Bivalent COVID-19 booster vaccines induce cross-reactive but not BA.5-specific antibodies in polyclonal serum

Juan Manuel Carreño*, Gagandeep Singh*, Anass Abbad, Temima Yellin, Komal Srivastava, Charles Gleason, PVI study group, Harm van Bakel, Viviana Simon* and Florian Krammer*

Affiliation: Icahn School of Medicine at Mount Sinai, New York, NY, USA

*Contributed equally

*Corresponding authors: Florian Krammer (florian.krammer@mssm.edu), Viviana Simon (viviana.simon@mssm.edu), Juan Manuel Carreño (jm.carreno@mssm.edu)

Abstract

The question if the bivalent mRNA COVID-19 booster vaccination, containing wild type and BA.5 spike, provides enhanced benefits against BA.5 and similar Omicron subvariants has been widely debated. One concern was an ‘original antigenic sin’-like effect which may redirect immune responses to the bivalent vaccine towards the wild type spike and may block de novo generation of BA.5 specific antibodies. Here, we characterized the response to the bivalent vaccine and we performed antibody depletion experiments. Interestingly, when we depleted serum of all antibodies to wild type RBD, we also removed all reactivity to BA.5 RBD. This suggests that all antibodies induced by the bivalent vaccine – at least with the limit of detection of our assay in polyclonal serum - are in fact cross-reactive. This further suggests that, on a serum antibody level, the bivalent vaccine did not induce a de novo response to BA.5.
Bivalent COVID-19 booster vaccines induce cross-reactive but not BA.5-specific antibodies in polyclonal serum

Vaccination against the coronavirus disease 2019 (COVID-19) increased immunity in the population reducing viral transmission and protecting against severe disease. However, continuous emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants required the implementation of bivalent boosters including the wild-type (WT, D614G) and BA.5 spike. Improved effectiveness of bivalent vs monovalent booster against Omicron sub-variants was reported [1], however limited differences in the immune response are detected [2, 3].

We investigated whether a bivalent COVID-19 booster vaccine comprised of WT + BA.5 spike induced detectable BA.5-specific antibody responses in serum. Samples (n=16) collected before [31 days +/- 63 (0 – 260)] and after [16 +/- 8 days (6 – 31)] receiving the bivalent booster were tested for antibody binding and avidity to the receptor binding domain (RBD) of WT and BA.5. Neutralization of WT and BA.5 viruses was determined. Omicron-specific antibodies were measured by depletion of WT RBD reactive antibodies and assessment of depleted sera against BA.5 RBD.

A significant increase in antibody binding to WT and BA.5 RBD and in neutralization of WT and BA.5 viruses were detected following bivalent booster. There were significant differences in binding of post-booster sera between WT and BA.5 RBDs, however differences in neutralization were not significant. Pre- and post-booster RBD antibody avidity was lower against BA.5 vs WT RBD, which prompted us to look for BA.5 specific antibodies. WT RBD depleted sera lacked reactivity to WT RBD – as expected – and to BA.5 RBD, suggesting that a single exposure to BA.5 antigens by the administration of bivalent vaccine boosters does not elicit robust levels of BA.5 specific serum antibodies.

Reduced sensitivity of antibody tests based on WT viral antigens was detected in naïve individuals after Omicron infection [4]. However, most of the population globally has been infected with ancestral strains and/or exposed to WT antigens through vaccination, hence our results are relevant for the current immune status of the population worldwide. Moreover, our data align with recent results indicating that a monovalent booster with BA.1 vaccine elicits robust spike-specific germinal center B cell responses but low levels of de novo B cells targeting variant-specific epitopes [5]. Whether further exposures to Omicron antigens will boost these responses to make them detectable in serum remains to be explored. Importantly, it is likely that cross-reactive antibodies towards Omicron-antigens contribute to protection.

Juan Manuel Carreño, Ph.D.
Viviana Simon, MD, Ph.D.
Florian Krammer, Ph.D.

Icahn School of Medicine at Mount Sinai, New York, USA
Tel. 212-241-0391
Florian.krammer@mssm.edu
Viviana.simon@mssm.edu
Jm.carreno@mssm.edu
Figure 1. (A) Antibody levels expressed as area under the curve (AUC), binding to the recombinant receptor binding domain (RBD) of wild type (WT, blue) and BA.5 (red) SARS-CoV-2, measured in pre- and post-bivalent booster vaccination (WT + BA.5) sera. (B) Inhibitory dilution 50% (ID50) of pre- and post-bivalent booster vaccination (WT + BA.5) sera vs WT (blue) and BA.5 (red) live viruses. (C) Avidity index (AI) of pre- and post-bivalent booster vaccination (WT + BA.5) sera to WT (blue) and BA.5 RBD (red). (D) Reactivity of pre (light blue)- and post (dark blue)- bivalent booster vaccination (WT + BA.5) sera depleted of WT RBD antibodies (dashed lines) or non-depleted (continuous lines) towards WT (left) or BA.5 (right) RBD. Dotted lines in A-B indicate the limit of detection of the assay. Dotted line in C indicates the threshold for low avidity. In D, optical density (OD) in the y axis and reciprocal serum dilutions (100-12,800 with 2-fold dilution series) in the x axis are shown. A non-linear regression of log (10) transformed data is presented. In A-C, average fold change after bivalent vaccine booster is indicated for every pair. A regular one-way analysis of variance (ANOVA) test with Tukey multiple-comparison was performed to compare differences among groups. P values lower than 0.0332 were considered statistically significant with a 95% confidence interval. * P < 0.0332; ** P < 0.0021; *** P < 0.0002; **** P < 0.0001. In A-D, geometric mean (GM) plus 95% confidence interval (CI) is shown, n=16.
Author list

Juan Manuel Carreño* &
Gagandeep Singh*
Anass Abbad
Temima Yellin
Komal Srivastava
Charles Gleason
PVI study group
Harm van Bakel
Viviana Simon&
Florian Krammer&

*Contributed equally
&Corresponding authors: Florian Krammer (florian.krammer@mssm.edu), Viviana Simon (viviana.simon@mssm.edu), Juan Manuel Carreño (jm.carreno@mssm.edu)

Supplementary material

Methods

Ethics statement. Sera and data were obtained from two observational studies: the PARIS study (Protection Associated with Rapid Immunity to SARS-CoV-2, approved by the Program for the Protection of Human Subjects at the Icahn School of Medicine at Mount Sinai Institutional Review Board, IRB-20-03374/STUDY-20-00442) and the observational longitudinal clinical sample collection from patients with emerging viral infections research study (approved by the Program for the Protection of Human Subjects at the Icahn School of Medicine at Mount Sinai Institutional Review Board - IRB-17-00791/STUDY-16-01215). Participants from both studies provided informed consent prior to sample and data collection.

Study cohort and serum samples. Blood was collected from individuals before and after receiving a Pfizer (n=10) or Moderna (n=6) bivalent vaccine booster of wild type + BA.5 spike. Samples were collected 31 +/- 63 (0 – 260) days before and 16 +/- 8 (6 – 31) days after bivalent booster vaccination. No comorbidities were reported by the participants. Detailed demographic characteristics and vaccination information per individual and per group are indicated in Supplementary Tables 1 and 2.

Cells and viruses. African green monkey Vero.E6 cells expressing transmembrane protease serine 2 (TMPRSS2) were cultured at 37°C with 5% CO₂ in Dulbecco’s modified Eagle medium (DMEM, Thermo Fisher Scientific) supplemented with 10% fetal bovine serum (FBS), 1x nonessential amino acids (NEAA), 1% penicillin-streptomycin, 3 μg/ml puromycin (InvivoGen) and 100 μg/ml Normocin (InvivoGen). The SARS-CoV-2 isolate USA-WA1/2020 was used as wild-type reference (BEI Resources, NR-52281) and USA/ NY-MSHSPSP-PV58128/2022 provided by the Mount Sinai Pathogen Surveillance Program as representative viral isolate for Omicron BA.5.

Recombinant proteins. Recombinant soluble SARS-CoV-2 proteins were expressed using a mammalian cell protein expression system. SARS-CoV-2 spike, RBD, and NP gene sequences from the ancestral strain
Wuhan-1 were cloned into a mammalian expression vector pCAGGS. Proteins were produced in Expi293F cells (Thermo Fisher Scientific) using the ExpiFectamine 293 Transfection Kit (Thermo Fisher Scientific) for plasmid transfection. Spike and RBD cell culture supernatants were harvested at 3 days post-transfection, centrifuged at 4000 x g, and filtered. Proteins were purified using Ni²⁺-nitrilotriacetic acid (Ni-NTA) agarose (Qiagen). Purified proteins were concentrated using Amicon Ultracell centrifugal units (EMD Millipore), and buffer was exchanged to phosphate buffered saline (PBS, pH 7.4). Protein integrity was assessed using sodium dodecyl sulphate (SDS) polyacrylamide gels (5–20% gradient; Bio-Rad). Proteins stocks were stored at -80°C until used.

Binding and avidity measurements. Antibody binding and avidity levels were assessed using a research-grade enzyme-linked immunosorbent assay (ELISA). Recombinant receptor binding domain (RBD) from the original Wuhan-Hu-1 SARS-CoV-2 isolate (wild-type, WT) and Omicron (BA.5) SARS-CoV-2 were used. Sera was heat inactivated at 56°C for 1h. Ninety-six-well plates (Immulon 4 HBX; Thermo Scientific) were coated with 50 µl/well of recombinant antigen (2 µg/mL) in phosphate-buffered saline (PBS; pH 7.4, Gibco) and incubated overnight at 4°C. Plates were washed 3 times with 1X PBS supplemented with 0.1% Tween-20 (PBS-T; Fisher Scientific) and blocked with 200 µl/well of 3% non-fat milk PBS-T for 1h at room-temperature (RT). Serum dilutions starting at 1:100 followed by 2-fold dilutions were prepared in 1% non-fat milk PBS-T. Blocking solution was removed and dilutions were added to the plates for 2h at RT. Plates were washed 3 times with PBS-T. For avidity measurements, the same sample was incubated with identical sample dilutions in side-by-side columns; one column was treated with 100 µl/well of 8M Urea while the other was left untreated. Plates were incubated for 10 min, then washed as described above. 50 µl/well of anti-human IgG (Fab-specific, Sigma-Aldrich, A0293) conjugated to horseradish peroxidase (HRP) prepared in 1% non-fat milk PBS-T at 1:3000 dilutions were added for 1h at RT. Plates were washed 3 times and 100 µl/well of o-phenylenediamine dihydrochloride (Sigmafast OPD; Sigma-Aldrich) were added for 10min at RT. To stop the reaction, 50 µl/well of 3 M hydrochloric acid (Thermo Fisher) were added. Optical density (OD) at 490 nm was measured using a Synergy 4 (BioTek) plate reader. Blank wells without serum were used to assess background. Antibody levels expressed as area under the curve (AUC) were calculated by subtracting the background plus three times the standard deviation of the OD. Avidity index (AI) was calculated using the following formula: AI = (Urea-treated sample AUC/Non-treated sample AUC) *100).

Antigen coupling to magnetic beads. Carboxyl magnetic beads (RayBiotech, Peachtree Corners, GA) were coated with RBD from WT SARS-CoV-2 at a ratio of 35 µg of antigen per 100 µl of magnetic beads. Mock beads were prepared using PBS (pH 7.4, Gibco) only instead of antigen. Briefly, 1ml of magnetic beads was transferred to a 1.5ml microtube and washed twice with wash buffer consisting of PBS supplemented with 0.1% BSA and 0.05% Tween-20. Beads were resuspended in 1ml of wash buffer and 350 µg of purified N-terminal 6x his tagged WT RBD antigen were added. The mixture was incubated for 2 h at 4°C with constant shaking. Unbound antigen was removed by passage of beads through a magnetic stand. Coupled beads were quenched by the addition of 1ml (1x volume of beads) of 50 mM Tris, (pH 7.4) and incubation at RT with constant shaking. Quenching buffer was removed using the magnetic stand and conjugated beads were washed 4 times with wash buffer. After the final wash, beads were resuspended in 1ml of wash buffer (1x volume of beads) and stored at 4°C prior to use for antibody depletion.

Antibody depletion. Depletion of antibodies binding to WT RBD was performed using antigen coupled magnetic beads. Sera were diluted in PBS at a 1:10 ratio and 20 µl of antigen coupled magnetic beads or mock beads were added to 100 ul of pre-diluted sera. The mixture was incubated for 2 hours at 4°C with constant shaking. A magnet stand was used to separate the antibody-antigen-bound beads from the 1x
depleted sera. 20 µl of new antigen-coupled beads were added to the 1x depleted sera followed by the
same incubation steps as the first round of depletion. 2x depleted sera was used for binding experiments.

Microneutralization assay. Serum samples were screened for neutralizing antibodies against ancestral
SARS-CoV-2 USA-WA1/2020 and BA.5. Briefly, 96-well plates were seeded with 2×10⁴ Vero.E6 TMPRSS2
cells per well in complete Dulbecco’s modified Eagle medium (cDMEM) 24 hours before infection. Sera
were prediluted 1:10 in infection media consisting of minimal essential media (MEM; Gibco, cat. no.
11430-030) supplemented with 2 mM L-glutamine (Gibco, cat. no. 25030081), 0.1% sodium bicarbonate
(w/v) (HyClone, cat. no. SH30033.01), 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES;
Gibco, cat. no. 15630080), 100 U ml⁻¹ penicillin, 100 µg ml⁻¹ streptomycin (Gibco, cat. no. 15140122)
and 0.2% bovine serum albumin (BSA) (MP Biomedicals, cat. no. 810063). On the second day, serum
dilutions were incubated with 10,000 tissue culture infectious dose 50% (TCID₅₀) of virus per ml for one
hour at RT. 120 µl of the virus–serum mix were transferred to every well of Vero.E6 TMPRSS2 plates,
followed by incubation for 1h at 37°C. Remdesivir (Medkoo Bioscience inc., cat. no. 329511) was used as
a control of virus inhibition at an initial concentration of 10 µg/ml. Viral inoculum was removed and 100
µl/well of the respective serum dilutions plus 100 µl/well of infection media supplemented with 2% fetal
bovine serum (FBS; Gibco, Ref. 10082-147) were added. Infection was allowed to proceed for 48 hours at
37 °C. For nucleoprotein (NP) antigen staining, cell monolayers were fixed with 200 µl of 10%
paraformaldehyde (PFA) overnight at 4 °C. Cells were washed with 1x PBS then permabilized with 150
µl/well of PBS (pH 7.4) containing 0.1 percent Triton X-100 for 15 minutes at RT. Plates were blocked for
1 hour at RT with 200 µl/well PBS supplemented with 3% BSA. Blocking solution was removed and 100
µl/well of biotinylated monoclonal antibody (mAb) 1C7C7 (mouse anti-SARS NP monoclonal antibody
produced at The Icahn School of Medicine at Mount Sinai (ISMMS)) was added at 1 µg/ml in PBS
supplemented with 1% BSA for 1 hour at RT. Cells were washed with 200 µl/well of PBS twice and
100 µl/well of HRP-conjugated streptavidin (Thermo Fisher Scientific) diluted in PBS supplemented with
1% BSA were added at a 1:2,000 dilution for 1 h at room temperature. Plates were washed twice with PBS
and 100 µl/well of Sigmafast OPD were added for 10 minutes at RT. To stop the reaction, 50 µl/well of a
3 M HCl solution (Thermo Fisher Scientific) were added. Optical density (OD, 490 nm) was measured in a
Synergy H1 microplate reader (Biotek). For analysis and data representation Prism 9 (GraphPad) was used.
Percentage of neutralization, after background subtraction, and compared to the "virus only" control, was
calculated. Inhibitory dilution 50% (ID₅₀) was calculated by a non-linear regression curve fit analysis with
top and bottom constraints of 100% and 0%, respectively.

Statistics. Differences between groups were assessed using a regular one-way analysis of variance
(ANOVA) test with Tukey multiple-comparison. P values lower than 0.0332 were considered statistically
significant with a 95% confidence interval. Statistical analyses were performed using Prism 9 (GraphPad,
USA).

Financial support

We thank all the participants of the Personalized Virology Initiative’s longitudinal studies for their
generous and continued support of research. This effort was supported by the Serological Sciences
Network (SeroNet) in part with Federal funds from the National Cancer Institute, National Institutes of
Health, under Contract No. 75N91019D00024, Task Order No. 75N91021F00001. The content of this
publication does not necessarily reflect the views or policies of the Department of Health and Human
Services, nor does mention of trade names, commercial products or organizations imply endorsement by
the U.S. Government. This work was also partially funded by the Centers of Excellence for Influenza
Research and Surveillance (CEIRS, contract # HHSN27220140008C), the Centers of Excellence for
Influenza Research and Response (CEIRR, contract # 75N93021C00014), by the Collaborative Influenza Vaccine Innovation Centers (CIVICs contract # 75N93019C00051) and by institutional funds.

Conflict of interest statement

The Icahn School of Medicine at Mount Sinai has filed patent applications relating to SARS-CoV-2 serological assays and NDV-based SARS-CoV-2 vaccines which list Florian Krammer as co-inventor. Dr. Simon is listed on the SARS-CoV-2 serological assays patent. Mount Sinai has spun out a company, Kantaro, to market serological tests for SARS-CoV-2. Dr. Krammer has consulted for Merck and Pfizer (before 2020), and is currently consulting for Pfizer, Seqirus, 3rd Rock Ventures and Avimex and he is a co-founder and scientific advisory board member of CastleVax. The Krammer laboratory is also collaborating with Pfizer on animal models for SARS-CoV-2.

Author contributions

J.M.C. and F.K. conceptualized study; V.S., C.G., K.S., and the PVI study group enrolled participants, collected data, evaluated surveys, managed IRB approvals, and provided biospecimen and metadata, G.S., T.Y., and J.M.C. performed experiments; H.v.B. performed sequencing of viral isolates; J.M.C., G.S., and A.A. analyzed data; J.M.C., V.S., and F.K. administered the project; F.K., V.S., and H.v.B. provided resources; J.M.C. and F.K. wrote original draft. All authors reviewed, edited and approved the final version of the manuscript, and have had access to the raw data. Members of the PVI study group collected, processed, stored biospecimen, curated metadata, conducted SARS-CoV-2 precision surveillance and assisted with serological antibody measurements.
Supplementary Table 1. Detailed description of samples used and demographics per individual.

<table>
<thead>
<tr>
<th>Participant ID</th>
<th>Age Bracket</th>
<th>Sex</th>
<th>Ancestry</th>
<th>Time points included in this study</th>
<th>SARS CoV-2 infection prior to vaccination</th>
<th>Primary Vaccine type</th>
<th>Bivalent booster type</th>
</tr>
</thead>
<tbody>
<tr>
<td>BVB-1</td>
<td>35-39</td>
<td>Male</td>
<td>Caucasian Not Hispanic or Latino</td>
<td>Pre-Boost, Post Boost</td>
<td>No</td>
<td>Pfizer</td>
<td>Moderna</td>
</tr>
<tr>
<td>BVB-2</td>
<td>55-59</td>
<td>Male</td>
<td>Caucasian Hispanic or Latino</td>
<td>Pre-Boost, Post Boost</td>
<td>Yes</td>
<td>Moderna</td>
<td>Pfizer</td>
</tr>
<tr>
<td>BVB-4</td>
<td>45-49</td>
<td>Male</td>
<td>Caucasian Not Hispanic or Latino</td>
<td>Pre-Boost, Post Boost</td>
<td>Yes</td>
<td>Pfizer</td>
<td>Pfizer</td>
</tr>
<tr>
<td>BVB-5</td>
<td>40-44</td>
<td>Female</td>
<td>Other Not Hispanic or Latino</td>
<td>Pre-Boost, Post Boost</td>
<td>Yes</td>
<td>Pfizer</td>
<td>Moderna</td>
</tr>
<tr>
<td>BVB-6</td>
<td>45-49</td>
<td>Male</td>
<td>Other Not Hispanic or Latino</td>
<td>Pre-Boost, Post Boost</td>
<td>Yes</td>
<td>Pfizer</td>
<td>Moderna</td>
</tr>
<tr>
<td>BVB-7</td>
<td>35-39</td>
<td>Female</td>
<td>Caucasian Not Hispanic or Latino</td>
<td>Pre-Boost, Post Boost</td>
<td>Yes</td>
<td>Pfizer</td>
<td>Pfizer</td>
</tr>
<tr>
<td>BVB-8</td>
<td>40-44</td>
<td>Female</td>
<td>Caucasian Not Hispanic or Latino</td>
<td>Pre-Boost, Post Boost</td>
<td>Yes</td>
<td>Pfizer</td>
<td>Pfizer</td>
</tr>
<tr>
<td>BVB-9</td>
<td>65-69</td>
<td>Male</td>
<td>Caucasian Not Hispanic or Latino</td>
<td>Pre-Boost, Post Boost</td>
<td>Yes</td>
<td>Pfizer</td>
<td>Pfizer</td>
</tr>
<tr>
<td>BVB-10</td>
<td>40-44</td>
<td>Female</td>
<td>Caucasian Not Hispanic or Latino</td>
<td>Pre-Boost, Post Boost</td>
<td>No</td>
<td>Pfizer</td>
<td>Moderna</td>
</tr>
<tr>
<td>BVB-11</td>
<td>30-34</td>
<td>Female</td>
<td>Caucasian Not Hispanic or Latino</td>
<td>Pre-Boost, Post Boost</td>
<td>Yes</td>
<td>Pfizer</td>
<td>Pfizer</td>
</tr>
<tr>
<td>BVB-12</td>
<td>60-64</td>
<td>Female</td>
<td>Caucasian Not Hispanic or Latino</td>
<td>Pre-Boost, Post Boost</td>
<td>Yes</td>
<td>Pfizer</td>
<td>Pfizer</td>
</tr>
<tr>
<td>BVB-13</td>
<td>40-44</td>
<td>Female</td>
<td>Caucasian Not Hispanic or Latino</td>
<td>Pre-Boost, Post Boost</td>
<td>No</td>
<td>Pfizer</td>
<td>Pfizer</td>
</tr>
<tr>
<td>BVB-14</td>
<td>70-79</td>
<td>Female</td>
<td>Caucasian Not Hispanic or Latino</td>
<td>Pre-Boost, Post Boost</td>
<td>No</td>
<td>Pfizer</td>
<td>Moderna</td>
</tr>
<tr>
<td>BVB-15</td>
<td>40-44</td>
<td>Female</td>
<td>Caucasian Not Hispanic or Latino</td>
<td>Pre-Boost, Post Boost</td>
<td>Yes</td>
<td>Pfizer</td>
<td>Moderna</td>
</tr>
<tr>
<td>BVB-16</td>
<td>45-49</td>
<td>Female</td>
<td>Caucasian Not Hispanic or Latino</td>
<td>Pre-Boost, Post Boost</td>
<td>No</td>
<td>Pfizer</td>
<td>Pfizer</td>
</tr>
<tr>
<td>BVB-17</td>
<td>70-79</td>
<td>Male</td>
<td>Caucasian Hispanic or Latino</td>
<td>Pre-Boost, Post Boost</td>
<td>Yes</td>
<td>Pfizer</td>
<td>Pfizer</td>
</tr>
</tbody>
</table>

Summary of the demographic, infection and vaccination histories of participants from whom serum samples were analyzed. The following abbreviations are used in the table, Pre-Boost: serum collected before the bivalent vaccine booster, Post Boost: serum collected after the bivalent vaccine booster.

1This is a code (bivalent booster/BVB abbreviation plus random number), not a patient ID.
Supplementary Table 2. Age and sex characteristics of individuals per group.

<table>
<thead>
<tr>
<th>Overall</th>
<th>Number of participants</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average age (min – max)</td>
<td>48 (32 – 73)</td>
<td></td>
</tr>
<tr>
<td>Average days before bivalent booster +/- stdv (min – max)</td>
<td>31 +/- 63 (0 – 260)</td>
<td></td>
</tr>
<tr>
<td>Average days after bivalent booster +/- stdv (min – max)</td>
<td>16 +/- 8 (6 – 31)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Male</th>
<th>Number of participants</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average age (min – max)</td>
<td>53 (37 – 73)</td>
<td></td>
</tr>
<tr>
<td>Average days before bivalent booster +/- stdv (min – max)</td>
<td>13 +/- 17 (0 – 38)</td>
<td></td>
</tr>
<tr>
<td>Average days after bivalent booster +/- stdv (min – max)</td>
<td>17 +/- 8 (10 – 28)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Female</th>
<th>Number of participants</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average age (min – max)</td>
<td>45 (32 – 73)</td>
<td></td>
</tr>
<tr>
<td>Average days before bivalent booster +/- stdv (min – max)</td>
<td>41 +/- 78 (2 – 260)</td>
<td></td>
</tr>
<tr>
<td>Average days after bivalent booster +/- stdv (min – max)</td>
<td>15 +/- 9 (6 – 31)</td>
<td></td>
</tr>
</tbody>
</table>

The following abbreviations are used in the table: standard deviation (stdv), minimum (min), maximum (max).

References