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Abstract 
Precision medicine holds great promise to improve outcomes in cancer, including haematological 
malignancies. However, there are few biomarkers that influence choice of chemotherapy in clinical 
practice. In particular, multiple myeloma requires an individualized approach as there exist several 
active therapies, but little agreement on how and when they should be used and combined. We have 
previously shown that a transcriptomic signature can identify specific bortezomib- and lenalidomide-
sensitivity. However, gene expression signatures are challenging to implement clinically. We reasoned 
that signatures based on the presence or absence of gene mutations would be more tractable in the 
clinical setting, though examples of such signatures are rare. We performed whole exome sequencing 
as part of the CARDAMON trial, which employed carfilzomib-based therapy. We applied advanced 
machine learning approaches to discover mutational patterns predictive of treatment outcome. The 
resulting model accurately predicted progression-free survival (PFS) both in CARDAMON patients and 
in an external validation set of patients from the CoMMpass study who had received carfilzomib. The 
signature was specific for carfilzomib therapy and was strongly driven by genes on chromosome 1p36. 
Importantly, patients predicted to be carfilzomib-sensitive had a longer PFS when treated with 
carfilzomib/lenalidomide/dexamethasone than with bortezomib/carfilzomib/dexamethasone. 
However, in those predicted to be carfilzomib-insensitive, the latter therapy may have been capable 
of eradicating carfilzomib-resistant clones. We propose that the signature can be used to make 
rational therapeutic decisions and could be incorporated into future clinical trials. 

Introduction 
Multiple myeloma has seen an unprecedented increase in active therapies. However, we do not know 
how these therapies should be best combined, nor in what order they should be employed. Genomic 
studies have established the inter- and intra-patient heterogeneity of the disease and it is almost 
certain that the optimal therapy will differ between individual patients and at different lines of 
therapy. Clinically tractable biomarkers that indicate the sensitivity of individual myeloma subclones 
to specific drugs would enable therapy combinations to be designed on an individual basis. For 
example, they could be used to select the best upfront quadruplet regimen in fit patients, or they 
could inform the most effective doublet or triplet in more frail patients. 

Whilst there are plentiful expression or mutational signatures that can identify poor prognosis for 
specific cancers, including myeloma1–4, treatment-specific biomarkers are far less common. Within the 
latter category, the biomarker is often the direct target of the treatment. Examples are hormone 
receptors in breast cancer, BRAF V617F for vemurafenib, and BCR-ABL for imatinib and related 
receptor tyrosine kinase inhibitors. Similarly, a mutation may be part of a synthetic lethal combination, 
such as BRCA mutations, which confer sensitivity to PARP inhibitors in mutated cancers5,6. There are 
far fewer non-target examples, but these include various indicators of gemtuzumab oligomycin 
response in acute myeloid leukaemia7, and t(11;14) as a marker of venetoclax sensitivity in 
myeloma8,9. This last group of biomarkers were typically discovered in associative studies linking driver 
mutations known a priori with outcomes in preclinical or clinical trials. Unfortunately, this approach 
limits their discovery. 

We have reasoned that this non-target group of biomarkers represents a large untapped source of 
drug-specific predictive information, provided we can move beyond simple correlative analyses. 
Machine learning has found applications in diverse fields and, indeed, we have shown that it can 
effectively predict drug-specific responses in myeloma. Our seven-gene expression signature not only 
predicted bortezomib- and lenalidomide-specific outcome, but illustrated a reciprocity of response 
between these drugs, implying that any combination effect seen in clinical trials was an effect of 



targeting of different clones, rather than through synergistic activity10. Whilst transcriptional 
prognostic signatures have been employed in patient care11–13, they are generally challenging to 
translate to the clinic14, largely because of normalization issues. Mutational signatures are much 
simpler to interpret. 

The CARDAMON (Carfilzomib/Cyclophosphamide/Dexamethasone with Maintenance Carfilzomib in 
Untreated Transplant-eligible Patients with Symptomatic MM to Evaluate the Benefit of Upfront ASCT) 
trial was a phase II trial exploring upfront carfilzomib/cyclophosphamide/dexamethasone (KCD), 
followed by randomization to an autologous high-dose stem cell transplant or KCD consolidation, 
followed by carfilzomib maintenance (Supplementary Fig. 1)15. As CARDAMON was a clinical trial 
employing carfilzomib as the single novel anti-myeloma agent, we reasoned that it could be employed 
to train a machine learning algorithm to learn carfilzomib responsiveness. We employed a highly 
successful ensemble machine learning algorithm to predict for progression-free survival (PFS), then 
independently validated this signature in The Multiple Myeloma Research Foundation-sponsored 
Relating Clinical Outcomes in Multiple Myeloma to Personal Assessment of Genetic Profile 
(CoMMpass) trial and further showed that our model could influence clinical decision making. 

Results 
Whole exome sequencing in CARDAMON produced a representative genomic dataset 
We performed whole exome sequencing of somatic and germline samples of 148 patients from 
CARDAMON. Clinical and laboratory characteristics of these patients are shown in Supplementary 
Table 1. Mean coverage was 115X (somatic) and 35X (germline). All but three samples passed quality 
control. Copy number profiles, non-synonymous single nucleotide variants, pattern of variants, and 
variants per sample were all consistent with previous genomic studies in myeloma16–20; 
Supplementary Fig. 2). Having established that our dataset was of a high quality and representative, 
we proceeded to search for carfilzomib-specific biomarkers. 

Development of a machine learning model to predict PFS after carfilzomib treatment 
The impact of single gene mutations on treatment outcome have been explored previously in a 
homogeneously treated patient group, as part of the Myeloma XI trial2. TP53, ATM, and ATR mutations 
were associated with prognosis, almost certainly a treatment-independent result, but ZNFHX4, IRF4, 
and EGR1 all predicted response to (predominantly) immunomodulatory (IMiD) therapy21. However, 
absence of an appropriate external validation group precluded independent testing of these. 
Following these results, we examined the impact of known driver mutations on KCD response in 
CARDAMON, but we saw no correlation between these and PFS (data not shown). 

We therefore proceeded to establish a machine learning model using XGBoost 22, an ensemble tree 
machine learning algorithm, which has dominated recent Kaggle competitions 
(https://github.com/dmlc/xgboost/tree/master/demo#machine-learning-challenge-winning-
solutions). We trained a model to regress PFS on the presence or absence of gene mutations (whether 
clonal or sub-clonal) in patients receiving KCD. Our best model in validation contained 17 trees, each 
with six nodes (a node representing presence or absence of a mutation), encompassing a total of 61 
genes. We investigated whether any of the genes selected by XGBoost had any biological relevance. 
Interestingly, there was a significant enrichment within a specific chromosomal location; 21 of the 61 
genes utilised in the model exist on chromosome 1p36 (p=3.11x10-18) which has previously been 
described as a poor risk marker in myeloma24. 



The model predicts carfilzomib-specific prognosis in an external dataset 
The CoMMpass dataset25,26 is a major resource for independent validation of genomic results in 
myeloma. We tested our model on the 274 patients who had received carfilzomib-based combinations 
first-line in CoMMpass. Because of the heterogeneity of this patient group compared to the 
CARDAMON training cohort, we did not expect the model’s predictions to be accurate in an absolute 
sense (e.g. a patient with a predicted PFS of two years would not necessarily be expected to progress 
at two years exactly). Rather, we anticipated that we could use predicted PFS in a relative manner (e.g. 
a patient predicted to progress at two years should progress after a patient predicted to progress at 
one year). We thus separated the patients into prognostic groups.  We first split the patients into 
approximately two equal-sized groups (based on predicted PFS of greater or less than two years), a 
predicted carfilzomib-sensitive and a predicted carfilzomib-insensitive group, and compared their 
observed survival. The median PFS was not reached (95% confidence interval [CI] 59.0 months – not 
reached) in patients predicted to be carfilzomib-sensitive and 36.0 months (95% CI 24.9-70.6) in 
patients predicted to be carfilzomib-insensitive (hazard ratio [HR] 2.39; 95% CI 1.32 – 4.32; p=0.004; 
Fig. 1A). We also performed a comparison of PFS in three risk groups based on the model’s predictions 
(upper quartile, middle two quartiles, and lower quartile of predicted PFS). Median PFS was not 
reached (95% CI not obtainable) in the carfilzomib-good risk group; median PFS was not reached  (95% 
CI 58.9 – not reached) in the carfilzomib-intermediate risk group (HR 2.31; 95% CI 1.03 – 17.25; p = 
6.0x10-4; Fig. 1B); and was 35.5 months (95% CI 23.3 – 62.2) in the carfilzomib-poor risk group (HR 
6.73; 95% CI 1.87 – 49.9; p=8.0x10-4; Fig. 1B). 

We wanted to check whether our model was acting as a generic prognostic signature, i.e. whether it 
would predict for response regardless of therapy. We therefore predicted carfilzomib-sensitivity using 
our model in CoMMpass patients treated with bortezomib-based therapy, reasoning that, if the model 
were carfilzomib-specific, PFS should be similar in the two groups. Indeed, this was the case. The 
median PFS was 48.3 months (95% CI 38.7 – 56.5) in patients predicted to be carfilzomib-sensitive and 
43.3 months (95% CI 30.8 – 77.1) in patients predicted to be carfilzomib-insensitive (HR 1.01; 95% CI 
0.73 – 1.38; p = 0.96; Fig. 1C). Taken together, these data suggest that our model predicts outcome in 
a carfilzomib-specific manner. 

The model can inform clinical decisions 
Carfilzomib has been shown to be superior to bortezomib in the second-line setting27. Therefore, the 
outcome of the ENDURANCE trial28, in which the PFS of patients treated with 
bortezomib/lenalidomide/dexamethasone (VRD) or carfilzomib/lenalidomide/dexamethasone (KRD) 
was not significantly different, was surprising. We wondered if rational therapy selection might have 
altered the outcome of that trial. We hypothesized that in CoMMpass, carfilzomib-sensitive patients 
treated with KRD would have superior PFS to carfilzomib-sensitive patients receiving VRD. Conversely, 
we predicted that VRD would be superior to KRD in carfilzomib-insensitive patients. But first, we 
wanted to ensure that the data in CoMMpass mirrored those of ENDURANCE by comparing all-comers 
treated with VRD with those treated with KRD. Indeed, PFS was not significantly different between 
the two groups. There were 421 patients treated with VRD and 176 patients treated with KRD. The 
median PFS was 50.4 months (95% CI 36.3 – not reached) in patients treated with KRD and 43.8 
months (95% CI 40.3 – 48.4) in patients treated with VRD (HR 0.80; 95% CI 0.58 – 1.09; p=0.16; Fig. 
2A). 

We then predicted carfilzomib-sensitivity for all patients in the CoMMpass database treated first-line 
with KRD or VRD who had associated whole exome sequencing data. Of the VRD patients, 128 were 
predicted to be carfilzomib-sensitive and 98 were predicted to be carfilzomib-insensitive. Of the KRD 
patients, 90 were predicted to be carfilzomib-sensitive and 63 were predicted to be carfilzomib-



insensitive. Within these two groups, for patients predicted to be carfilzomib-sensitive, the median 
PFS was not reached (95% CI 39.9 – not reached) in patients treated with KRD and 44.6 months (95% 
CI 38.6 - 51.9) in patients treated with VRD (HR 0.43; 95% CI 0.24 – 0.77; p= 0.0045; Fig. 2B). For 
patients predicted to be carfilzomib-insensitive, the median PFS was 53.4 months (95% CI 40.2 – not 
reached) in patients treated with VRD and 24.9 months (95% CI 22.7 – not reached) in patients 
treated with KRD (HR 1.52; 95% CI 0.88 – 2.64; p= 0.14; Fig. 2C).  Thus, for patients predicted to be 
carfilzomib-sensitive, there appears to be a clear survival advantage with KRD treatment over VRD 
treatment. For patients predicted to be carfilzomib-insensitive, the PFS was higher with VRD than 
KRD, although this difference was not significant. The ENDURANCE trial demonstrated that VRD had 
fewer cardiac, renal or pulmonary related adverse events than VRD. On the other hand, the trial also 
showed that 17% of VRd patients vs 10% of KRd patients discontinued therapy due to adverse 
reactions. This shows that it is critically important to deliver the correct drug to the correct patient 
to maximize the benefit:risk ratio, which our model now allows. 

Carfilzomib-insensitive sub-clones can be effectively treated with other drugs 
To further explore whether our model could usefully inform clinical decisions, we explored predicted 
carfilzomib-sensitivity at a sub-clonal level. Of 142 patients with more than one temporally spaced 
whole exome samples in CoMMpass, we identified 66 patients who had carfilzomib-insensitive 
clones at diagnosis. Patients who received carfilzomib (N = 9), either diagnosis, saw their carfilzomib-
insensitive sub-clone expand at relapse (Figs. 3A and 3B). However, interestingly, there were 11 
patients whose carfilzomib-resistant clone disappeared below the limit of detection following 
treatment (Fig. 4). 8/11 of these patients had received lenalidomide as part of their treatment, and a 
further two underwent high dose melphalan autografts. This provides further evidence that. If used 
in clinical practice, the model could be used to influence clinical decisions. 

Discussion 
It is now considered that, for patients who are fit enough, upfront quadruplet therapy with an IMiD, 
a proteasome inhibitor, an anti-CD38 monoclonal antibody, and high-dose steroid is the treatment of 
choice, either in combination with a high-dose melphalan autograft29–31 or without32. However, it is 
not clear what is the best combination of drugs, nor is it likely that the same drug combination will 
benefit all patients. Furthermore, whilst phase 3 randomized control trials remain the sine qua non of 
evidence-based medicine, they are extremely expensive, cannot cover all comparisons, and are 
currently inadequate to address precision approaches. 

The ENDURANCE trial showed no difference in efficacy between VRD and KRD, even though 
carfilzomib-based therapies have demonstrated better efficacy than bortezomib-based therapies 
second-line27. Using a mutation-based signature, which is much easier to implement in “real-time” 
than transcriptomic signatures, we show here that we can distinguish between patients who are likely 
to benefit from carfilzomib-based therapy and those who are not. The message of the ENDURANCE 
trial was that VRD was preferable to KRD because the former was not inferior in terms of PFS but was 
associated with lower rates of severe and a subset of cardiac-renal-and-pulmonary adverse events. 
This paper suggests that, had the patients received VRD or KRD according to our model (VRD for those 
carfilzomib-insensitive, KRD for those carfilzomib-sensitive), outcomes would have been significantly 
better. To be clear, we would not necessarily anticipate any difference in PFS between the rationally 
treated VRD or KRD patients within this hypothetical trial if treated accordingly to our model. Instead, 
we would anticipate that the PFS of all patients within the hypothetical trial would have been 
significantly higher than those reported in the original trial. As exome data were collected as part of 



ENDURANCE, it should be possible to answer this question by comparing the outcome of patients 
receiving the “correct” predicted therapy versus those receiving the “incorrect” predicted therapy. 

A major challenge will be designing clinical trials that show the added value of precision medicine 
models prospectively. We not only have to show that receiving the correct predicted treatment 
outperforms the incorrect treatment, but that the act of stratifying patients by some rational model 
is, by itself, beneficial. One possibility would be to perform add-on studies to existing large phase 3 
trials. For example, consider the existing RADAR trial33. In this trial, patients could be prospectively 
evaluated with a targeted 61 gene exome library that enables our model to be employed. Then, a sub-
group of patients deemed carfilzomib-sensitive could be randomized to receive KRD or to continue 
with the standard VRD. A second sub-group of patients deemed carfilzomib-insensitive could be 
randomized in the same way. This would provide all the data to make the necessary comparisons, 
including whether model stratification itself was beneficial. 

Machine learning is becoming increasingly influential in all aspects of life. Within medicine, there are 
clinical areas, such as interpretation of radiographs34–36 and pathology slides37–39, that are very close 
to being realized by artificial intelligence. For these fields, extremely high accuracy is required to 
supplant experienced radiologists and histopathologists. This, in turn, requires very large numbers of 
training samples. In contrast, for cancer therapy, because we are trying to improve on current 
paradigms, where treatment choices are based on blanket applications of a treatment regimen shown 
to be beneficial in one arm of a clinical trial, without stratification – but realistically, also based on 
whether a regimen is licensed and funded and whether the patient is fit enough to receive it – we 
have shown that rational treatment predictions that perform better than chance can significantly 
improve survival. Thus, whilst we do not have the training numbers or accuracy of machine learning 
in histopathology or radiology, our approach has huge potential for improving outcomes of cancer 
treatment without the need for new drugs. Prospective testing of this approach is urgent and critical. 

Methods 
Whole exome sequencing (WES) library preparation 
All patients underwent WES of germline and myeloma samples following CD138+ bead selection.  All 
DNA samples were prepared using Agilent SureSelectXT Low Input Kit/Human All Exon V6 baits 
with UTRs: 5190-8882, and sequenced on an Illumina 3000 HiSeq instrument (Illumina, San Diego, 
CA) according to the manufacturer’s recommendations. Alignment was performed against Hg38 using 
the Burrow’s Wheeler-MEM40.  

Mutation calling  
Somatic mutations were called using Mutect241 according to best practices 
(https://software.broadinstitute.org/gatk/best-practices/) to generate VCF files.  

RNAseq library preparation   
Patients underwent library prep using mRNA (Poly A+) enrichment using the Kapa mRNA 
HyperPrep Kit. Sequencing was done on Illumina 3000 HiSeq instrument (Illumina, San Diego, CA) 
according to the manufacturer’s recommendations. Adapter sequences were removed using Cutadapt 
and quality control was performed using FastQC. Alignment was done using STAR aligner to the Hg38 
genome. Gene quantification and differential expression was performed using SAMTools feature 
counts and DESeq2.  



Machine Learning and Statistical analysis 
All downstream analysis was performed using R (R Core Team (2021). R: A language and environment 
for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-
project.org/), version 4.1.2. Mutations were then expanded to gene level (presence of a mutation 
within any exon of the gene). The machine learning algorithm, XGBoost22, was then used to predict 
accelerated failure time23. The following parameters were derived by initial 80:20 validation 
experiments: eta = 0.1, tree method = hist, max_depth = 6, eval_metrics = aft-nlog and standard error, 
nrounds = 17.  

Survival curves were generated using the Kaplan-Meier estimate and multivariate analysis was 
performed using Cox’s proportional hazard model.  

Subclonal analysis 
Clonal structure of patients was defined using Sciclone42. Foundling and subclones were assigned by 
their relative clonal cancer frequency.  Fish plots to show sub-clonal structure were generated using 
Fishplots43.   

Data and Code Availability  
Data from the COMMpass trial was accessed using the following url: https://research.themmrf.org 
using version IA20.  

All code used for the preparation of this manuscript is publicly available at the following GitHub URL: 
https://github.com/ieuangw/CARDAMON_ML. VCF files will be uploaded to GEO upon peer-reviewed 
publication. A summary table of all mutations in cancer samples is included in supplemental table 1. 
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Figure Legends 
Figure 1 – External validation of our model demonstrates that it specifically predicts carfilzomib-
sensitivity. (A) Kaplan-Meier of progression-free survival (PFS) of patients predicted by the model to 
be carfilzomib-sensitive (red) or carfilzomib-insensitive (cyan) and who were treated with carfilzomib-
based therapy in CoMMpass. (B) Kaplan-Meier of PFS of the same patients in (A), stratified by the 
model into three groups of carfilzomib-sensitivity: low-risk (green), medium-risk (blue), high-risk (red). 
(C) Kaplan-Meier of PFS of patients predicted by the model to be carfilzomib-sensitive (red) or 
carfilzomib-insensitive (cyan) and who were treated with bortezomib-based therapy in CoMMpass. 

Figure 2 – XGBoost model accurately predicts response to Carfilzomib in patients predicted to 
respond. (A)  Kaplan-Meier plot of progression-free survival (PFS) of patients who received 
carfilzomib/lenalidomde/dexamethasone (KRD) first-line (cyan) versus patients who received 
bortezomib/lenalidomide/dexamethasone (VRD) first-line (red) in CoMMpass. (B) Kaplan-Meier plot 
of PFS of patients who were predicted to be carfilzomib-sensitive by our model, split by which 
proteosome inhibitor they received, either KRD first-line (cyan) or VRD first-line (red) in CoMMpass. 
(C) Kaplan-Meier plot of PFS of patients who were predicted to be carfilzomib-insensitive by our 
model, split by which proteosome inhibitor they received, either KRD first-line (cyan) or VRD first-line 
(red) in CoMMpass.  

Figure 3 – Carfilzomib resistant subclones expand when treated with Carfilzomib. (A) & (B) Fish plots 
of patients who have subclones predicted to be carfilzomib-insensitive at diagnosis. Both were treated 
with carfilzomib-based regimes first-line.  Y-axis denotes proportion of clonal cancer frequency, and 
X-axis time. 

Figure 4 – Carfilzomib resistant subclones respond to alternative therapies.  Fish plot of patient with 
carfilzomib-resistant clone at diagnosis treated with bortezomib/lenalidomide/dexamethasone (VRD). 
Y-axis denotes proportion of clonal cancer frequency, and X-axis time. 

Supplementary Figure legends 
Supplemental Figure 1 – CONSORT diagram of the CARDAMON Trial. All numbers are intention to 
treat. 

Supplemental figure 2 – CARDAMON whole exome sequencing data are high-quality and 
representative. (A) Variant classification summaries. Top left – number of reads annotating each 
mutation type call called by MUTECT2. Top middle – frequency of variant type called by MUTECT2. 
Top right – base mutation change frequency. Bottom left – number of mutations detected per 
patient. Bottom middle – variant classification summary. Bottom right – the top 10 genes mutated in 
patients in the CARDAMON trial. (B) Heatmap showing presence or absence of top 30 most 
frequently mutated genes. Rows represent genes, columns represent patients. Grey = no mutation 
detected for that patient. 
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