SUPPLEMENTARY MATERIAL

CONTENTS

1. SUPPLEMENTARY METHODS
1.1. KFRE equations validated externally by this study3
Table S1. KFRE equations externally validated by the study
1.2. Variables
Table S2. Coding of variables 3
1.3. 2009 CKD Epidemiology Collaboration (CKD-EPI) formula for eGFR
2. SUPPLEMENTARY TABLES4
Table S3. Baseline characteristics of study patients at CKD Stages 3a, 3b, or 4 for all predictors, stratified by 2- and 5-year outcomes.
Table S4. Baseline characteristics of study patients at CKD Stages 3b or 4 for all predictors, stratified by 2- and 5-year outcomes.
Table S5. Baseline characteristics and frequency of outcomes in the study population according to CKD stages. 8
Table S6. Distribution of CKD 3a-4 patients included in the analysis across 17 health facilities of the EsSalud Rebagliati Network 10
Table S7. Distribution of CKD 3b-4 patients included in the analysis across 17 health facilities of the EsSalud Rebagliati Network.
Table S8. Cumulative incidence of kidney failure and death without kidney failure in patients with CKD stages 3a-3b-4.
Table S9. Cumulative incidence of kidney failure and death without kidney failure in patients with CKD stages 3b-4.
Table S10. Summary of ACR, 2-year and 5-year predicted risks of kidney failure according to KFRE before and after winsorising the 1% and 99% extreme values of ACR14
Table S11. Performance measures of KFRE in the external dataset of patients with CKDstages 3a-3b-4 and 3b-4 following the application of winsorisation to the ACR variableand the subsequent recalculation of predicted risks using the Kidney Failure RiskEquation (KFRE).
Table S12. Performance measures of KFRE in the external dataset of patients with CKD stages 3a-3b-4 and 3b-4, without considering competing risks.
Table S13. Comparisons of characteristics of original cohort that recalibrated Non North American version of KFRE and our study population17
3. SUPPLEMENTARY FIGURES

	Figure S1. Distribution of the 2-year and 5-year predicted risk estimated by KFRE equation according to kidney failure outcomes
	Figure S3. Distribution of ACR in CKD 3-4 and CKD 3b-4 patients before and after winsorising the 1% and 99% extreme values of ACR
	Figure S4. Distribution of the recalculated 2-year and 5-year predicted risk estimated by the KFRE equation after winsorising the 1% and 99% extreme values of ACR21
	Figure S5. Calibration curves for each group and prediction horizon following the application of winsorisation to the ACR variable and the subsequent recalculation of predicted risks using the Kidney Failure Risk Equation (KFRE)22
	Figure S6. Differences between Kaplan-Meier (KM) and cumulative incidence functions (CIF) estimates of the observed outcome risks in the presence of competing events, in CKD 3a-4 and CKD 3b-4 patients
4	. REFERENCES

1. SUPPLEMENTARY METHODS

1.1. KFRE equations validated externally by this study

This study performed external validation of the recalibrated equations for the non-North American population, which are available on page nine of the study supplementary material by *Tangri N, et al* (1) and were recommended as preferable by the article. These equations are implemented in the following web app: <u>https://kidneyfailurerisk.com/</u>. The equations we validated are shown in **Table S1**.

Table S1. KFRE ec	uations external	v validated b	v the study
	1	,	,

Predictio	tio Original regional equation calibrated for predicted risk of kidney failure				
n					
horizons					
2-years	1				
	$-0.9832e^{(-0.2201\times(\frac{age}{10}-7.036)+0.2467\times(male-0.5642)-0.5567\times(\frac{eGFR}{5}-7.222)+0.4510\times(\log(ACR)-5.136)+0.2467\times(male-0.5642)-0.5567\times(\frac{eGFR}{5}-7.222)+0.4510\times(\log(ACR)-5.136)+0.2467\times(male-0.5642)-0.5567\times(\frac{eGFR}{5}-7.222)+0.4510\times(\log(ACR)-5.136)+0.2467\times(male-0.5642)-0.5567\times(\frac{eGFR}{5}-7.222)+0.4510\times(\log(ACR)-5.136)+0.2467\times(male-0.5642)-0.5567\times(\frac{eGFR}{5}-7.222)+0.4510\times(\log(ACR)-5.136)+0.2467\times(male-0.5642)-0.5567\times(\frac{eGFR}{5}-7.222)+0.4510\times(\log(ACR)-5.136)+0.2467\times(male-0.5642)-0.5567\times(\frac{eGFR}{5}-7.222)+0.4510\times(\log(ACR)-5.136)+0.2467\times(male-0.5642)-0.5567\times(\frac{eGFR}{5}-7.222)+0.4510\times(\log(ACR)-5.136)+0.2467\times(male-0.5642)-0.5567\times(\frac{eGFR}{5}-7.222)+0.4510\times(\log(ACR)-5.136)+0.2467\times(male-0.5642)-0.5642)+0.4510\times(\log(ACR)-5.136)+0.450\times(\log(ACR)-5.136)+0.4510\times(\log(ACR)-5.136)+0.450\times(\log(ACR)-5.136)+0.450\times(\log(ACR)-5.136)+0.450\times(\log(ACR)-5.136)+0.450\times(\log(ACR)-5.136)+0.450\times(\log(ACR)-5.136)+0.450\times(\log(ACR)-5.136)+0.450\times(\log(ACR)-5.136)+0.450\times(\log(ACR)-5.136)+0.450\times(\log(ACR)-5.136)+0.450\times(\log(ACR)-5.136)+0.450\times(\log(ACR)-5.136)+0.450\times(\log(ACR)-5.136)+0.450\times(\log(ACR)-5.136)+0.450\times(\log(ACR)-5.136)+0.450\times(\log(ACR)-5.136)+0.450\times(\log(ACR)-5.136)+0.450\times(\log(ACR)-5.136)+0.450\times(\log(ACR)-5.136)+0.450\times(\log(AC$				
5-years	1				
-	$-0.9365^{e^{(-0.2201\times(\frac{age}{10}-7.036)+0.2467\times(male-0.5642)-0.5567\times(\frac{eGFR}{5}-7.222)+0.4510\times(\log(ACR)-5.136)+0.2467\times(male-0.5642)-0.5567\times(\frac{eGFR}{5}-7.222)+0.4510\times(\log(ACR)-5.136)+0.2467\times(male-0.5642)-0.5567\times(\frac{eGFR}{5}-7.222)+0.4510\times(\log(ACR)-5.136)+0.2467\times(male-0.5642)-0.5567\times(\frac{eGFR}{5}-7.222)+0.4510\times(\log(ACR)-5.136)+0.2467\times(male-0.5642)-0.5567\times(\frac{eGFR}{5}-7.222)+0.4510\times(\log(ACR)-5.136)+0.2467\times(male-0.5642)-0.5567\times(\frac{eGFR}{5}-7.222)+0.4510\times(\log(ACR)-5.136)+0.2467\times(male-0.5642)-0.5567\times(\frac{eGFR}{5}-7.222)+0.4510\times(\log(ACR)-5.136)+0.2467\times(male-0.5642)-0.5567\times(\frac{eGFR}{5}-7.222)+0.4510\times(\log(ACR)-5.136)+0.2467\times(male-0.5642)-0.5642)+0.4510\times(\log(ACR)-5.136)+0.450\times(\log(ACR)-5.136)+0.450\times(\log(ACR)-5.136)+0.450\times(\log(ACR)-5.1$				

Source: Tangri N, et al. (1)

1.2. Variables

Table S2. Coding of variables

Variable	Coding
age	integer number that indicates the age in completed years
male	1 = male; 0 = female
eGFR_ckdepi	estimated glomerular filtration rate obtained by CKD-EPI formula in ml/min/1.73m ²
acr	albumin-to-creatinine ratio in mg/g

1.3. 2009 CKD Epidemiology Collaboration (CKD-EPI) formula for eGFR

$$eGFR = A \times (SCr/B)^{C} \times 0.993^{age} \times (1.159 \, if \, black)$$

Where *A*, *B*, and *C* are the following:

	Female		Male
SCr	A = 144	SCr	A = 141
≤ 0.7	B = 0.7	≤ 0.9	B = 0.9
	C = -0.329		C = -0.411
SCr	A = 144	SCr	A = 141
> 0.7	B = 0.7	> 0.9	B = 0.9
	C = -1.209		C = -1.209

2. SUPPLEMENTARY TABLES

Table S3. Baseline characteristics of study patients at CKD Stages 3a, 3b, or 4 for all predictors, stratified by 2- and 5-year outcomes.

	2-years		5-years	
Characteristic	No kidney	Kidney failure	No kidney	Kidney failure
	failure	(n = 114)	failure	(n = 239)
	(n = 7,405)		(n = 7,280)	
Sex				
Female	4,062	45 (39.5%)	4,015	92 (38.5%)
	(54.9%)		(55.2%)	
Male	3,343	69 (60.5%)	3,265	147 (61.5%)
	(45.1%)		(44.8%)	
Age (years)				
Mean (SD)	74.1 (10.2)	66.6 (11.7)	74.2 (10.1)	66.5 (12.5)
Median (IQR)	75.0 (68.0,	67.0 (59.2,	75.0 (68.0,	67.0 (59.0,
	81.0)	74.0)	82.0)	75.0)
Range	23.0, 97.0	36.0, 88.0	23.0, 97.0	26.0, 94.0
Hypertension	4,421	65 (57.0%)	4,339	147 (61.5%)
	(59.7%)		(59.6%)	
Diabetes	1,796	49 (43.0%)	1,743	102 (42.7%)
Mellitus	(24.3%)		(23.9%)	
Persistent				
albuminuria				
categories				
A1	4,749	23 (20.2%)	4,725	47 (19.7%)
	(64.1%)		(64.9%)	
A2	1,984	34 (29.8%)	1,941	77 (32.2%)
	(26.8%)		(26.7%)	
A3	672 (9.1%)	57 (50.0%)	614 (8.4%)	115 (48.1%)
GFR categories				
G3a	4,695	26 (22.8%)	4,664	57 (23.8%)
	(63.4%)		(64.1%)	
G3b	2,171	36 (31.6%)	2,126	81 (33.9%)
	(29.3%)		(29.2%)	
G4	539 (7.3%)	52 (45.6%)	490 (6.7%)	101 (42.3%)
CKD KDIGO				
classification				
Moderately	3,266	12 (10.5%)	3,256	22 (9.2%)
increased risk	(44.1%)		(44.7%)	
High risk	2,448	12 (10.5%)	2,429	31 (13.0%)
	(33.1%)		(33.4%)	
Very high risk	1,691	90 (78.9%)	1,595	186 (77.8%)
	(22.8%)		(21.9%)	
Serum Creatinine				
(mg/dL)				
Mean (SD)	1.4 (0.4)	2.0 (0.7)	1.3 (0.4)	2.0 (0.7)
Median (IQR)	1.3 (1.1,	1.9 (1.5, 2.5)	1.3 (1.1,	1.9 (1.5, 2.4)
	1.5)		1.5)	
Range	0.8, 3.8	1.0, 3.9	0.8, 3.8	0.9, 3.9
eGFR				
(ml/min/1.73m2)				
Mean (SD)	46.4 (9.6)	33.7 (12.5)	46.6 (9.4)	34.5 (12.4)

Median (IQR) Range	48.9 (40.8 <i>,</i> 53.9)	31.7 (23.2,	49.0 (41.1,	33.0 (23.5,
	53.91		FO O	44.2)
-	-	42.8)	53.9)	44.2)
	15.0, 60.0	15.4, 59.8	15.1, 60.0	15.0, 59.8
ACR (mg/g)				
Mean (SD)	235.5	1,101.7	229.3	836.1
	(3,059.4)	(1,614.1)	(3,083.4)	(1,283.1)
Median (IQR)	14.2 (4.4,	302.0 (52.5,	14.0 (4.4,	270.9 (51.2,
	62.7)	1,663.9)	59.4)	992.4)
Range	0.0,	2.5, 7,462.7	0.0,	0.2, 7,462.7
	144,870.6		144,870.6	
Urine Albumin				
(mg/ml)				
Mean (SD)	7.6 (26.5)	52.1 (73.5)	7.1 (25.7)	44.0 (62.3)
Median (IQR)	0.9 (0.3,	16.0 (4.3,	0.9 (0.3,	15.3 (3.4,
	3.7)	71.6)	3.5)	56.5)
Range	0.0, 658.0	0.2, 348.1	0.0, 658.0	0.0, 348.1
Urine Creatinine				
(mg/dl)				
Mean (SD)	72.5 (47.7)	64.8 (33.7)	72.4 (47.0)	69.8 (61.0)
Median (IQR)	63.4 (41.4,	59.6 (39.6,	63.5 (41.3,	58.7 (41.0,
	86.5)	85.0)	86.6)	85.0)
Range	0.1, 722.1	6.4, 218.6	0.1, 620.1	6.4, 722.1
Death at 2	563 (7.6%)	77 (67.5%)	563 (7.7%)	77 (32.2%)
years*	. ,	· · ·	. ,	
Outcome at 2				
years				
Alive w/o	6,842	0 (0.0%)	6,717	125 (52.3%)
Kidney Failure	(92.4%)	· · ·	(92.3%)	
Death w/o	563 (7.6%)	0 (0.0%)	563 (7.7%)	0 (0.0%)
Kidney Failure	. ,	· · ·	. ,	
Kidney Failure	0 (0.0%)	114 (100.0%)	0 (0.0%)	114 (47.7%)
Death at 5	1,462	77 (67.5%)	1,400	139 (58.2%)
years*	(19.7%)	((19.2%)	
Outcome at 5				
years				
Alive w/o	5,880	0 (0.0%)	5,880	0 (0.0%)
Kidney Failure	(79.4%)	- ()	(80.8%)	- (
Death w/o	1,400	0 (0.0%)	1,400	0 (0.0%)
Kidney Failure	(18.9%)	0 (0.070)	(19.2%)	0 (0.070)
Kidney Failure	125 (1.7%)	114 (100.0%)	0 (0.0%)	239 (100.0%)

IQR: interquartile range, ACR: urine albumin to creatinine ratio, eGFR: glomerular filtration rate estimated by CKD-EPI formula

* Death after or before kidney failure

Table S4. Baseline characteristics of study patients at CKD Stages 3b or 4 for all predictors, stratified by 2- and 5-year outcomes.

Characteristic	2-yea		5-years		
Characteristic	No kidney	Kidney	No kidney	Kidney	
	failure	failure	failure	failure	
_	(n = 2,710)	(n = 88)	(n = 2,616)	(n = 182)	
Sex					
Female	1,363 (50.3%)	35 (39.8%)	1,329 (50.8%)	69 (37.9%)	
Male	1,347 (49.7%)	53 (60.2%)	1,287 (49.2%)	113	
				(62.1%)	
Age (years)					
Mean (SD)	75.9 (10.4)	66.1 (12.1)	76.2 (10.2)	66.9 (12.4)	
Median (IQR)	77.0 (70.0,	67.0 (59.0,	77.0 (70.0,	67.0 (59.2,	
	83.0)	74.0)	83.0)	75.0)	
Range	23.0, 97.0	36.0, 88.0	23.0, 97.0	26.0, 94.0	
Hypertension	1,581 (58.3%)	55 (62.5%)	1,517 (58.0%)	119	
		20 (44 20()	506 (22.00/)	(65.4%)	
Diabetes Mellitus	635 (23.4%)	39 (44.3%)	596 (22.8%)	78 (42.9%)	
Persistent					
albuminuria					
categories	1 492 (54 70/)	11/12 50/)	1 460 (56 20/)		
A1	1,483 (54.7%)	11 (12.5%)	1,469 (56.2%)	25 (13.7%)	
A2 A3	830 (30.6%)	30 (34.1%)	798 (30.5%)	62 (34.1%)	
	397 (14.6%)	47 (53.4%)	349 (13.3%)	95 (52.2%)	
GFR categories	0 (0 00/)	0 (0 00()	0 (0 00()	0 (0 00()	
G3a	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	
G3b	2,171 (80.1%)	36 (40.9%)	2,126 (81.3%)	81 (44.5%)	
G4	539 (19.9%)	52 (59.1%)	490 (18.7%)	101 (55.5%)	
CKD KDIGO				(55.570)	
classification					
Moderately	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	
, increased risk				, ,	
High risk	1,294 (47.7%)	8 (9.1%)	1,286 (49.2%)	16 (8.8%)	
Very high risk	1,416 (52.3%)	80 (90.9%)	1,330 (50.8%)	166	
, 0	, , ,			(91.2%)	
Serum Creatinine					
(mg/dL)					
Mean (SD)	1.7 (0.4)	2.3 (0.6)	1.7 (0.4)	2.2 (0.6)	
Median (IQR)	1.6 (1.4, 1.9)	2.1 (1.8,	1.6 (1.4, 1.8)	2.1 (1.7,	
		2.5)		2.5)	
Range	1.1, 3.8	1.2, 3.9	1.1, 3.8	1.2, 3.9	
eGFR					
(ml/min/1.73m²)					
Mean (SD)	35.9 (7.1)	28.2 (8.1)	36.1 (7.0)	29.0 (8.3)	
Median (IQR)	37.6 (31.8,	26.9 (21.6,	37.8 (32.1,	28.3 (22.4,	
	41.8)	34.9)	41.9)	35.4)	
Range	15.0, 45.0	15.4, 43.8	15.1, 45.0	15.0, 44.9	
ACR (mg/g)					
Mean (SD)	306.8	1,172.8	296.0	881.4	
	(3,082.4)	(1,631.1)	(3,133.9)	(1,272.2)	
Median (IQR)	24.6 (6.3,	367.7	23.3 (6.1,	334.6	
	145.4)	(149.1,	131.2)	(143.8,	
		1,811.8)		1,076.5)	

Range	0.0, 144,870.6	2.5,	0.0, 144,870.6	1.4,
		7,462.7		7,462.7
Urine Albumin (mg/ml)				
Mean (SD)	11.7 (33.3)	56.1 (77.1)	10.7 (32.2)	47.4 (64.4)
Median (IQR)	1.5 (0.4, 8.7)	16.3 (8.9,	1.4 (0.4, 7.7)	16.5 (8.6,
		66.6)		60.3)
Range	0.0, 658.0	0.2, 348.1	0.0, 658.0	0.1, 348.1
Urine Creatinine				
(mg/dl)				
Mean (SD)	71.7 (47.4)	62.1 (33.5)	71.7 (45.8)	68.3 (61.8)
Median (IQR)	65.1 (43.7,	55.3 (38.1,	65.4 (43.9,	58.0 (40.1,
	85.0)	85.0)	85.0)	85.0)
Range	0.7, 722.1	6.4, 218.6	0.7, 620.1	6.4, 722.1
Death at 2 years*	300 (11.1%)	58 (65.9%)	300 (11.5%)	58 (31.9%)
Outcome at 2				
years				
Alive w/o	2,410 (88.9%)	NA	2,316 (88.5%)	94 (51.6%)
Kidney Failure				
Death w/o	300 (11.1%)	NA	300 (11.5%)	NA
Kidney Failure				
Kidney Failure	NA	88	NA	88 (48.4%)
		(100.0%)		
Death at 5 years*	726 (26.8%)	58 (65.9%)	683 (26.1%)	101
				(55.5%)
Outcome at 5				
years				
Alive w/o	1,933 (71.3%)	0 (0.0%)	1,933 (73.9%)	0 (0.0%)
Kidney Failure				
Death w/o	683 (25.2%)	0 (0.0%)	683 (26.1%)	NA
Kidney Failure				
Kidney Failure	94 (3.5%)	88	NA	182
		(100.0%)		(100.0%)

 Image: Interquartile range, ACR: urine albumin to creatinine ratio, eGFR: glomerular filtration rate estimated by CKD-EPI formula. NA: not applicable

 * Death after or before kidney failure

Characteristic	G3a (n = 4,721)	G3b (n = 2,207)	G4 (n = 591)
Sex	(11 4)/22/	()_0//	(11 002)
Female	2,709 (57.4%)	1,102 (49.9%)	296 (50.1%)
Male	2,012 (42.6%)	1,105 (50.1%)	295 (49.9%)
Age (years)	2,012 (42.076)	1,105 (50.178)	295 (49.976)
Mean (SD)	72 1 (0 0)	76.0 (10.2)	72 0 (11 9)
	73.1 (9.9)	. ,	73.9 (11.8)
Median (IQR)	74.0 (67.0 -	77.0 (70.0 -	75.0 (67.0 -
Danga	80.0)	83.0)	83.0)
Range	23.0 - 97.0	26.0 - 97.0	23.0 - 95.0
Hypertension	2,850 (60.4%)	1,295 (58.7%)	341 (57.7%)
Diabetes Mellitus	1,171 (24.8%)	521 (23.6%)	153 (25.9%)
Persistent albuminuria			
categories			
A1	3,278 (69.4%)	1,302 (59.0%)	192 (32.5%)
A2	1,158 (24.5%)	632 (28.6%)	228 (38.6%)
A3	285 (6.0%)	273 (12.4%)	171 (28.9%)
CKD KDIGO classification			
Moderately increased risk	3,278 (69.4%)	0 (0.0%)	0 (0.0%)
High risk	1,158 (24.5%)	1,302 (59.0%)	0 (0.0%)
Very high risk	285 (6.0%)	905 (41.0%)	591 (100.0%)
Serum Creatinine (mg/dL)			
Mean (SD)	1.2 (0.2)	1.5 (0.2)	2.3 (0.5)
Median (IQR)	1.1 (1.0 - 1.3)	1.5 (1.3 - 1.7)	2.3 (1.9 - 2.6)
Range	0.8 - 1.9	1.1 - 2.4	1.5 - 3.9
eGFR (ml/min/1.73m ²)			
Mean (SD)	52.5 (3.9)	38.8 (4.2)	24.2 (4.1)
Median (IQR)	52.6 (49.4 -	39.3 (35.3 -	24.7 (21.2 -
	55.6)	42.4)	27.7)
Range	45.0 - 60.0	30.0 - 45.0	15.0 - 30.0
ACR (mg/g)			
Mean (SD)	198.0	302.6	451.7 (1,109.7)
	(3,039.8)	(3,386.3)	- (///
Median (IQR)	10.8 (3.9 -	20.3 (5.3 -	127.2 (17.7 -
	41.5)	100.1)	405.2)
Range	0.0 -	0.0 -	0.1 - 18,259.2
	137,672.1	144,870.6	
Urine Albumin (mg/ml)		,57 0.0	
Mean (SD)	5.5 (21.8)	10.0 (31.4)	25.0 (48.8)
Median (IQR)	0.7 (0.2 - 2.4)	1.3 (0.3 - 5.8)	7.4 (1.3 - 20.9)
Range	0.0 - 548.0	0.0 - 658.0	0.0 - 383.0
Urine Creatinine (mg/dl)	0.0 040.0	0.0 000.0	0.0 000.0
Mean (SD)	72.9 (47.9)	71.3 (46.0)	72.0 (50.7)
Median (IQR)	62.4 (40.4 -	64.8 (43.0 -	65.3 (44.6 -
	88.1)	64.8 (43.0 - 85.0)	=
Pango		· · · · ·	85.0)
Range	0.1 - 438.3	0.8 - 620.1	0.7 - 722.1
Death at 2 years*	282 (6.0%)	230 (10.4%)	128 (21.7%)
Outcome at 2 years	4 422 (22 22()		
Alive w/o Kidney Failure	4,432 (93.9%)	1,965 (89.0%)	445 (75.3%)
Death w/o Kidney Failure	263 (5.6%)	206 (9.3%)	94 (15.9%)
Kidney Failure	26 (0.6%)	36 (1.6%)	52 (8.8%)

Table S5. Baseline characteristics and frequency of outcomes in the study population according to CKD stages.

Death at 5 years*	755 (16.0%)	555 (25.1%)	229 (38.7%)
Outcome at 5 years			
Alive w/o Kidney Failure	3,947 (83.6%)	1,622 (73.5%)	311 (52.6%)
Death w/o Kidney Failure	717 (15.2%)	504 (22.8%)	179 (30.3%)
Kidney Failure	57 (1.2%)	81 (3.7%)	101 (17.1%)

IQR: interquartile range, ACR: urine albumin to creatinine ratio, eGFR: glomerular filtration rate estimated by CKD-EPI formula * Death after or before kidney failure

Table S6. Distribution of CKD 3a-4 patients included in the analysis across 17 health facilities of the EsSalud Rebagliati Network

		Outcome		
Healthcare center*	Overall (n = 7,519)	Alive w/o Kidney Failure (n = 5,880)	Death w/o Kidney Failure (n = 1,400)	Kidney Failure (n = 239)
Healthcare Nº1	74 (100.0%)	48 (64.9%)	18 (24.3%)	8 (10.8%
Healthcare Nº2	58 (100.0%)	52 (89.7%)	6 (10.3%)	0 (0.0%)
Healthcare Nº3	403 (100.0%)	319 (79.2%)	73 (18.1%)	11 (2.7%
Healthcare Nº4	287 (100.0%)	204 (71.1%)	71 (24.7%)	12 (4.2%
Healthcare Nº5	308 (100.0%)	242 (78.6%)	53 (17.2%)	13 (4.2%
Healthcare Nº6	1,471 (100.0%)	1,088 (74.0%)	298 (20.3%)	85 (5.8%
Healthcare Nº7	34 (100.0%)	20 (58.8%)	11 (32.4%)	3 (8.8%)
Healthcare Nº8	1,032 (100.0%)	858 (83.1%)	160 (15.5%)	14 (1.4%
Healthcare №9	207 (100.0%)	158 (76.3%)	42 (20.3%)	7 (3.4%)
Healthcare Nº10	258 (100.0%)	179 (69.4%)	73 (28.3%)	6 (2.3%)
Healthcare Nº11	77 (100.0%)	71 (92.2%)	5 (6.5%)	1 (1.3%)
Healthcare Nº12	1,289 (100.0%)	1,058 (82.1%)	202 (15.7%)	29 (2.2%
Healthcare Nº13	679 (100.0%)	497 (73.2%)	166 (24.4%)	16 (2.4%
Healthcare Nº14	752 (100.0%)	586 (77.9%)	143 (19.0%)	23 (3.1%
Healthcare Nº15	454 (100.0%)	381 (83.9%)	64 (14.1%)	9 (2.0%)
Healthcare Nº16	102 (100.0%)	90 (88.2%)	10 (9.8%)	2 (2.0%)
Healthcare Nº17	34 (100.0%)	29 (85.3%)	5 (14.7%)	0 (0.0%)

* For privacy reasons, the name of the current healthcare provider is not disclosed. However, we can provide the names internally if the request is reasonable and appropriate mechanisms are in place to ensure the protection of data privacy.

Table S7. Distribution of CKD 3b-4 patients included in the analysis across 17 health facilities of the EsSalud Rebagliati Network.

		Outcome		
Healthcare center*	Overall (n = 2,798)	Alive w/o Kidney Failure (n = 1,933)	Death w/o Kidney Failure (n = 683)	Kidney Failure (n = 182)
Healthcare №1	26 (100.0%)	10 (38.5%)	10 (38.5%)	6 (23.1%
Healthcare №2	12 (100.0%)	8 (66.7%)	4 (33.3%)	0 (0.0%)
Healthcare №3	129 (100.0%)	87 (67.4%)	32 (24.8%)	10 (7.8%
Healthcare Nº4	113 (100.0%)	68 (60.2%)	35 (31.0%)	10 (8.8%
Healthcare №5	115 (100.0%)	81 (70.4%)	24 (20.9%)	10 (8.7%
Healthcare Nº6	921 (100.0%)	644 (69.9%)	212 (23.0%)	65 (7.1%
Healthcare Nº7	22 (100.0%)	11 (50.0%)	8 (36.4%)	3 (13.6%
Healthcare №8	271 (100.0%)	194 (71.6%)	67 (24.7%)	10 (3.7%
Healthcare №9	70 (100.0%)	47 (67.1%)	17 (24.3%)	6 (8.6%)
Healthcare Nº10	90 (100.0%)	59 (65.6%)	28 (31.1%)	3 (3.3%)
Healthcare Nº11	15 (100.0%)	13 (86.7%)	1 (6.7%)	1 (6.7%)
Healthcare Nº12	408 (100.0%)	294 (72.1%)	93 (22.8%)	21 (5.1%
Healthcare Nº13	216 (100.0%)	134 (62.0%)	70 (32.4%)	12 (5.6%
Healthcare Nº14	215 (100.0%)	152 (70.7%)	47 (21.9%)	16 (7.4%
Healthcare Nº15	144 (100.0%)	106 (73.6%)	30 (20.8%)	8 (5.6%)
Healthcare Nº16	23 (100.0%)	18 (78.3%)	4 (17.4%)	1 (4.3%)
Healthcare №17	8 (100.0%)	7 (87.5%)	1 (12.5%)	0 (0.0%)

* For privacy reasons, the name of the current healthcare provider is not disclosed. However, we can provide the names internally if the request is reasonable and appropriate mechanisms are in place to ensure the protection of data privacy.

Table S8. Cumulative incidence of kidney failure and death without kidney failure in patients with CKD stages 3a-3b-4.

Year	Kidney failure		Death without kidney failure		
	%	95% CI	%	95% CI	
1-year	0.68%	(0.49% to 0.86%)	3.82%	(3.38% to 4.25%)	
2-year	1.52%	(1.24% to 1.79%)	7.49%	(6.89% to 8.08%)	
3-year	2.23%	(1.9% to 2.57%)	11.2%	(10.48% to 11.91%)	
4-year	2.88%	(2.5% to 3.26%)	15.58%	(14.75% to 16.41%)	
5-year	3.37%	(2.95% to 3.8%)	20.46%	(19.48% to 21.42%)	

%: observed risk estimated utilising the cumulative incidence function with the Aalen-Johansen estimator to account for competing risk; CI: confidence interval

Table S9. Cumulative incidence of kidney failure and death without kidney failure in patients with CKD stages 3b-4.

Year	Kidney failure		Death without kidney failure		
	%	95% CI	%	95% CI	
1-year	1.54%	(1.08% to 1.99%)	6%	(5.12% to 6.88%)	
2-year	3.15%	(2.5% to 3.79%)	10.72%	(9.57% to 11.86%)	
3-year	4.72%	(3.93% to 5.5%)	15.51%	(14.16% to 16.84%)	
4-year	6.02%	(5.12% to 6.9%)	21.03%	(19.48% to 22.55%)	
5-year	6.86%	(5.89% to 7.83%)	26.59%	(24.84% to 28.3%)	

%: observed risk estimated utilising the cumulative incidence function with the Aalen-Johansen estimator to account for competing risk; CI: confidence interval; CI: confidence interval

Table S10. Summary of ACR, 2-year and 5-year predicted risks of kidney failure according to KFRE before and after winsorising the 1% and 99% extreme values of ACR.

	Original data	Winsorised outliers in ACR.
Characteristic	N = 7,519	N = 7,519
ACR (mg/g)		
Mean ± SD	248.620 ±	144.053 ± 437.405
	3,044.427	
Median (IQR)	14.634 (4.484,	14.634 (4.484 <i>,</i> 66.114)
	66.114)	
Range	0.002, 144,870.588	0.236, 3,195.727
Predicted risk of kidney failure to		
2 years (%)		
Mean ± SD	0.963 ± 3.263	0.944 ± 3.155
Median (IQR)	0.131 (0.057,	0.131 (0.057, 0.429)
	0.429)	
Range	0.001, 53.657	0.006, 53.657
Predicted risk of kidney failure to		
5 years (%)		
Mean ± SD	3.182 ± 8.913	3.138 ± 8.760
Median (IQR)	0.507 (0.220,	0.508 (0.221, 1.649)
	1.650)	
Range	0.004, 94.911	0.024, 94.911

SD: standard deviation, IQR: interquartile range, ACR: urine albumin to creatinine ratio

Table S11. Performance measures of KFRE in the external dataset of patients with CKD stages 3a-3b-4 and 3b-4 following the application of winsorisation to the ACR variable and the subsequent recalculation of predicted risks using the Kidney Failure Risk Equation (KFRE).

Validation aspect and	CKD Stages 3a-3b-4		CKD Stages 3b-4			
performance measure	t = 2 year	t = 5 year	t = 2 year	t = 5 year		
Calibration						
Average predicted risk	0.94%	3.14%	2.32%	7.58%		
Average observed proportion (95% CI)	1.52% (1.24% to 1.79%)	3.37% (2.95% to 3.8%)	3.15% (2.5% to 3.79%)	6.86% (5.89% to 7.84%)		
O/E ratio (95% CI)	1.61 (1.42 to 1.79)	1.08 (0.95 to 1.2)	1.35 (1.15 to 1.56)	0.91 (0.76 to 1.05)		
Calibration intercept (95% CI)	0.21 (-0.06 to 0.49)	-0.23 (- 0.41 to - 0.04)	0.19 (-0.09 to 0.47)	-0.26 (-0.45 to -0.07)		
Calibration slope (95% Cl)	0.79 (0.61 to 0.97)	0.77 (0.66 to 0.87)	0.82 (0.61 to 1.04)	0.8 (0.67 to 0.94)		
Discrimination						
C-index up to t-years (95% CI)	0.853 (0.812 to 0.893)	0.845 (0.818 to 0.872)	0.848 (0.804 to 0.885)	0.828 (0.797 to 0.857)		
C/D AUC, at t years (95% CI)	0.855 (0.816 to 0.895)	0.848 (0.82 to 0.875)	0.854 (0.812 to 0.896)	0.837 (0.804 to 0.87)		

CKD: chronic kidney disease, t: time, O/E: Observed versus expected outcome ratio %: percentage, 95%CI: 95% confidence interval, C-index: truncated agreement index, C/D AUC-td: area under ROC curves time dependent on cumulative sensitivity and dynamic specificity.

Table S12. Performance measures of KFRE in the external dataset of patients with CKD stages3a-3b-4 and 3b-4, without considering competing risks.

Validation aspect and	CKD Stages	s 3a-3b-4	CKD Stages 3b-4				
performance measure	t = 2 year	t = 5 year	t = 2 year	t = 5 year			
Calibration	Calibration						
Average predicted risk	0.96%	3.18%	2.36%	7.66%			
Average observed proportion	1.58%	3.72%	3.35%	7.88%			
O/E ratio (95% CI)	1.64 (1.37 to 1.97)	1.17 (1.03 to 1.33)	1.42 (1.15 to 1.75)	1.03 (0.89 to 1.19)			
Calibration slope (95% CI)	0.79 (0.72 to 0.85)	0.79 (0.72 to 0.85)	0.83 (0.74 to 0.93)	0.83 (0.74 to 0.93)			
Discrimination							
Harrell C (95% CI)	0.856 (0.817 to 0.895)	0.856 (0.83 to 0.883)	0.85 (0.809 to 0.891)	0.839 (0.809 to 0.869)			
Uno C (95% CI)	0.856 (0.817 to 0.895)	0.851 (0.825 to 0.878)	0.851 (0.81 to 0.892)	0.832 (0.801 to 0.864)			
C/D AUC, at t years (95% CI)	0.861 (0.822 to 0.9)	0.86 (0.832 to 0.887)	0.86 (0.818 to 0.901)	0.846 (0.812 to 0.879)			

CKD: chronic kidney disease, t: time, O/E: Observed versus expected outcome ratio %: percentage, 95%CI: 95% confidence interval, C/D AUC-td: area under ROC curves time dependent on cumulative sensitivity and dynamic specificity.

		Current study		
Characteristics	Original Study (Non-North American population)	CKD Stages 3a-4	CKD Stages 3b-4	
Numbef of participants	103753	7519	2798	
F/U Time, years, Median (IQR)	4 (3, 6)	4.9 (3.5, 5.9)	4.6 (3.2, 5.8)	
Age, years (SD)	71 (12)	74 (10.2)	75.6 (10.6)	
Male, n (%)	46632 (45%)	3412 (45.4%)	1400 (50%)	
Black ethnicity, n (%)	393 (0.4%)	0 (0%)	0 (0%)	
eGFR, ml/min/1.73m ² (SD)	47 (12)	46.2 (9.8)	35.7 (7.3)	
Albuminuria, n (%)	24962 (34%)	2747 (36.5%)	1304 (46.6%)	
Kidney Failure Incidence (per 1000 py)	9.2	7.4	16.1	

Table S13. Comparisons of characteristics of original cohort that recalibrated Non NorthAmerican version of KFRE and our study population

F/U: follow-up; eGFR: glomerular filtration rate estimated by CKD-EPI formula

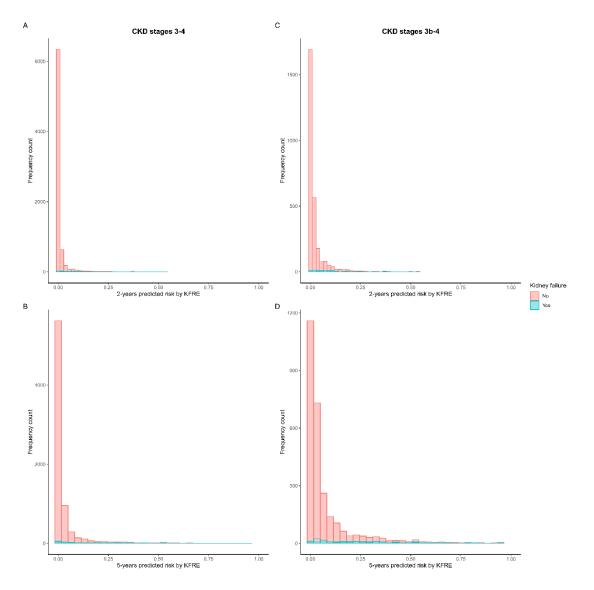


Figure S1. Distribution of the 2-year and 5-year predicted risk estimated by KFRE equation according to kidney failure outcomes.

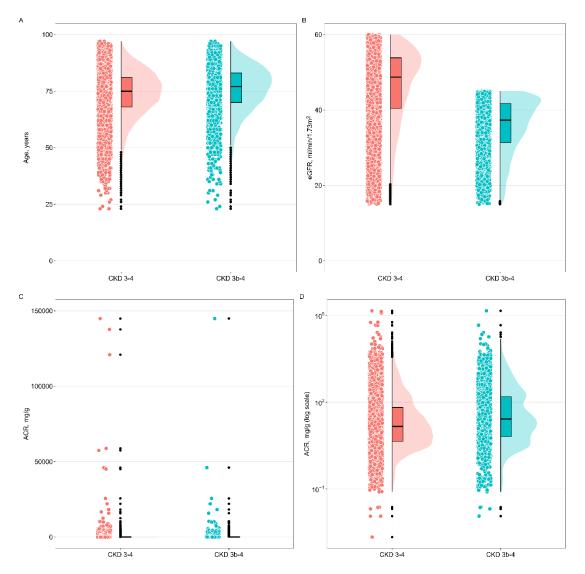


Figure S2. Distribution of the four KFRE equation variables in CKD 3-4 and CKD 3b-4 patients.

(A) age in years, (B) estimated glomerular filtration rate (eGFR) according to the CKD-EPI formula, (C) urine albumin to creatinine ratio (ACR) expressed in the original scale, and (D) natural logarithm scale for improved comparison of distributions.

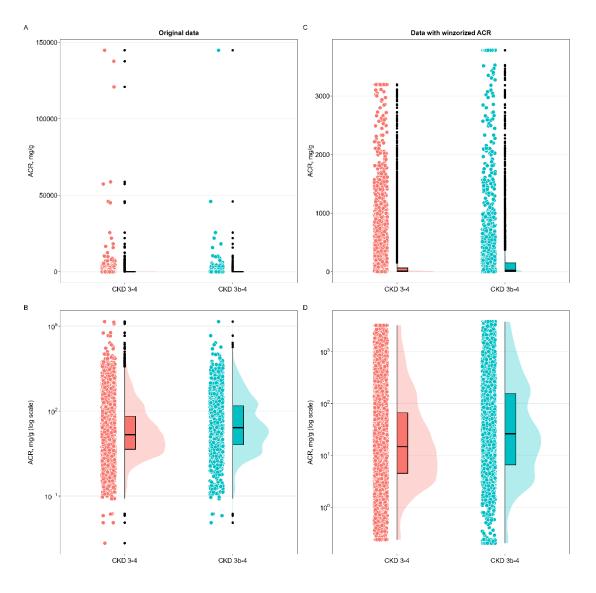


Figure S3. Distribution of ACR in CKD 3-4 and CKD 3b-4 patients before and after winsorising the 1% and 99% extreme values of ACR.

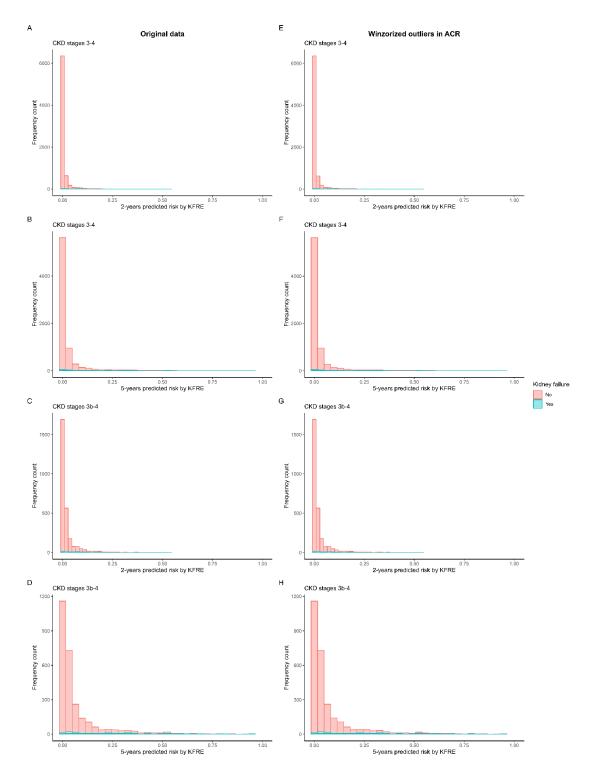


Figure S4. Distribution of the recalculated 2-year and 5-year predicted risk estimated by the KFRE equation after winsorising the 1% and 99% extreme values of ACR.

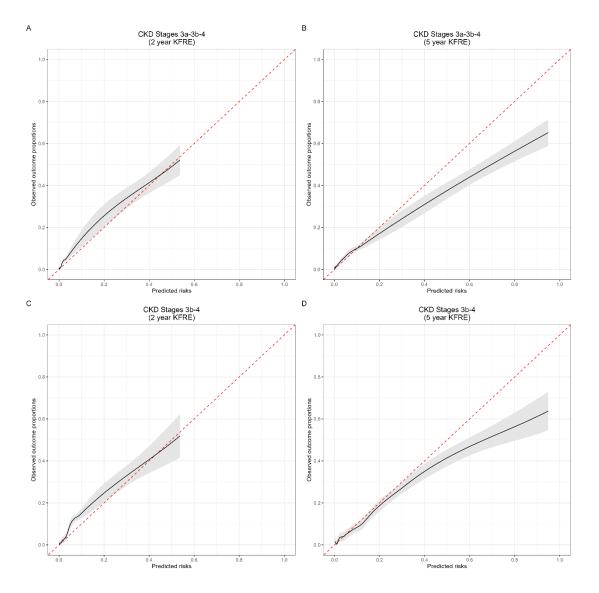


Figure S5. Calibration curves for each group and prediction horizon following the application of winsorisation to the ACR variable and the subsequent recalculation of predicted risks using the Kidney Failure Risk Equation (KFRE).

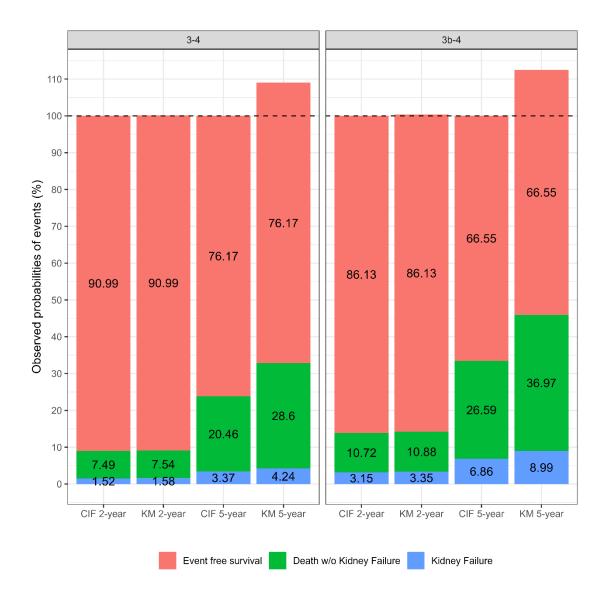


Figure S6. Differences between Kaplan-Meier (KM) and cumulative incidence functions (CIF) estimates of the observed outcome risks in the presence of competing events, in CKD 3a-4 and CKD 3b-4 patients.

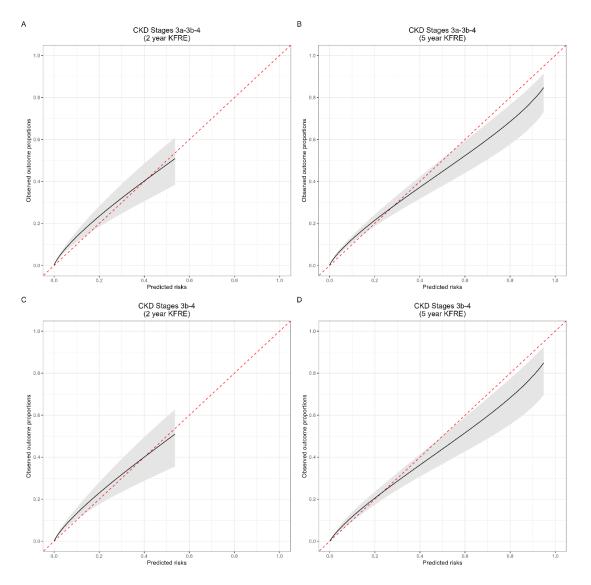


Figure S7. Calibration curves for each group and prediction horizon, disregarding competing risks.

4. REFERENCES

 Tangri N, Grams ME, Levey AS, Coresh J, Appel LJ, Astor BC, et al. Multinational Assessment of Accuracy of Equations for Predicting Risk of Kidney Failure: A Metaanalysis. JAMA [Internet]. 12 de enero de 2016 [citado 30 de enero de 2020];315(2):164-74. Disponible en: https://jamanetwork.com/journals/jama/fullarticle/2481005