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Abstract

Conventional histopathology involves expensive and labor intensive processes that often

consume tissue samples, rendering them unavailable for other analysis. We present a novel

end-to-end workflow for pathology powered by hyperspectral microscopy and deep learning.

First, we developed a custom hyperspectral microscope to non-destructively image the

autofluorescence of unstained tissue sections. We then train a deep learning model to use the

autofluorescence to generate virtual histological stains, which avoids the cost and variability of

chemical staining procedures and conserves tissue samples. We showed that the virtual images

reproduce the histological features present in the real stained images using a randomized

nonalcoholic steatohepatitis (NASH) scoring comparison study where both real and virtual

stains are scored by pathologists. The test showed moderate to good concordance between

pathologists’ scoring on corresponding real and virtual stains. Finally, we developed deep

learning-based models for automated NASH clinical research network (NASH CRN) score

prediction. We showed that the end-to-end automated pathology platform is comparable to

pathologists for NASH CRN scoring when evaluated against the expert pathologist consensus

scores. This study provides proof of concept for this virtual staining strategy, which could

improve cost, efficiency, and reliability in pathology, and enable novel approaches to spatial

biology research.
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Introduction

Histological analysis typically involves the tissue biopsies, preparation (including fixation) of

stained tissue sections (typically a few microns), followed by pathologist review. This process

has been in use in some form for over 150 years and is considered the gold standard for

tissue-based diagnostics. However, the process has the following limitations: first, the

histological staining is laborious and expensive, especially for rare stains. The requirement of

chemical reagents and degrading effects of age and environmental exposure on tissues impose

additional costs and constraints. Second, staining often imposes irreversible changes on the

tissue, precluding assessments on multiple biomarkers. This can become restrictive in cases

with limited tissue access and prevents using the tissue for additional testing and research such

as spatial biology analysis. Finally, staining, imaging and pathologist review processes may

have high variability across different labs and facilities, which can impact clinical

decision-making [1].

Recent advances in imaging technology and computer vision have spurred efforts to apply novel

techniques to unstained tissue. These techniques include optical coherence tomography [2],

which provides only structural information, nonlinear microscopy accompanied by nuclear

staining [3], fluorescence lifetime imaging [4], and vibrational spectroscopy techniques including

infrared imaging [5], stimulated Raman scattering [6], coherent anti-Stokes Raman scattering [7]

and multimodal combinations [8] that maximize molecular information at the expense of spatial

resolution or imaging speed. In comparison, multispectral and hyperspectral autofluorescence

(AF) imaging [9, 10] allow distinction of several endogenous fluorophores at high spatial

resolution using relatively simple optical setups with scan speeds suitable for whole-slide

imaging. They also enable implementations with parallelized detection across emission

wavelengths to minimize photobleaching of the sample.

However, these novel imaging methods must be evaluated against the current gold standard of

manual assessments by pathologists using brightfield (BF) microscopes on chemically stained

tissue. Furthermore, it would take substantial additional training for pathologists to be familiar

with these alternative imaging outputs. On the other hand, new deep learning techniques have

been shown to assist pathologists with improved diagnostic efficiency and accuracy on BF

images [11]. While such methods are easier to incorporate in the conventional pathology

workflow [16], they only accelerate the final diagnostic step of the workflow and do not address
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the drawbacks in the staining process itself. Thus, there exists an opportunity to bridge the gap

between the emerging technologies in imaging and machine learning (ML) and the deep clinical

expertise of pathologists using stained brightfield images for diagnosing diseases and assessing

their severity.

Here, we present a combined imaging and staining digital pathology platform that digitizes

unstained tissue sections and then uses deep learning to perform virtual staining (Figure 1). The

tissue digitization step in our workflow is based on AF imaging of unstained tissue at hundreds

of excitation-emission wavelength pairs using our hyperspectral microscope. The virtual staining

step utilizes recent advances in computer vision and deep learning. Importantly, the platform is

non-destructive, with the tissue samples remaining unstained and thus available for other

analyses.

Figure 1. a) We present an automated workflow with virtual staining and AI scoring that mimics the steps of the

current pathology workflow. b) The Virtual Staining pipeline uses a custom hyperspectral microscope to image

unstained tissue samples. Our deep learning virtual stainer model takes AF images as input and returns stains

images that are trained to look like real chemically stained tissue samples. c) Our AI scoring models use BF images

of chemically or virtually stained tissues to estimate the presence of NASH features and NASH CRN scores.
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To evaluate the platform, we applied it to tissue sections from a multi-arm clinical study on

nonalcoholic steatohepatitis (NASH) [12], and evaluated it using both a hepatopathologist

scoring comparison study and artificial intelligence (AI) scoring algorithms. NASH is a

progressive form of non-alcoholic fatty liver disease (NAFLD) that affects over 15 million people

in the US annually [13]. The histologic features of NASH include macrovesicular or mixed

steatosis, hepatocellular ballooning and Mallory-Denk bodies (MDBs), scattered (mainly lobular)

inflammation, and fibrosis [12]. As no single feature of NASH is diagnostic by itself, the NASH

Clinical Research Network system (NASH CRN) was devised for assessing the severity of

NASH [14]. The NASH CRN system uses specific features that are identifiable on liver tissue

stained with hematoxylin and eosin (H&E) and a collagen stain, usually Masson’s trichrome

(MT). H&E differentially pigments the tissue, coloring the nuclei, cytoplasm, other cell structures

and the extracellular matrix with different shades of pink and purple. MT stains the extracellular

matrix and highlights the amount and distribution of fibrosis. In a typical NAFLD diagnostic

workflow, hepatopathologists evaluate a panel of stained slides (including H&E and MT) from a

liver biopsy and, after making the diagnosis, quantify the histological features using the NASH

CRN system. The NASH application enabled a comprehensive evaluation of our platform by

involving two different stains, multiple histologic features, and a specific scoring system.
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Results

Hyperspectral Microscopy

We built a hyperspectral microscope to probe the near-ultraviolet through the near-infrared

portion of the excitation-emission space of the unstained tissue. To reduce photobleaching and

minimize scan time, the microscope used a parallelized detection scheme to collect multiple

wavelengths at the same time and make efficient use of the collected light. More importantly, it

provided finer spectral resolution than required to resolve known AF features such as collagen,

elastin, NADH, flavins, lipopigments, and porphyrins [15]. Figure 2 illustrates the spectral

information contained in an example AF image. The images in the bottom row (Figure 2, G-J)

were computed as linear projections from a single hyperspectral image. The projection vectors

(Figure 2B) were determined by Canonical Correlation Analysis, to maximize the correlation of

the projected images across the entire slide with real immunofluorescence signals. We

observed different tissue features with different spectral responses, and the projected images

showed morphological similarities with the real-stained images shown in Figure 2 (C-F).

Averaging over a limited spectral band such as those captured by conventional AF imaging

microscopes did not allow for easy differentiation between different tissue features, while

spectral projections of the hyperspectral image could differentiate features such as extracellular

matrix, nuclei, and macrophages.
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Figure 2. (a) Masked, weighted-average AF spectra computed for elastin, nuclei and CD68-containing regions on a

single FFPE liver biopsy section. The vertical lines separate channels corresponding to the five different excitation

lasers. (b) Weights used to generate the spectral projection images below. (c) Real H&E stained image. (d-f) Real

immunofluorescence images of (d) elastin + ɑ-SMA, (e) nuclei, and (f) CD68. (g-j) Spectral projections computed

from the hyperspectral AF image: (g) a uniform projection (sum across all spectral channels) showing general tissue

features including cytoplasm, (h) a projection enhancing extracellular matrix components, (i) a projection enhancing

nuclei, and (j) a projection enhancing macrophages and lipofuscin.

Virtual Stainer

We trained a virtual stainer model (Figure 3) that can produce high quality virtually stained BF

images using AF images (Figure 4). The model is based on pix2pix style image translation

architecture [20].
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Figure 3. a) Virtual stainer training pipeline. The virtual stainer is a neural network with a Unet architecture. It takes

patches of AF images of size 128x128 and returns 2 images - 1 H&E and 1 Trichrome BF image. We use chemically

stained BF images aligned to the AF images to train the virtual stainer using four different training losses. b) The

neural network architecture of the generator of virtual stainer.
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a)

b)

Figure 4. Comparing real and virtual stains at 40X magnification shows that virtual stains accurately capture both the

spectral and morphological attributes of real stains. Here we show examples of chemically stained patches which

show the 4 characteristic NASH features and their corresponding virtual stain a) BF real and virtual images stained

with H&E b) BF real and virtual image stained with MT.

We evaluated the virtual stains using a number of independent criteria which can be divided into

3 parts: (1) image quality, (2) automated NASH feature segmentation, (3) automated NASH

CRN scoring, and (4) human-expert comparison study using NASH CRN scoring.
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1. Image quality metrics

To evaluate the quality of the images produced by Virtual Stainer algorithmically, we used the

brightfield microscope image as the reference (ImgR) and the virtual stainer image as the

prediction (ImgP) and measured various metrics to capture the difference between the two.

As seen in Table 1, our virtual stainer ranks between fair to good on all image quality metrics. In

particular we note that our SSIM (which captures the structural information that humans look for

in an image) is the highest reported number in virtual staining literature [21].

Metric H&E Masson’s Trichrome

Relative mean absolute error 5.7 % (0.7) 6.6 % (1.4)

Relative root mean squared error 8.2 % (1.6) 8.7 % (1.8)

PSNR 35.7 (0.6) 35.0 (0.9)

SSIM 0.98 (0.04) 0.98 (0.01)

Num whole slides 73 40

Table 1: Image reconstruction measures (absolute error, mean squared error, peak signal-to-noise ratio and structural

similarity index measure) were calculated using the real stains as reference. Each metric is aggregated over the

whole slide images ranging from 5000 to 50000 pixels.The values in the table are the slide level metrics averaged

over all the slides and the values in the parentheses indicate the standard deviation of the metrics over all the slides.

2. Automated NASH feature segmentation

The NASH segmentation models (Stage 1 of our NASH scoring suite) return one summary

attribute value per NASH feature per slide quantifying the presence of NASH histologic features

in the whole slide. The models were patch level image recognition networks based on

InceptionV3 architecture [19].

We can evaluate the quality of the segmentation model predictions on the independent TEST

set (94 slides for H&E and 59 slides for MT) by measuring the correlation of slide-level attributes

with the pathologist-assigned NASH CRN scores (Figure 5). The segmentation models reach

the spearman correlation values of 0.76, 0.50, 0.53, 0.64 for steatosis, lobular inflammation,

ballooning and fibrosis, respectively, comparable with those in previous studies [22]. All 4

correlations had p-values less than 1e-5.
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Figure 5. Correlation of slide level NASH feature attributes predicted by segmentation models on real stains with

NASH CRN scores adjudicated by hepatopathologists. In this figure, we pick 1 attribute for each of the 4 NASH

features - a) percent steatosis b) percent lobular inflammation c) log normalized balloon count and d) fibrosis density.

We used the segmentation models to evaluate the quality of virtual stains by comparing the

predicted summary attributes of real stains and their corresponding virtual stains. If the virtual

stains have successfully captured the relevant NASH features present in the real stains, then

we can expect the segmentation models that were exclusively trained on real stains to have

similar predictions on the real and virtual stains of the same slide.

The steatosis segmentation model predicted the fraction of the whole slide with steatosis

(Figure 6A). Therefore, we plotted the fraction of steatosis predicted for the same tissue sample,
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with real slide on the x-axis and virtual slide on the y-axis. Similarly, for lobular inflammation, we

plotted the predicted fraction of the whole slide with lobular inflammation (Figure 6B). For

ballooning, we plotted the log of the number of ballooning cells in the whole slide normalized by

the size of the slide (Figure 6C). Finally, the fibrosis segmentation model predicted patch level

presence of fibrosis, hence we plotted the fraction of patches predicted to contain fibrosis in real

and virtual stains (Figure 6D). We observed Pearson correlation values of 0.95, 0.81, 0.89, 0.53

for steatosis, lobular inflammation, ballooning and fibrosis, respectively with all p-values being

less than 1e-5.

Figure 6. Correlation of slide level NASH feature attributes predicted by segmentation models on real stains vs virtual

stains. In this figure, we pick 1 attribute for each of the 4 NASH features - a) percent steatosis b) percent lobular

inflammation c) log normalized hepatocyte balloon count and d) fibrosis density.
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3. Automated NASH CRN Scoring

The Stage 2 scoring models used the output of the Stage 1 segmentation models to predict

NASH CRN clinical scores for each NASH feature.

We evaluated the models’ predicted scores against the harmonized NASH CRN scores applied

by the adjudicators on our independent test set, using linearly-weighted Cohen’s kappa as the

metric of evaluation. The test set had 94 H&E slides used for scoring steatosis, ballooning and

lobular inflammation and 58 MT slides used for scoring fibrosis. Finally, we compared Cohen's

kappa measures achieved by our scoring suite on real stains, our scoring suite on virtual stains

and independent hepatopathologists on real stains. We report the kappas for all three

comparisons, along with their bootstrapped 90% confidence intervals (CI) in Table 2.

Cohen’s kappa (κ) [90% CI]

Pathologist on real
vs

adjudicator
consensus

scoring on real
stains

Automated scoring
on real
vs

adjudicator
consensus scoring

on real stains

Automated scoring
on virtual

vs
adjudicator

consensus scoring
on real stains

NASH
CRN
feature

Steatosis
0.57

[0.49, 0.65]

0.60

[0.48, 0.71]

0.6

[0.45, 0.71]

Lobular
inflammation

0.28

[0.17, 0.40]

0.43

[0.28, 0.57]

0.44

[0.30, 0.59]

Hepatocyte
ballooning

0.31

[0.22, 0.40]

0.33

[0.18, 0.47]

0.36

[0.22, 0.40]

Fibrosis stage
0.50

[0.39, 0.61]

0.50

[0.36, 0.62]

0.42

[0.25, 0.60]

Table 2. We compare the scoring of a) hepatopathologists on real stains, b) automated scoring on real stains, and c)

automated scoring in virtual stains, against the adjudicator pathologist consensus scores. We show the

linearly-weighted Cohen’s kappa values of each comparison for each of the 4 NASH features along with the 90%

confidence intervals (CI) estimated using bootstrap.
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4. Human Expert Comparison Study using NASH CRN Scoring

Finally, we performed a comparison study to directly measure the difference in NASH CRN

scoring done by pathologists when they score chemically stained BF images versus virtually

stained images.

Three experienced hepatopathologists, each with 15-30 years of experience, scored NASH

features for both real and virtual H&E and MT stains. The pathologists arrived at a consensus

scoring for each slide. For H&E slides, they scored 3 NASH features - steatosis, lobular

inflammation and ballooning - and for MT slides, they scored 1 NASH feature - fibrosis.

The pathologists reviewed a total of 180 slides, 45 pairs of H&E stains and 45 pairs of MT slides

shown in random order with a washout period between real and virtual staining modalities of at

least 1 week. Each pair is made up of a real, chemically stained BF image and virtually stained

image predicted from the AF image of the same tissue sample. Thus for each tissue sample, we

obtained 2 sets of NASH scores - one scored on real stains and one scored on virtual stains.

We then ascertained the concordance (linearly weighted κ) between the real and virtual NASH

score. As shown in Table 3, we observed moderate to high agreement between real and virtual

NASH scores. Accuracy and kappa agreement was 0.91 (0.82, 0.98) and 0.86 (0.73, 0.96) for

steatosis, 0.73 (0.62, 0.82) and 0.33 (0.06, 0.57) for lobular inflammation, 0.84 (0.75, 0.93) and

0.76 (0.61, 0.89) for ballooning and 0.65 (0.52, 0.77) and 0.55 (0.35, 0.70) for fibrosis.

NASH CRN feature Accuracy [90% CI] Cohen’s kappa (κ) [90% CI]

Steatosis 0.91 [0.84, 0.97] 0.86 [0.73, 0.96]

Lobular inflammation 0.73 [0.62, 0.84] 0.33 [0.06, 0.57]

Hepatocyte ballooning 0.84 [0.75, 0.93] 0.76 [0.61, 0.89]

Fibrosis stage 0.64 [0.52, 0.75] 0.55 [0.35, 0.70]

Table 3. The accuracy and linearly weighted Cohen’s kappa of NASH CRN scoring performed by adjudicator

pathologists on real stains versus virtual stains.

We plot the distributions of kappa for each of the comparisons - pathologists on real stains,

automated scoring on real stains and automated scoring on virtual stains, all measured against

the adjudicator scoring (Figure 7).
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Figure 7. We plot the distributions of 1000 bootstrapped kappa estimates comparing estimated scores against the

adjudicator consensus scores. The blue distributions are the weighted kappa of scoring performed by a randomly

sampled hepatopathologist against the adjudicators reference. The red distributions are the kappa of our NASH

scoring models applied on brightfield images of real stains. The green distributions are the weighted kappa of scoring

by our end-to-end automated platform using virtual stains and automated NASH scoring models. The four plots show

the four NASH features: a) steatosis, b) lobular inflammation, c) ballooning, d) fibrosis.
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