Title: A Role for Blood-brain Barrier Dysfunction in Delirium following Non-Cardiac Surgery in Older adults

Author Information: Michael J. Devinney, M.D. Ph.D. 1,2,3; Megan K. Wong, B.S.E 4; Mary Cooter Wright, M.S. 1; Edward R. Marcantonio, M.D. S.M. 5; Niccolò Terrando, Ph.D. 1, 6, 7; Jeffrey N. Browndyke, Ph.D. 8; Heather E. Whitson, M.D. M.H.S. 2,3,9; Harvey J. Cohen M.D. 2,3,9; Andrea G. Nackley, Ph.D. 1, Marguerita E. Klein, B.S. 1; E. Wesley Ely, M.D. M.P.H. 10; Joseph P. Mathew, M.D. M.HSc. M.B.A. 1; Miles Berger, M.D. Ph.D. 1,2,3 for the MADCO-PC & INTUIT Study Groups

1 Department of Anesthesiology, Duke University School of Medicine, Durham NC
2 Duke Center for the Study of Aging and Human Development, Duke University Medical Center, Durham NC
3 Duke/UNC Alzheimer’s Disease Research Center, Duke University and University of North Carolina at Chapel Hill, Durham/Chapel Hill NC
4 School of Medicine, Duke University, Durham NC
5 Division of General Medicine and Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston MA
6 Department of Cell Biology, Duke University School of Medicine, Durham NC
7 Department of Immunology, Duke University School of Medicine, Durham NC
8 Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham NC
9 Division of Geriatric Medicine, Department of Medicine, Duke University School of Medicine, Durham NC
10 Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical Center

Corresponding Author:
Michael J. Devinney, MD, PhD
40 Medicine Circle Rm 4317
Orange Zone, Duke Hospital South
Durham, NC 27710
Phone: 919-681-3579
Email: michael.devinney@duke.edu

Abstract:
Objective: Although animal models suggest a role for blood-brain barrier dysfunction in postoperative delirium-like behavior, the role of postoperative blood-brain barrier dysfunction in postoperative delirium and overall recovery is unclear. Thus, we evaluated the role of blood-brain barrier dysfunction in postoperative delirium and hospital length of stay among older surgery patients.

Methods: Cognitive testing, delirium assessment, and cerebrospinal fluid and blood sampling was prospectively performed before and after non-cardiac, non-neurologic surgery in older adults. Blood-brain barrier dysfunction was assessed using the cerebrospinal fluid-to-plasma albumin ratio (CPAR).

Results: Of 207 patients with complete CPAR and delirium data, 26 (12.6%) developed postoperative delirium. Overall, CPAR increased from before to 24 hours after surgery (median postoperative change 0.28, [IQR] [-0.48-1.24]; Wilcoxon p=0.001). Preoperative to 24-hour postoperative change in CPAR was greater among patients who developed delirium vs those who did not (median [IQR] 1.31 [0.004, 2.34] vs 0.19 [-0.55, 1.08]; p=0.003). In a multivariable model adjusting for age, baseline cognition, and surgery type, preoperative to 24-hour postoperative change in CPAR was independently associated with delirium incidence (OR, 1.30, [95% CI 1.03-1.63]; p=0.026) and increased hospital length of stay (incidence rate ratio, 1.15 [95% CI 1.09-1.22]; p<0.001)

Interpretation: These data demonstrate that postoperative increases in blood-brain barrier permeability are associated with increased delirium risk and increased postoperative hospital length of stay. Although these findings do not establish causality, they suggest studies are warranted to determine whether interventions to reduce postoperative blood-brain barrier dysfunction would reduce postoperative delirium risk and hospital length of stay.
Introduction:

Postoperative delirium, which involves fluctuating changes in attention and level of consciousness, occurs in up to 40% of >16 million older American surgical patients,1,2 is associated with longer hospital stays,3 costs the US > 143 billion dollars per year,4 and is associated with increased mortality and long-term dementia risk.1,5 Yet, there are no FDA-approved drugs to prevent delirium, largely because we understand so little of its underlying neuro-pathophysiology.

One mechanism potentially underlying postoperative delirium is blood-brain barrier dysfunction, since animal models of postoperative delirium-like behavior exhibit significant blood-brain dysfunction.6–8 The blood-brain barrier contains non-fenestrated brain capillaries that restrict the free diffusion of solutes and cells into the central nervous system (CNS), which normally protects the CNS from peripheral toxins, pathogens, and inflammation. Although many neurologic diseases include blood-brain barrier dysfunction, including multiple sclerosis,9 cerebrovascular injury,10 and Alzheimer’s disease,11 its role in postoperative delirium is unclear.12

Blood-brain barrier function in humans can be measured by the cerebrospinal fluid-to-plasma albumin ratio (CPAR), since albumin is an abundant peripherally-synthesized plasma protein that does not diffuse through an intact blood-brain barrier.11 Indeed, increased CPAR has been observed in patients with Alzheimer’s disease.11,13 Further, non-cardiac surgery in animal models disrupts the blood-brain barrier,7 yet relatively few studies have examined postoperative blood-brain barrier dysfunction in humans.14,15 For example, significant blood-brain barrier dysfunction has been observed in 10 patients after cardiac surgery.16 Additionally, following thoracoabdominal aortic aneurysm repair in 11 patients, 24-hour postoperative CPAR increased to a greater extent in patients who developed delirium versus those who did not.12 These small studies of cardiac surgery patients suggest that postoperative blood-brain barrier dysfunction can occur, however it is unknown to what extent it occurs following non-cardiac surgery (i.e., without exposure to cardiopulmonary bypass) and what role it might play in postoperative delirium and postoperative recovery.

Here, we sought to determine the extent that postoperative blood-brain barrier dysfunction occurs in older non-cardiac surgery patients, and its relationship with both 1) postoperative delirium and 2) hospital length of stay. To investigate this, we performed delirium assessments and measured pre- and 24-hour postoperative CPAR in 207 older adults (age ≥ 60 years old) that underwent a wide variety of major non-cardiac/neurosurgical procedures.
Methods:

Study Information

Samples and data were utilized from MADCO-PC (NCT01993836)17 and INTUIT (NCT03273335)18 studies. \textbf{Markers of Alzheimer’s Disease and NeuroCognitive Outcomes after Perioperative Care (MADCO-PC)}17 was an observational cohort study that enrolled 140 older surgical patients (age ≥60) undergoing non-cardiac, non-neurologic surgery. MADCO-PC was designed to determine the extent to which there are correlations between postoperative changes in cognitive function and CSF biomarkers related to Alzheimer’s disease. \textbf{In Investigating Neuroinflammation Underlying postoperative cognitive dysfunction (INTUIT)}18 was an observational cohort study that enrolled 201 older surgical patients (age ≥60) undergoing non-cardiac, non-neurologic surgery. INTUIT was designed to determine the extent to which postoperative changes in neuroinflammation in the cerebrospinal fluid (CSF) are associated with postoperative changes in cognition, resting state functional brain connectivity and CSF AD-related biomarkers. MADCO-PC and INTUIT were both prospective observational studies; thus no direction was given to anesthesia care providers about what fluids to administer (e.g., albumin versus crystalloids).

MADCO-PC and INTUIT were both approved by the Duke Institutional Review Board, and all participants in both studies provided written informed consent before enrollment. For both studies, patients were eligible if they were age ≥60 undergoing non-cardiac, non-neurologic surgery scheduled for at least 2 hours at Duke University Hospital or Duke Regional Hospital. Patients were excluded if they were taking immunosuppressants, chemotherapy drugs with cognitive side effects, or anticoagulants that would preclude safe lumbar puncture. Subjects who received intravenous albumin during surgery were excluded from our analysis, since this could artificially reduce the CPAR ratio by increasing systemic albumin levels.

Lumbar Punctures, Blood draws, Sample Processing, and Albumin Assays

Using our protocol that reduces pain and adverse events,19 lumbar punctures were performed using standard sterile technique under local anesthesia before and 24 hours after the start of surgery, with the patient seated upright and leaning forward, or in the lateral decubitus position if the patient was unable to tolerate sitting. CSF was then gently aspirated into a 10 mL Luer-Lock polypropylene syringe,19 which was then emptied into a pre-chilled 15 mL conical tube (VWR; Radnor, PA) on ice. The CSF samples were aliquoted into Sarstedt 1.5-mL polycarbonate microcentrifuge tubes (VWR; Radnor, PA), which were pre-chilled on ice. These aliquots were then frozen at -80°C within 1 hour of sample collection, and maintained at -80°C without any freeze/thaw cycles until they were thawed together for batched analysis.17

Up to 10 mL of whole blood was collected from patients before surgery and again 24 hours after surgery using standard sterile venipuncture technique, and were processed and aliquoted as described.17 In brief, blood was collected into pre-chilled K2 EDTA vacutainer tubes (Becton Dickinson; Franklin Lakes, NJ) and immediately placed on ice. The samples were then centrifuged at 3,000 RPM for 15 minutes, separating the plasma from the red cells and buffy coat layer. The plasma was divided into 1-mL aliquots and frozen at -80°C.

Plasma albumin levels were measured in duplicate with bromocresol purple dye-binding using a Beckman DxC 600 clinical analyzer. The coefficient of variation between duplicate measurements for plasma albumin was 0.73\% (SD 1.02). CSF albumin levels were measured in 10 µl samples in duplicate with immuno-turbidimetry with an anti-albumin antibody in a Beckman DxC 600 clinical analyzer. The coefficient of variation between duplicated measurements for CSF albumin was 1.24\% (SD 0.98). The CSF albumin to plasma albumin ratio (CPAR) was calculated using the formula $1000 \times \text{[cerebrospinal fluid albumin (mg/dl)]/ [serum albumin (mg/dl)].}$

Cognitive Testing

Cognitive function was measured using the 14 item test battery, which we have previously used in numerous studies of postoperative neurocognitive deficits.17,20–22 These include the Wechsler Test of Adult Reading, Revised Wechsler memory scale and Modified Visual Reproduction test, Hopkins verbal learning test, Randt Short Story memory test, Digit Span, Trail Making Test A, Trail Making Test B, Digit Symbol, and Lafayette Grooved Pegboard Test. The tests generated a total of 14 different scores which were used for factor analysis. The Trails B was truncated at 300 seconds and the trails making tests were negatively log transformed,
so that higher scores indicated better performance (similar to the other test variables) and could be used together with the other test variables for factor analysis. This factor analysis was performed with oblique rotation, and produced a 5-factor solution that explained 82% of the variability in test scores. These 5 factors reflected 5 cognitive domains: attention/concentration, structured verbal memory, unstructured verbal memory, visuospatial memory, and executive function. The average of these 5 cognitive domain scores produced the continuous cognitive index (CCI) score, a sensitive continuous measure of baseline cognition our group has used in numerous studies over the last 20+ years.17,20-22

Demographic and Baseline Clinical Data

Subject characteristics and clinical variables were extracted from the electronic medical record. Charlson comorbidity scores were determined as previously.23 Subjects were administered the Duke Activity Status questionnaire preoperatively.24 Apolipoprotein E4 genotyping was performed as previously described.25 Surgery type was classified based on operative surgical service designation. Length of stay was ascertained using the electronic medical record.

Delirium Assessment

Delirium was assessed daily with the Confusion Assessment Method (CAM) in MADCO-PC,17 and twice daily with the three minute diagnostic CAM (3D-CAM) in INTUIT.26 The CAM and 3-D CAM are both highly sensitive and specific for delirium in hospitalized patients.26,27 However, since the CAM and 3D-CAM both require patients to be verbal, in both studies (MADCO-PC and INTUIT) the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) was used for delirium assessment whenever a patient was intubated or otherwise non-verbal at the time of assessment. The CAM-ICU is a well-validated method of delirium assessment in intubated/non-verbal patients.28 A validated method for chart review29 was performed to detect any delirium cases that may have been missed by the research delirium assessments performed at discrete timepoints. Patient were defined as having postoperative delirium if they had at least one positive delirium screen or if they had a positive delirium chart review.

Statistics

Because prior studies have found a continuous relationship between CPAR and blood-brain barrier leakiness measured by neuroimaging,30 our analysis focused on CPAR as a continuous measure of blood-brain barrier disruption. Assuming a postoperative delirium incidence of 10% and variability similar to that in our preliminary data (SD of 2.25), our sample size of ≥200 patients would provide 80% power with α = 0.05 level to detect a difference in pre- to 24-hour postoperative change in CPAR of ≥1.49 in patients with versus without delirium, which is in the range of CPAR differences found in other studies.11

Baseline characteristics between patients who later developed (or did not develop) postoperative delirium were compared using Wilcoxon Rank Sum or Chi-Square tests. Pre-to-post surgery CPAR change was examined with a Wilcoxon Signed Rank test. Wilcoxon Rank Sum tests and univariable logistic regression were used to evaluate the relationship between CPAR and delirium. A subsequent multivariable logistic regression model for delirium included the following baseline risk factors for delirium as adjustment terms: age, baseline cognitive function, and surgery type (since there are baseline differences in characteristics among patients scheduled for different surgery types). The association of CPAR and hospital length of stay was analyzed via multivariable negative binomial regression, adjusting for the same terms as the delirium model and for delirium status itself. Normality was assessed for numeric variables via the Shapiro-wilks test. If the data was significantly non-normal, nonparametric summary statistics and hypothesis testing was used. Model fit diagnostics were performed via the homser-lemeshow goodness of fit test and discrimination was evaluated with the area under the receiver operating curve.

Predicted Delirium Probability and Length of Stay Calculation: We used results from the multivariable regression models for delirium and length of stay, to extract predicted values and standard error estimates using the predict function in R (v4.2, Project for Statistical Computing, Vienna Austria). Adjustment variables were fixed at either their average (age set to 68 years) or reference level (surgery type set to Urologic/gynecologic).
For the delirium model we specified three values of interest for baseline cognitive performance, average (the cohort average baseline cognitive index value was 0.01), impaired (1 SD below the cohort average), and above average (1 SD above the cohort average) using CPAR change values across the observed range of -3 to 9. For the length of stay model we fixed baseline cognitive performance at the average and calculated the predicted values for subjects with versus without delirium. We then plotted the estimated probability (and confidence intervals) for each level of baseline cognitive performance across the range of CPAR change values. Bootstrapping of model estimates with 1000 replicates was utilized to estimate the empirical 95% confidence interval of difference between two predicted probabilities at fixed levels of CPAR change.
Results:

Subject characteristics and intraoperative factors

Subject enrollment is shown in Figure 1; baseline/preoperative characteristics and intraoperative factors are shown in Table 1. Those who developed postoperative delirium had lower years of education, lower baseline continuous cognitive index scores (a sensitive global measure of cognition), and lower mini-mental status exam scores, similar to findings in other studies of postoperative delirium.12,31

Perioperative blood-brain barrier dysfunction and postoperative delirium

Although there were no differences in preoperative versus 24-hour postoperative CPAR (Figure 2A), there was a modest yet significant within-subject preoperative to 24-hour postoperative CPAR change in the overall cohort (median change 0.28, interquartile range -0.48, 1.24; p=0.001; Figure 2B). Neither preoperative nor 24-hour postoperative CPAR levels differed between patients with vs without delirium (p>0.05 for each, Table 2). However, preoperative to 24-hour postoperative CPAR change was greater in patients who did vs did not develop delirium (median [Q1, Q3] 1.31 [0.004, 2.34] vs 0.19 [-0.55, 1.08]; p=0.003, respectively, Table 2, Figure 3). Greater preoperative to 24-hour postoperative CPAR change was associated with higher odds of postoperative delirium in both univariable (OR 1.27, 95% CI 1.05, 1.54; p=0.011; Table 2) and multivariable logistic regression adjusted for age, baseline cognitive function (preoperative continuous cognitive index) and surgery type (OR 1.30, 95% CI 1.03, 1.63; p=0.026; Table 3). This model had no evidence of miss-fit (Hosmer-Lemeshow p=0.63) and has area under the receiver operating curve of 0.81 (95% CI 0.71, 0.91). There were independent, additive effects of baseline cognitive impairment and pre to 24-hour postoperative CPAR increases on postoperative delirium risk, which is illustrated in Figure 4A. For example, in a patient with 1 SD below average cognitive function who had a postoperative CPAR increase of 1 (versus no change), the delirium probability increase for a postoperative CPAR increase of 1 (versus no change) was 0.7% (95% CI, 0.05%, 2.8%) for a subject 1 SD above average compared to 5.0% (95% CI, 0.8%, 11.7%) for a subject 1 SD below average.

Blood-brain barrier dysfunction and postoperative length of stay

We also sought to determine relationships of blood-brain barrier dysfunction with greater hospital length of stay. Preoperative CPAR was not associated with increased hospital length of stay in univariable (Incidence rate ratio (IRR) 1.04, 95% CI 0.99, 1.09; p=0.129) or multivariable negative binomial regression controlling for surgery type, age, baseline cognition, and the presence of postoperative delirium (IRR 1.02, 95% CI 0.98, 1.06; p=0.381). Postoperative CPAR at 24-hours was associated with increased hospital length of stay in univariable (IRR, 1.08 95% CI 1.04, 1.13; p<0.001) and a multivariable negative binomial regression controlling for surgery type, age, baseline cognition, and the presence of postoperative delirium (IRR, 1.05 95% CI 1.02, 1.09; p=0.002). Additionally, increased pre to 24-hour postoperative CPAR was more strongly associated with greater hospital length of stay in univariable (IRR 1.20, 95% CI 1.12, 1.29; p<0.001) and multivariable negative binomial regression controlling for surgery type, age, baseline cognition, and the presence of postoperative delirium (IRR 1.15, 95% CI 1.09, 1.22; p<0.001). There were independent, additive effects of pre to 24-hour postoperative CPAR increases and postoperative delirium on hospital length of stay, which is illustrated in Figure 4B. For example, the length of stay increase for a postoperative CPAR increase of 1 (versus no change) was 0.2 days (95% CI, 0.1, 0.3) for a subject without postoperative delirium compared to 0.5 days (95% CI, 0.2, 0.9) for a subject with postoperative delirium.
Discussion:

In this cohort study of 207 older patients who underwent a variety of non-cardiac and non-neurologic surgeries, we found significant associations of postoperative blood-brain barrier dysfunction with postoperative delirium and increased length of hospital stay. Further, blood-brain barrier dysfunction (i.e., increases in postoperative CPAR) was independently associated with postoperative delirium risk and longer hospital stays even after accounting for surgery type and baseline cognitive status. We also demonstrate small but statistically significant increases in blood-brain barrier permeability (as measured by CPAR) across the entire cohort. These results provide key evidence that blood-brain barrier dysfunction occurs in older non-cardiac surgery patients, and that increased postoperative blood-brain barrier dysfunction is associated with increased postoperative delirium incidence and length of hospital stay.

This study has several strengths. First, the overall size (n=207) is significantly larger than prior studies, which typically had 10-12 patients. Because of our greater overall study size (n=207), this work significantly extends on these previous pilot studies in cardiac (n=10) and aortic surgery (n=11) patients that found significant postoperative CPAR increases. Second, delirium assessments were carried out by trained staff and were supplemented with delirium chart reviews to minimize missed cases of delirium. Third, we studied a wide variety of non-cardiac surgeries, extending the findings from prior studies on blood-brain barrier dysfunction in cardiac surgery. Because postoperative blood-brain barrier dysfunction could result from the inflammatory response elicited by cardiopulmonary bypass, it was unclear whether blood-brain barrier dysfunction occurs with other types of surgery. Our findings provide new evidence that non-cardiac surgery elicits blood-brain barrier dysfunction.

Our findings are also consistent with previous work that demonstrated associations of postoperative blood-brain barrier dysfunction with cognitive dysfunction and delirium in small cohorts of cardiac/aortic surgery patients. Our work extends these findings by demonstrating that postoperative blood-brain barrier dysfunction is associated with delirium independent of baseline cognitive function, and in a much larger cohort of older non-cardiac surgery patients. This suggests that there may be a two-hit model for postoperative delirium that involves both a predisposing factor (i.e., impaired preoperative cognition) and the precipitating factor, postoperative blood-brain barrier dysfunction.

While our data demonstrate an association between blood-brain barrier dysfunction and delirium, these data are not sufficient to show that blood-brain barrier dysfunction causes postoperative delirium. Indeed, our data are also compatible with the idea that blood-brain barrier dysfunction may simply be a marker of greater overall brain dysfunction after surgery, which results in delirium without itself playing a causal role in delirium. Nonetheless, our results are similar to results from animal models of perioperative neurocognitive disorders, in which postoperative blood-brain barrier dysfunction has been demonstrated following orthopedic surgery and has been associated with delirium-like behavioral changes in mice. Indeed, these delirium-like behavioral changes are prevented when blood-brain barrier dysfunction is reduced with administration of netrin-1, a protein that upregulates endothelial tight junction production to support blood-brain barrier integrity.

Two other lines of evidence also suggest that it is biologically plausible for blood-brain barrier dysfunction to play an etiologic role in delirium. First, a leaky blood-brain barrier can allow both peripheral inflammatory molecules and leukocytes to enter the brain, both of which have been shown to result in cognitive dysfunction in both animal models and other human disorders ranging from multiple sclerosis to major depression. Indeed, anti-inflammatory treatments have been shown to improve cognition in both depression and multiple sclerosis suggesting that neuroinflammation plays a role in causing cognitive dysfunction in patients with these disorders. Second, it is well known that there is a significant peripheral inflammatory response after surgery and blood-brain barrier dysfunction could allow these inflammatory mediators into the brain. If these inflammatory cytokines enter the brain, it is plausible that they could cause cognitive alterations seen in delirium, because cytokines have been shown to impair synaptic plasticity, a molecular mechanism underlying human cognition and memory.

Taken together with these other findings, our results are consistent with the hypothesis that postoperative blood-brain barrier dysfunction allows peripheral and cellular inflammatory mediators into the brain after surgery, which then play an etiologic role in delirium. If this hypothesis is correct, four important questions for future studies arise. First, what perioperative factors contribute to blood-brain barrier dysfunction? Second, what are the molecular and cellular mechanisms that lead to blood-brain barrier dysfunction?
dysfunction after surgery? Third, what specific mediators play causal role in delirium after they enter the brain through a disrupted blood-brain barrier? Fourth, what interventions could block these mechanisms and/or prevent blood-brain barrier dysfunction after surgery?

Aside from the role of blood-brain barrier dysfunction in delirium, our data also demonstrate that it is associated with increased postoperative length of stay. Further, this association remained significant after correcting for postoperative delirium status, which suggests that postoperative delirium does not fully account for the increased length of stay in patients with increased postoperative blood-brain barrier dysfunction. There are at least two potential explanations for these findings: First, increased postoperative blood-brain barrier dysfunction may play role in other processes that limit postoperative recovery to increase length of stay, such as (but not limited to) pain, other unmeasured cognitive deficits, decreased mood, and/or lower motivation to participate in postoperative in activities required for hospital discharge (such as ambulation). Second, given the fluctuating nature of delirium, it is possible that some cases of delirium were missed, despite our rigorous assessments and delirium chart reviews. If some delirium cases were missed, it is possible that these mischaracterized cases may have acted as mediators of the relationship between postoperative blood-brain barrier dysfunction and increased hospital length of stay. Similar to the relationship of blood-brain barrier dysfunction with delirium, the association of blood-brain barrier dysfunction with increased postoperative length of stay could simply reflect an association or may reflect a causal relationship. While our data cannot distinguish between these possibilities, if there is a causal relationship then studies would be warranted to test the extent to which interventions that reduce postoperative blood-brain barrier dysfunction would reduce hospital length of stay.

This study has several limitations. First, although CPAR is a well-established global measure of blood-brain permeability, it does not provide spatial information about where in the brain the blood-brain barrier is disrupted. Other methods to study blood-brain barrier disruption with spatial specificity exist (such as dynamic contrast enhanced magnetic resonance imaging), however, these methods might reflect pre-existing white matter injury rather than increased blood-brain barrier permeability. Thus, advances in neuroimaging are necessary to provide information about the spatial pattern of postoperative blood-brain barrier dysfunction. Second, although these findings demonstrate 24-hour postoperative increases in blood-brain barrier permeability, they cannot provide further detail on the time course of blood-brain barrier dysfunction, such as whether postoperative blood-brain barrier dysfunction peaks early or late postoperatively or whether ongoing postoperative blood-brain barrier dysfunction is associated with persistent delirium. Third, the MADCO-PC and INTUIT studies used different instruments for detecting delirium (i.e., CAM vs 3D-CAM), which may have increased variance in the relationship strength seen between blood-brain barrier dysfunction and postoperative delirium between these two cohorts. However, both instruments have high sensitivity and specificity for detecting delirium and both methods were supplemented by delirium chart reviews. Additionally, when study cohort is added to our multivariable model, we found no significant effect of study cohort on the relationship of CPAR with postoperative delirium. Fourth, the delirium rate seen here was modest (12.6%), which while comparable to that reported in similar patient populations, reduces our power to model additional covariates or to find interaction effects between postoperative blood-brain barrier breakdown and baseline delirium risk factors (such as cognition). Future studies that include a larger number of delirium cases could help determine relationships between additional baseline factors with blood-brain barrier breakdown and postoperative delirium. Fifth, our cohort was comprised of patients from a single center who were mostly Caucasian who spoke English. Thus, future studies are necessary to determine the extent to which these results generalize to other centers, different races, and non-English speakers.

Conclusions: In a large cohort of older patients undergoing elective non-cardiac surgery, we found that pre- to 24-hour postoperative blood-brain barrier permeability increases were associated with increased delirium risk and increased hospital length of stay.

Acknowledgements: We thank the patients who participated and the clinical staff who cared for them, for making this work possible.
Collaborators:

References:

Table 1: Subject Characteristics and Intraoperative Factors

<table>
<thead>
<tr>
<th></th>
<th>Overall (N=207)</th>
<th>No Delirium (N=181)</th>
<th>Yes Delirium (N=26)</th>
<th>Standardized Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>68 [64, 73]</td>
<td>68 [64, 72]</td>
<td>70 [65, 75]</td>
<td>0.256</td>
</tr>
<tr>
<td>Sex (Male)</td>
<td>114 (55.1%)</td>
<td>99 (54.7%)</td>
<td>15 (57.7%)</td>
<td>0.635</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td>0.285</td>
</tr>
<tr>
<td>Black or African American</td>
<td>26 (12.6%)</td>
<td>21 (11.6%)</td>
<td>5 (19.2%)</td>
<td></td>
</tr>
<tr>
<td>Caucasian/White</td>
<td>178 (86.0%)</td>
<td>158 (87.3%)</td>
<td>20 (76.9%)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>3 (1.4%)</td>
<td>2 (1.1%)</td>
<td>1 (3.8%)</td>
<td></td>
</tr>
<tr>
<td>Body Mass Index</td>
<td>29.0 [25.1, 33.1]</td>
<td>29.1 [25.5, 33.7]</td>
<td>28.5 [23.9, 30.8]</td>
<td>0.364</td>
</tr>
<tr>
<td>APOE4 Carrier</td>
<td>54 (26.9%)</td>
<td>48 (27.0%)</td>
<td>6 (26.1%)</td>
<td>0.020</td>
</tr>
<tr>
<td>Years of Education</td>
<td>16 [13, 18]</td>
<td>16 [14, 18]</td>
<td>14 [12, 16]</td>
<td>0.483</td>
</tr>
<tr>
<td>Baseline Cognitive Index</td>
<td>0.01 (0.72)</td>
<td>0.11 (0.64)</td>
<td>-0.69 (0.86)</td>
<td>1.051</td>
</tr>
<tr>
<td>Mini-Mental Status Exam</td>
<td>29 [27, 29]</td>
<td>29 [28, 29]</td>
<td>26 [23, 29]</td>
<td>1.103</td>
</tr>
<tr>
<td>Charlson Comorbidity Index</td>
<td>4 [3, 6]</td>
<td>4 [3, 6]</td>
<td>4 [3, 5]</td>
<td>0.244</td>
</tr>
<tr>
<td>ASA Physical Status Class</td>
<td>3 [2, 3]</td>
<td>3 [2, 3]</td>
<td>3 [3, 3]</td>
<td>0.290</td>
</tr>
<tr>
<td>Surgery Type</td>
<td></td>
<td></td>
<td></td>
<td>0.129</td>
</tr>
<tr>
<td>Thoracic</td>
<td>26 (12.6%)</td>
<td>23 (12.7%)</td>
<td>3 (11.5%)</td>
<td></td>
</tr>
<tr>
<td>General/Abdominal/Plastic/ENT</td>
<td>67 (32.4%)</td>
<td>58 (32.0%)</td>
<td>9 (34.6%)</td>
<td></td>
</tr>
<tr>
<td>Urologic/Gynecologic</td>
<td>58 (28.0%)</td>
<td>50 (27.6%)</td>
<td>8 (30.8%)</td>
<td></td>
</tr>
<tr>
<td>Orthopedic</td>
<td>56 (27.1%)</td>
<td>50 (27.6%)</td>
<td>6 (23.1%)</td>
<td></td>
</tr>
</tbody>
</table>

1 Wilcoxon; 2 Chi-square
A-P-O-E4 genotype missing for 6, b- baseline cognitive index missing for 4, c- MMSE missing for 1 subject, d-
DASI missing for 2.
Table 2: Univariable Relationships Between CPAR and Postoperative Delirium

<table>
<thead>
<tr>
<th>CPAR</th>
<th>Overall Cohort (n = 207) Median [IQR]</th>
<th>No Delirium (n= 181) Median [IQR]</th>
<th>Delirium (n = 26) Median [IQR]</th>
<th>Univariable Logistic Regression OR (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>5.68 [4.44, 7.35]</td>
<td>5.61 [4.33, 7.24]</td>
<td>5.90 [4.50, 7.36]</td>
<td>1.01 (0.87, 1.13)</td>
<td>0.942</td>
</tr>
<tr>
<td>24 Hour</td>
<td>5.92 [4.35, 8.58]</td>
<td>5.79 [4.32, 8.42]</td>
<td>6.84 [5.52, 9.08]</td>
<td>1.07 (0.97, 1.17)</td>
<td>0.169</td>
</tr>
<tr>
<td>24-Hour Change</td>
<td>0.28 [-0.48, 1.24]*</td>
<td>0.19 [-0.55, 1.08]</td>
<td>1.31 [0.004, 2.34]#</td>
<td>1.27 (1.05, 1.54)</td>
<td>0.011</td>
</tr>
</tbody>
</table>

CPAR, cerebrospinal fluid-to-plasma albumin ratio, *Wilcoxon Signed Rank test, p = 0.001; #Wilcoxon test, p = 0.003

Table 3: Multivariable logistic regression examining effect of preoperative to 24-hour postoperative CPAR change on postoperative delirium

<table>
<thead>
<tr>
<th>Effect</th>
<th>OR (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre- to 24-hour postoperative CPAR Change</td>
<td>1.30 (1.03, 1.63)</td>
<td>0.026</td>
</tr>
<tr>
<td>Baseline cognition (per SD increase)</td>
<td>0.29 (0.17, 0.49)</td>
<td><0.001</td>
</tr>
<tr>
<td>Age (per 5 years)</td>
<td>0.74 (0.47, 1.16)</td>
<td>0.192</td>
</tr>
<tr>
<td>Surgery Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General/Abdominal/Plastic/ENT v Urologic/Gynecologic</td>
<td>0.77 (0.24, 2.51)</td>
<td>0.661</td>
</tr>
<tr>
<td>Orthopedic v Urologic/Gynecologic</td>
<td>0.62 (0.16, 2.50)</td>
<td>0.505</td>
</tr>
<tr>
<td>Thoracic v Urologic/Gynecologic</td>
<td>0.45 (0.08, 2.47)</td>
<td>0.361</td>
</tr>
</tbody>
</table>

CPAR, cerebrospinal fluid-to-plasma albumin ratio,

Table 4: Multivariable binomial regression examining effect of preoperative to 24-hour postoperative CPAR change on postoperative hospital length of stay

<table>
<thead>
<tr>
<th>Effect</th>
<th>Incidence Rate Ratio (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre- to 24-hour postoperative CPAR Change</td>
<td>1.15 (1.09, 1.22)</td>
<td><0.001</td>
</tr>
<tr>
<td>Baseline cognition (per SD decrease)</td>
<td>1.03 (0.90, 1.19)</td>
<td>0.650</td>
</tr>
<tr>
<td>Age (per 5 years)</td>
<td>1.12 (1.00, 1.25)</td>
<td>0.052</td>
</tr>
<tr>
<td>Surgery Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General/Abdominal/Plastic/ENT v Urologic/Gynecologic</td>
<td>1.41 (1.02, 1.94)</td>
<td>0.036</td>
</tr>
<tr>
<td>Orthopedic v Urologic/Gynecologic</td>
<td>0.94 (0.66, 1.35)</td>
<td>0.751</td>
</tr>
<tr>
<td>Thoracic v Urologic/Gynecologic</td>
<td>2.66 (1.83, 3.87)</td>
<td><0.001</td>
</tr>
<tr>
<td>Postoperative Delirium</td>
<td>2.46 (1.73, 3.48)</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Figures and Figure Legends:

Figure 1: Study flow diagram. MADCO-PC, Markers of Alzheimers Disease and Cognitive Outcomes after Perioperative Care; INTUIT, Investigating Neuroinflammation Underlying Postoperative Cognitive Dysfunction; CSF, cerebrospinal fluid; CPAR, Cerebrospinal fluid-to-plasma albumin ratio.
Figure 2: Cerebrospinal fluid-to-plasma albumin ratio before and 24-hours after surgery (A) and 24-hour postoperative change in cerebrospinal fluid-to-plasma albumin ratio. *p = 0.001, Wilcoxon Signed Rank test.
Figure 3: Postoperative cerebrospinal fluid-to-plasma albumin ratio change in patients with vs without postoperative delirium. Preoperative to 24-hour postoperative cerebrospinal fluid-to-plasma albumin ratio change in patients who did vs did not develop postoperative delirium. * p = 0.011, logistic regression.
Figure 4: Predicted probability of postoperative delirium and hospital length of stay based on 24-hour change in cerebrospinal fluid-to-plasma ratio of albumin.

A. Predicted probability of postoperative delirium over the observed range of 24 hour postoperative cerebrospinal fluid-to-plasma ratio of albumin change according to baseline global cognitive function in our multivariable logistic regression model. Baseline cognition is stratified as average (green ─ ─ ─), 1 standard deviation below average (red ───), and 1 standard deviation above average (blue - - -).

B. Predicted length of postoperative hospital length of stay over the observed range of 24 hour postoperative cerebrospinal fluid-to-plasma ratio of albumin change in patients without (red ───) and with postoperative delirium (blue ─ ─). Shaded areas represent mean prediction error.