 63.6%) 

6.7 100% k-means 

HbA1c, BMI, age at onset 

of diabetes, HOMA2-B, 

and HOMA2-IR (using c-

peptide). GADA Ab 

SAID, SIDD, SIRD, MOD, MARD 

Microvascular & macrovascular 

events (n=9, 41%), 

Clinical and biochemical traits (n=4, 

18%) 

Microvascular events only (n=3, 

13%), 

Glycaemia (n=2, 9%), 

Macrovascular events only (n=1, 5%), 

Omics (n=1, 5%), 

Other (n=2, 9%) 

Very Low (n=1, 5%), 

Low (n=3, 13%), 

Moderate (n=18, 82%) 

7,39,8

4–103
 

Complex: Similar to 

Ahlqvist clusters 

(n=13 studies) 

214,093 participants 

45% female 

58.6 years 

72% Non-Hispanic 

White,  

12% Hispanic,  

10% South Asian, 

4% East Asian,  

2% Black,  

<1% Native American,  

<1% Other 

Prevalent (n=11, 

85%), 

New onset (n=2, 

15%) 

Prospective 

(n=7, 54%),  

Cross sectional 

(n=6, 46%) 

11.6 a) Addition of complementary 

clinical variables (i.e., HDL, TG, 

waist circumference, uric acid, 

etc.) b) Incorporating new 

clustering, i.e., self-normalizing 

neural networks trained on k-

means clustering. c) Addition of 

ethnic-specific thresholds for 

BMI. 

HbA1c, BMI, age at onset 

of diabetes, HOMA2-B, 

and HOMA2-IR (using c-

peptide), GADA Ab = (TG, 

HDL-C, waist 

circumference, uric acid, 

systolic blood pressure, 

etc.) 

SAID, SIDD, SIRD, MOD, and MARD. Five 

clusters: Older onset, Severe 

hyperglycemia, Severe obesity, Younger 

Onset, and Insulin use. Four clusters: 42% 

(older onset), 14% (poor glucose control), 

24% (severe obesity), and 20% (younger-

onset).New subgroups MD, EOIDD, EOIRD, 

LOIDD, LOIRD. 

Microvascular & macrovascular (n=5, 

38%),  

Microvascular events only (n=3, 

23%),  

Macrovascular events (n=1, 8%),  

Glycaemia (n=1, 8%),  

Other (n=3, 23%) 

Very Low (n=1, 8%),  

Low (n=5, 38%)  

Moderate (n=7, 54%) 

40,56,

104–

113
 

Complex: simple 

clinical features  

(n=4 studies) 

22,296 participants 

46.5% female 56 

years 

34% Non-Hispanic 

White,  

25% Asian, 25% Middle 

Eastern, 9% Black,  

5% Hispanic,  

1% Native 

American/American 

Indian/Alaskan Native,  

<1% Other  

Prevalent T2D 

(n=3, 75%), New 

onset (n=1, 25%) 

Prospective 

(n=3, 75%), 

Cross-sectional 

(n=1, 25%) 

8.5 50% k-means (n=2), 50% other 

(n=2) 

HbA1c, age, BMI, 

hemoglobin glycolysation 

index, HOMA-IR2, HOMA-

B2, waist circumference, 

fasting plasma glucose, 

systolic blood pressure, 

triglycerides, NAFLD 

variable Mortality (n=2, 50%), Cardiovascular 

events (n=1, 25%), Clinical and 

biochemical traits (n=1, 25%) 

Moderate (n=3, 75%), Low 

(n=1, 25%) 

114–

117
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Complex: complex 

clinical features  

(n=11 studies) 

386,889 participants 

46.8% female  

60 years 

57% Non-Hispanic 

White,  

24% Asian, 8% Black,  

6% Hispanic,  

<5% Other 

Prevalent T2D 

(n=9, 82%), New 

onset (n=2, 18%) 

Prospective 

(n=7, 64%), 

Cross-sectional 

(n=4, 36%) 

4.95 variable various clinical variables 

(e.g. anthropometric, 

glycemic, comorbidities) 

variable Cardiovascular events (n=4, 36%), 

Glycemic control (n=3, 27%), 

Complications other than CVD event 

(n=2, 18%), Mortality (n=1, 9%), 

Other (n=1, 9%)  

Moderate (n=9, 82%), Low 

(n=2, 18%) 

15,16,83–91 

Complex: 

cardiovascular 

features  

(n=2 studies) 

974 participants 

55.4% female 63 

years  

100% Non-Hispanic 

White 

Prevalent T2D 

(n=2, 100%) 

Prospective 

(n=2, 100%) 

6.3 Factor analysis (clustering) 

(n=1, 50%), Hierarchical 

clustering (n=1, 50%) 

Multiple cardiovascular 

risk factors, 

echocardiography traits 

3 and 4 clusters Cardiovascular death and events 

(n=2, 100%) 

Moderate (n=1, 50%), Low 

(n=1, 50%) 

30,31
 

Complex: 

behavioural 

features  

(n=2 studies) 

653 participants 

40.5% female 63.5 

years 

48% Non-Hispanic 

White,  

50% Asian, 2% others 

Prevalent (n=1, 

50%), 

New onset (n=1, 

50%) 

Prospective 

(n=1, 50%),  

Cross sectional 

(n=1, 50%) 

1 clustering, hierarchical 

clustering 

Behavioural and 

psychological traits 

2 and 4 clusters Glycemic control (n=2, 100%) Moderate (n=1, 50%), Low 

(n=1, 50%) 

127,12

8
 

Complex: glycemic 

features  

(n=4 studies) 

67,064 participants 

42.8% female 62.5 

years 

40.6% Non-Hispanic 

White,  

25% Asian,  

25% Middle Eastern, 

9.4% Other  

Prevalent (n=3, 

75%), 

New onset (n=1, 

25%) 

Prospective 

(n=3, 75%),  

Cross sectional 

(n=1, 25%) 

4.5 50% k-means, 25% latent-class 

analysis, 25% hierarchical 

clustering 

HbA1c trajectories, 

glycemic curve from 

metabolic tests and 

continuous monitoring 

3 and 4 clusters Glycemic control (n=2, 50%), 

Cardiovascular events (n=2, 50%) 

Moderate (n=2, 50%), 

High (n=1, 25%), Very low 

(n=1, 25%) 

32–

34,129
 

Complex: genetics  

(n=3 studies) 

42,952 participants 100% Non-Hispanic 

White 

Prevalent T2D 

(n=3, 100%) 

Cross sectional 

(n=3, 100%) 

Not-

applicable 

Bayesian Non-negative Matrix 

Factorization (n=2, 67%), 

Hierarchical clustering (n=1, 

33%) 

genetic variant-trait 

associations, skeletal 

transcriptome 

5 clusters of variant-trait associations; 3 

clusters of skeletal dysregulated 

genes/pathways in people with diabetes 

Coronary artery disease, stroke, renal 

disease 

Moderate (n=2, 67%), Low 

(n=1, 33%) 

8,36,3

7
 

Complex: 

Hormonal 

(n=1 study) 

96 participants 

53% female 

62 years 

100% Non-Hispanic 

White 

New onset(n=1, 

100%) 

Cross sectional( 

n=1, 100%) 

Not-

applicable 

Two-step cluster analysis 

using log-likelihood distance 

measures 

GLP-1, GIP, Ghrelin Two clusters (cluster 1: low GLP-1 and 

Ghrelin; cluster 2: high GLP-1 and Ghrelin) 

Glycemia (n=1, 100%) Moderate (n=1, 100%) 

35
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Table 3 

Association of the Ahlqvist-clusters with outcomes from 22 reviewed studies using consistent cluster assignment methods 

 

 Glycemic outcomes Microvascular outcomes Macrovascular outcomes Other outcomes Death 

SIDD  Insulin requirement7,92  

Retinopathy7,92,97–99 

(N=3160) 

Nephropathy92,98 

(N=1074) 

Lower extremity arterial 

disease98 (N=223) 

Distal symmetric 

polyneuropathy, Cardiac 

autonomic neuropathy85 

(N=28), Erectile 

dysfunction88 (N=4)  

SIRD 

Glycemic benefit with 

thiazolidinedione 

therapy39 (N=800) 

Diabetic kidney 

disease7,85,93,95,98,102 

(N=2686) 

MACE (confounded by 

age and sex7, N=1373) 

Prevalence of NAFLD85 

(N=121), Erectile 

dysfunction88 (N=7), 

Diabetic peripheral 

neuropathy98 (N=225)  

MOD    Neuropathy92 (N=1258)  

MARD 

Glycemic benefit with 

sulfonylurea therapy39  

(N=1361) Retinopathy95 (N=1487) MACE7,92 (N=3513)  CVD mortality97 (N=56) 
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