Systematic evaluation of the environmental effect on depressive symptoms in late adolescence and early adulthood: exposome-wide association study and twin modeling

Zhiyang Wang¹, Stephanie Zellers¹, Alyce M. Whipp¹,², Marja Heinonen-Guzejev¹,², Jordi Júlvez³,⁴, Irene van Kamp⁵, Jaakko Kaprio¹,² *

¹ Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
² Department of Public Health, University of Helsinki, Helsinki, Finland
³ Clinical and Epidemiological Neuroscience (NeuroÈpia), Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
⁴ ISGlobal-Instituto de Salud Global de Barcelona Campus MAR, Parc de Recerca Biomèdica de Barcelona (PRBB), Barcelona, Spain
⁵ Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM, Netherlands), Bilthoven, the Netherlands

* Corresponding author:
Jaakko Kaprio: jaakko.kaprio@helsinki.fi; +358-503715419; address: Institute for Molecular Medicine, University of Helsinki, PL 20 (Tukholmankatu 8), FI-00014, Helsinki, Finland
Abstract

The exposome represents the totality of environmental effects, but systematic evaluation between it and depressive symptoms is scant. We sought to comprehensively identify the association of the exposome with depressive symptoms in late adolescence and early adulthood and determine genetic and environmental covariances between them. Based on the population-based FinnTwin12 cohort (3025 participants in young adulthood and 4127 at age 17), the exposome-wide association study (ExWAS) design was used to identify significant exposures from 12 domains. Bivariate Cholesky twin models were fitted to an exposome score and depressive symptoms. In ExWASes, 29 and 46 exposures were significantly associated with depressive symptoms in young adulthood and at age 17, respectively, and family-related exposures were the most influential. Twin models indicated considerable genetic and environmental covariances between the exposome score and depressive symptoms. The findings underscore the systematic approach of the exposome and the consideration of relevant genetic effects.
Introduction

Depressive symptoms are a type of chronic mental health condition with complex etiology that describes people who suffer sadness, anhedonia, frustration, or other symptoms. Major depressive disorder (MDD) is the clinical disease diagnosed when depressive symptoms reach a threshold of severity and duration. MDD leads to an overall negative impact on daily life, studying, or work among patients and can even lead to suicide. The updated Global Burden of Diseases study showed that the age-standardized prevalence of MDD was 4% (3951 per 100,000 people) in Western Europe, higher than the global level. MDD accounts for the largest proportion of global disability-adjusted life years caused by overall mental disorders. They also underlined the severe health burden in people aged between 15 and 24. Among adolescents, a 2021 systematic review indicated that the pooled prevalence of self-reported depressive symptoms was 34% and of MDD was 5% from the studies between 2001 to 2020, and the prevalence is increasing. The COVID-19 pandemic exacerbated the already growing trend of hardship. Given a growing body of evidence on the environmental effect on depressive symptoms and MDD, more systematic investigation is urgently needed, especially among youth.

The concept of the “exposome” was raised in 2005, which depicts the dynamic totality of the environment that an individual experiences. The exposome is divided into three parts: specific external, general external, and internal exposomes, and the external exposome could be further subdivided into the familial, social, built exposome, and so on. Instead of studying a single or small group of exposures, an exposome study aims to investigate the overall effect of the environment, while, unavoidably, complexities like interaction or ubiquity increase the difficulty. An exposome (environmental, exposure) wide association study (ExWAS), likes other “WAS” studies, denotes an agnostic and systematic method for hypothesis-generating, which is comparatively appropriate to the exposome’s spatiotemporal variabilities and multi-level structure. Several ExWAS studies have targeted mental health, and Choi et al. used clinically significant incident depression as the outcome and identified multiple modifiable factors. As the early warning sign of MDD, focusing on depressive symptoms in adolescence or young adulthood could be easier to guide translational intervention as early as possible, which would be more cost-effective.

Despite the benefits of the exposome approach, there are some other hindrances. First, under the current technique, we cannot measure every possible exposure (far from reaching “1-genome”), and the exposome keeps updating, expanding, and enriching. Moreover, some studies have emphasized exposures’ non-genetic properties, which ignores how the environment interacts with genetics through multiple mechanisms among many traits including depression. Medda and colleagues,
based on the Italian Twin Registry, demonstrated the substantial genetic role in exogenous metallomics, where the estimations ranged from 0.15 (Arsenic) to 0.79 (Zinc)14. As a natural experiment, twin and family studies provide one method to evaluate genetic and environmental relationships between traits and exposures. This design decomposes the variance of traits into additive genetic (A), domain genetic (D), common environmental (C), and unique environmental (E) components, which contain the distinct features of the exposome as the overall environmental effect. Such indirect evidence of genetic effects based on genetic relationships of family members is an efficient way to demonstrate the presence (or lack of) genetic effects. Thus, the combination of exposome and twin studies could advance our knowledge of the complexities between genes and environments, improve our understanding of existing deficiencies in exposome measures, and produce further research questions. A natural extension is then to include measured genotypes, either targeting specific genes such as those involved in the metabolism of external compounds or more broad-based genome-wide approaches to derive polygenic scores of genetic susceptibility.

In this study, based on the FinnTwin12 cohort, we aim to: 1) comprehensively and systematically determine exposures that are significantly associated with depressive symptoms and MDD in late adolescence and early adulthood through ExWAS and 2) estimate to what extent the exposome score and depressive symptoms share the same genetic and environmental risk factors.

Results

Characteristics of included participants and exposures

The characteristics of ExWASes of different outcomes are shown in Table 1. There were 3025, 1236, and 4127 individual twins included in the ExWAS of general behavior inventory (GBI) score in young adulthood (primary outcome), incidence of MDD in young adulthood, and GBI score at age 17, respectively. For individual twins included in ExWASes of all outcomes, the majority were female and from dizygotic (DZ) pairs, and their parental education levels were limited (less than high school). At age 17, 25.3% of individual twins reported being current smokers and 82.6% were full-time students and not working. In young adulthood, 25.4% of individual twins reported that they were currently smoking and 51.4% had a full-time job. The mean GBI scores at age 17 and in young adulthood were 5.0 (SD: 4.9) and 4.4 (SD: 4.7), respectively, and the two measures correlated with 0.49. The incidence of lifetime MDD in young adulthood was 12.3%. The characteristics of participants are shown in Table 2.

There are 12 domains of exposures: air pollution, building, blue and green spaces, population density, geocoordinates, prenatal exposures, passive smoking, family and parents, friend and
romantic relationships, school and teachers, stressful life events, and social indicators. Exposures’ description and statistical characteristics based on twins included in the ExWAS of GBI in young adulthood (before imputation) are presented in Supplementary Table 1. The results of principal component analysis (PCA) are presented in Supplementary Figure 1. The first principle component (PC1) only explained 10.93% and 10.66% of the total variance in young adulthood and age 17, respectively. From the scatter plots of PC1 and PC2, we identified some potential clusters of exposures from domains of building, blue and green spaces, and social indicators via visual assessment.

ExWAS of log-transformed GBI score and incidence of MDD in young adulthood

The adjusted coefficient and \(-\log_{10}(P \text{ value})\) of all exposures included for both adult outcomes are presented in Supplementary Table 2. There were 40 significant P values in 29 exposures, which were associated with log-transformed GBI score in young adulthood, identified from 385 exposures (Figure 1). There were 24, 2, and 3 exposures belonging to the domains of family and parents, friend and romantic relationships, and school and teachers, respectively. For the most protective exposure, compared to twins who felt their home environment was completely unfair, quite unfair, or somewhat unfair at age 17, twins who felt it was not at all unfair at age 17 were associated with a 0.40 lower log-transformed GBI score (95% CI: -0.50, -0.31). For the most harmful exposure, compared to twins who were completely satisfied with their relationship with friends at age 14, twins who felt somewhat satisfied, mainly not satisfied, or not at all satisfied at age 14 were associated with a 0.42 higher log-transformed GBI score (95% CI: 0.29, 0.55). In contrast, none of the exposures showed a significant association with MDD (Supplementary Figure 2).

ExWAS of GBI at age 17

The adjusted coefficient and \(-\log_{10}(P \text{ value})\) for the age 17 outcome were presented in Supplementary Table 2. There were 71 significant P values in 46 exposures, which were significantly associated with log-transformed GBI score, identified from 286 exposures (Supplementary Figure 3). There were 32, 6, 4, and 4 exposures belonging to the domains of family and parent, friend and romantic relationship, school and teachers, and stressful life events, respectively. For the most harmful exposures, compared to twins who were completely satisfied with their success at work or studies at age 17, twins who felt mainly not satisfied, or not at all satisfied at age 17 were associated with a 0.65 higher log-transformed GBI score (95% CI: 0.55, 0.74). For the most protective exposure, the same as the result in young adulthood, compared to twins who felt their home environment was completely unfair, quite unfair, or somewhat unfair at
age 17, twins who felt it was not at all unfair at age 17 were associated with a 0.50 lower log-transformed GBI score (95% CI: -0.57, -0.43). There are 27 exposures that are significantly associated with both log-transformed GBI scores in young adulthood and at age 17, and of 22 exposures belong to the domain of family and parents.

Twin modeling of depressive symptoms with an exposome score

Before the bivariate modeling, the best-fit univariate AE model indicated E explained 61% of the variance of depressive symptoms in males and 45% in females at age 17, and the numbers slightly reduced to 59% and 42% in young adulthood, respectively (Supplementary Table 3). The standardized root mean square residual (SRMR) for confirmatory factor analysis (CFA) of exposome scores in young adulthood and age 17 were 0.100 and 0.078, respectively, indicating acceptable model fit. MDD was not included in the CFA or following twin modeling due to the small sample size and no significant exposure identified.

Given the sex differences in prevalence of depressiveness symptoms, the differences in heritability and that sex-limited bivariate models also indicated significant sex differences (Supplementary Table 4) at both age points, we ran the bivariate models separately for males and females.

Figure 2 and Supplementary Table 5 show the path coefficients for the model for exposome score and log-transformed GBI score in young adulthood. Unique environmental factors accounted for 23% and 13% of the covariances in males and females, respectively. Additive genetic factors accounted for 77% in males and 87% in females. In males, standardized variances of E_{exposome} and E_{GBI} were 0.32 (95% CI: 0.26, 0.39) and 0.51 (95% CI: 0.42, 0.62) in males, while the number reduced to 0.25 (95% CI: 0.21, 0.30) and 0.50 (95% CI: 0.42, 0.58) in females, respectively. For the additive genetic effect, the standardized variances of A_{exposome} were 0.68 (95% CI: 0.61, 0.74) and 0.75 (95% CI: 0.70, 0.79) and of A_{GBI} were 0.49 (95% CI: 0.38, 0.58) and 0.50 (95% CI: 0.42, 0.58) in males and females, respectively.

Supplementary Figure 4 and Supplementary Table 5 show the path coefficients for the model for exposome score and log-transformed GBI score at age 17. Unique environmental factors accounted for 31% and 13% of the covariances in males and females, respectively. Additive genetic factors accounted for 69% in males and 87% in females. The standardized variances of E_{exposome} at age 17 are similar to E_{exposome} in young adulthood regardless of sex. The standardized variance of E_{exposome} is 0.26 (95% CI: 0.22, 0.30) and 0.22 (95% CI: 0.19, 0.25) and of E_{GBI} is 0.64 (95% CI: 0.55, 0.73) and 0.44 (95% CI: 0.38, 0.50) in males and females, respectively. For the additive genetic effect, the standardized variances of A_{exposome} were 0.74 (95% CI: 0.70, 0.78) and 0.78 (95% CI: 0.75, 0.81).
and of A_{GBI} were 0.36 (95% CI: 0.27, 0.45) and 0.56 (95% CI: 0.50, 0.62) in males and females, respectively.

Discussion

Using data on depressive symptoms and diagnosed MDD from the FinnTwin12 study and a wide range of exposures from multiple sources, we applied a two-stage analysis to screen the exposome and determine the environmental sources of correlation between the exposome and depressive symptoms via twin modeling. First, multiple exposures have been identified across domains of family and parents, friend and romantic relationships, school and teachers, and stressful life events, which were significantly associated with depressive symptoms in young adulthood and at age 17. In contrast, none of the exposures correlated with the incidence of MDD in young adulthood. Second, after generating an exposome score, the best-fitting bivariate AE models indicated that unique environmental effects accounted for a marked fraction of the covariance between the exposome score and depressive symptoms. This environmental fraction was higher in males than in females, suggesting a notable sex difference. Our result implies that environmental effects are more impactful compared to genetic effects in males than in females.

Influence from the familial exposome, especially from the familial atmosphere, was demonstrated by our evidence as having the most substantial impact on depressive symptoms in late adolescence and early adulthood. A large Chinese survey also found that familial factors like cohesion, conflict, and control correlated with the occurrence of depressive symptoms among university students\(^{15}\). Other studies have revealed the connection of family triangulation (parent-child coalition and alliance) and satisfaction with depressive symptoms from childhood to late adolescence across countries\(^{16,17}\). Fairness (largest protective effect size of GBI at both age points), as a dimension of parentification, was demonstrated as a unique predictor of mental health symptoms\(^{18}\). These existing conventional investigations were consistent with ours, while our ExWAS more systematically evaluated a wide range of exposures and reduced the chance of type-I error without any pre-identified hypothesis. Moreover, instead of traditional scales for assessing familial and interpersonal relationships, we treated each scale component as an “independent” exposure in models, which helped us to identify new correlations, detect the relative importance, and prepare for further analysis of more intricate relationships between different components and depressive symptoms.

Results from bivariate twin modeling reveal a complex relationship between genes, environments, and depressive symptoms. Many significant exposures were chosen under the guidance of the
exposome paradigm, but it does not necessarily mean a pure environmental effect. Many familial influences are considered “inheritable factors” between generations to a certain extent, according to the intergenerational transmission theory. Such effects can be transmitted from parents to children through shared genes but also by shared environments. Early studies have found that life satisfaction or family violence from parents and origin-families led to a significant impact on the development of subsequent similar familial environments among offspring19,20. Moreover, we should consider the existence of the gene–environment interaction (G×E), which suggests the different effects of a genotype on disease risk in persons with different environmental exposures21. Choi et al.11 stratified the ExWAS by polygenic risk scores of major depression and found that some significant factors in the full sample became null in the genetically at-risk sample. Another study suggested the multiple modulation pathways by exposure to DNA methylation, through numerous testing, regarded as the G×E-WAS22. Additionally, previous twin studies found geographic confounding in the assessment of A, C, and E variance, possibly attributable to differences in genetic ancestry. Results from the Netherlands Twin Register found 1.8% of the variance in children’s height was captured by regional clustering23. In the Netherlands, there were strong genetic differentiations between the north and south, between the east and west, and between the middle band and the rest of the country by PCA on genome-wide data24. In the Finnish population, a significant population structure difference is also observed between the east and west parts of country25. In brief, the hidden heritable and genetic factors critically influence the association between the exposome and depressive phenotype through various mechanisms, which potentially lead to a propensity to weak associations in our findings.

Another possible explanation for null results, especially among the social exposome, is the various risk models such as critical period, accumulation, or trajectory. Morrissey and Kinderman confirmed the hypothesis that accumulation of adverse financial hardship negatively affects mental health, but not the hypothesis of critical periods26, while our risk model is the “critical period”. Another study demonstrated the complicated effect between change in racial composition, neighborhood socioeconomic status, and depressive symptoms27. In one previous ExWAS study, van de Weijer et al.10 identified several social indicators such as safety and income linking to mental well-being, but the links were weak in our analysis. This may be due to using different outcomes, the older age in their samples, and different statistical methods between the two countries’ authorities10. Moreover, the social indicators are at the postal code or municipality level, which leads to some concern about inaccurate measurement of individuals (information bias). Some scientists have raised the concept of an “Eco-Exposome” to thoroughly assess the internal...
exposome including molecules affected by exogenous exposures28, which could be assimilated into further research.

Several previous ExWAS studies, linking the exposome to mental health, had some similar or heterogeneous results to ours. Although Choi et al.’s ExWAS was on the general population in the UK, they also found that the frequency of visits with family/friends reduced the odds of depression incidence and Mendelian randomization reinforced the causality of this association11. However, we do not have many common variables with Choi et al.11 in which they included many lifestyle factors (specific external exposome), while we have more general external exposome variables. Another ExWAS on psychotic experiences identified many stressful life event factors, a result that was similar to our study8. Notably, Finland has been ranked very high in the beneficial environmental effect on the child by UNICEF, providing environments with low air pollution, high greenness, safe water, and other constructive aspects relatively equally to residents in childhood and adolescence29. It could be a possible reason for null results with external living environments due to a lack of individual variation and for the differential findings with other ExWASes in Europe and China. Despite the divergent findings, the accumulation of ExWAS findings from different countries, populations, and age groups helps us to enhance our understanding of growing concepts of the exposome on depression, as well as broad mental health. The inclusion of a large number of exposures about interpersonal and person–societal relationships is also an important addition to the existing evidence.

The sex difference is notable. Our previous study found that male twins tend to stay together longer, implying more exposure to any familial impact30. In a Swedish study, family structure, conflict, and child disclosure of information to parents were associated with offending behavior in boys, while only one factor was salient in girls31. Another British study found that boys in detrimental familial environments were increasingly disadvantaged in school achievement, compared to girls32. The evidence hints that males are more easily affected by the family environment, which could explain the higher contribution of E on the covariance between the exposome and depressive symptoms in males. This inference is not certain, and there is contrary evidence33. Moreover, sex differences exist in many biological mechanisms regarding how the body neurophysiologically reflects the external environment. Several sex-differentially expressed neurotransmitters or hormones, such as progesterone in females, are involved in systemic dysregulation, inducing depression34. Furthermore, environmental endocrine-disrupting chemicals are able to alter neurodevelopment with sex-specific effects at very early developmental stages35. In the future, integrating with the
internal exposome such as metabolites and other -omics will help us advance the study of sex-difference mechanisms on the relationship between the exposome and depressive phenotype.

There are some limitations in our study. First, compared to other ExWASes, our sample size is relatively small. Although Chung et al. indicated that a sample size between 1795 and 3625 participants is adequate when using the Bonferroni correction36, we did not stratify the ExWAS by sex due to the sample size being reduced by half. Second, we did not further assess the causality. Causal inferences are critical for further policymaking and intervention. Mendelian randomization in larger samples is a future direction. Moreover, a more complex structure of exposome, such as inter-relationships between exposures, may exist. We could deeply investigate the conjunct, nonadditive, or interplay effect of exposures with depressive phenotypes in the future.

Conclusion

This study applied a two-stage analysis. First, in ExWAS, we identified that exposures from family and parents, friend and romantic relationships, school and teachers, and stressful life events were significantly associated with depressive symptoms in late adolescence and young adulthood. The family and parent exposures were the most influential. Second, twin modeling between the exposome and depressive symptoms uncovered a complex relationship between genes, environments, and depressive symptoms with sex differences. The findings underline the importance of systematic evaluation of the environmental effects on depressive symptoms and recommend the consideration of genetic effects in future studies.

Methods

Study participants

The participants came from the FinnTwin12 cohort, which is a nationwide prospective cohort among all Finnish twins born between 1983 and 1987. First, the overall epidemiological study consisted of all 5184 twins who responded (age 11–12) at wave 1, and there are three general following waves at age 14, 17, and in young adulthood (mean age: 21.9). Moreover, 1035 families with 2070 twins were invited to take part in an intensive study with psychiatric interviews, some biological samples, and additional questionnaires37. At age 14 (wave 2), 1854 twins participated in these interviews using the Semi-Structured Assessment for Genetics of Alcohol38. They were then invited to participate again as young adults (wave 4) of the study. Psychiatric interviews in young adulthood were completed for 1347 twins in the intensive study, including assessment of MDD using lifetime Diagnostic and Statistical Manual of Mental Disorders IV criteria39. The twins also
completed questionnaires on health, health behaviors, work, and multiple psychological scales. An updated review has been published40.

Measures

The primary outcome is the short-version GBI scores in young adulthood. It is a self-reported inventory to evaluate the occurrence of depressive symptoms, which is composed of 10 Likert-scale questions41. The total score ranges from 0 to 30, and a higher score implies more depressive symptoms occurred. There are two secondary outcomes: GBI scores at age 17 and incidence of MDD in young adulthood.

In total, we curated 385 environmental exposures under the concept of the Equal-Life project42 from multiple sources and group them into 12 domains. Air pollution exposures came from the annual average air quality of each observation station from the Finnish Meteorological Institute. Domains of building, blue and green spaces, population density, and a part of geocoordinates were from Equal-Life enrichment. Their description can be found in a previous study43 and is presented in Supplementary Note 1. Exposures from prenatal exposures, passive smoking, family and parents, friend and romantic relationships, school and teachers, and stressful life events domains were from FinnTwin12 questionnaires and are described in a published review40. Social indicators were from Statistics Finland and described in Supplementary Note 1. Except for FinnTwin12 questionnaires, exposures from other sources were linked to individual twins via EUREF-FIN geocoordinates. The full residential history from birth onward until 2020 of the twins was obtained as geocoordinates and dates of moving in and out of specific addresses from the Digital and Population Data Services Agency in Finland30. The types of exposures are continuous, binary, and categorical. Considering the temporality, we included repeated exposures for the “critical period” risk model, and Supplementary Figure 5 presents the timeline of the study. There are three exposure inclusion criteria: 1) twins have available residential history; 2) twins and their family completed at least one questionnaire at any wave; and 3) the percentage of missing values is less than 20% in ExWAS. Supplementary Table 1 provides details of each exposure, its source, its date, and its variable name.

For analysis of outcomes in young adulthood, we identified seven covariates: sex (male, female), zygosity (monozygotic (MZ), DZ, unknown), parental education (limited, intermediate, high)44, smoking (never, former, occasional, current), work status (full-time, part-time, irregular, not working), secondary level school (vocational, senior high school, none), and age. The latter four variables were reported by twins as young adults (wave 4). For analysis of outcome at age 17, sex, zygosity, and parental education remained. Another two variables, smoking (have twins ever
smoked: yes, no) and study and working status (neither study nor work, only study, only work),
reported at age 17 (wave 3), were included.

Data pre-processing and descriptive statistics

Participants missing information on outcome or covariates were excluded from the corresponding
age’s analyses. Due to the skewness of the GBI score, we added one to the GBI score and log-
transformed it. Appropriate regrouping was conducted for categorical exposures, and then we used
multivariate imputation by chained equation to replace the missing values of exposures. PCA
utilized the dimension reduction technique, and the potential clusters of exposures (correlated) were
visually assessed based on the two-dimensional coordinate with the first and second components. It
was only conducted for outcomes of GBI at age 17 and in young adulthood, not for the incidence of
MDD.

Exposome-wide association study

To conduct the ExWAS, a generalized linear regression model with Gaussian distribution
(essentially linear regression) for the outcomes of log-transformed GBI score was repeatedly
performed for each exposure. We used Bonferroni correction by the number of effective tests
(calculated by PCA) to adjust for multiple testing. Covariates were adjusted and the cluster effect
of sampling based on families of twin pair was controlled for by the robust standard error. For the
outcome of the incidence of MDD, the distribution was switched to be binomial. The number of
included exposures of secondary outcomes was smaller due to the third exposure inclusion criteria
and the sample size varied, thus the P value thresholds varied. Due to categorical exposures, the
number of P values was higher than the number of exposures. The R package “rexposome” was
used.

Generating exposome score

Based on the significant exposures selected from the ExWAS, confirmatory factor analysis was
used to estimate an exposome score, preparing for the following twin modeling. According to the
concept of the environment’s totality, we indicated a one-factor structure for the exposome, and
CFA verifies it based on structural equation modeling as theory-driven. We used maximum
likelihood to estimate the score and SRMR to evaluate the model fit. The cluster effect was
controlled like before. Due to multiple subgroups in categorical exposures, we included the whole
exposure variable when there was at least one subgroup that was significant compared to the
reference in ExWAS. The Stata package “sem” was used. The coefficients of significant exposures
were presented in Supplementary Tables 6 and 7 for outcomes of GBI in young adulthood and at age 17, respectively. Additionally, we also conducted exploratory factor analysis (EFA) estimated by maximum likelihood with 100 optimizations, whereas a large number of retained factors indicated potential overfitting of EFA.

Twin modeling

In twin modeling, the genetic effect is usually divided into additive and dominant genetic effects\(^{48}\). Since MZ twins are roughly genetically identical and DZ twins share roughly half of their segregating genes, the correlation of A is set to 1.0 and 0.5 and of D is set to 1.0 and 0.25 within MZ and DZ twin pairs, respectively. The epistatic effect is a part of A. The environmental effect is also divided into two components: common environment whose correlation is assumed to be 1.0 regardless of zygosity, and unique environment (no correlation), which includes unmeasured errors.

The intrapair correlations of GBI in DZ (\(\rho=0.22\) in young adulthood and =0.16 at age 17) and MZ (\(\rho=0.52\) in young adulthood and =0.51 at age 17) indicated to use an ADE model initially, instead of the ACE model (\(\rho_{MZ}>2\rho_{DZ}\)). Due to only using the twin pair design, instead of the extended family design, we could not use an ACDE model. The saturated twin model was performed to test the assumptions of equal means and variances for twin order and for zygosity, via constraint means and variances, and to detect the sex difference via sex limitation.

In the saturated twin model (Supplementary Table 8), the Akaike’s Information Criterion (AIC) and likelihood ratio test between models suggested that the assumptions were basically met. Results of the sex-limitation saturated model (Supplementary Table 8) indicated a significant sex difference. In the comparison of the univariate model fit of ADE, AE, and E models, AIC suggested the AE model was the most optimal (Supplementary Table 3).

Finally, to assess how the current exposome score explains the variance of depressive symptoms, we employed the bivariate Cholesky AE model to fit the exposome score and log-transformed GBI score (Supplementary Figure 6) at both age points, which efficiently decomposes the phenotypic correlation and offers the attribution (%) to genetic and environmental factors\(^{49}\). Two latent factors (A\(_{\text{exposome}}\) and E\(_{\text{exposome}}\)) influence both the exposome score (\(a_{11}\) and \(e_{11}\)) and log-transformed GBI score (\(a_{21}\) and \(e_{21}\)), and another two latent factors (A\(_{\text{GBI}}\) and E\(_{\text{GBI}}\)) only influence the log-transformed GBI score (\(a_{22}\) and \(e_{22}\)). The overall correlation between the exposome score and GBI could be calculated as \(a_{11} \ast a_{12} + e_{11} \ast e_{12}\). Variances of A\(_{\text{exposome}}\), E\(_{\text{exposome}}\), A\(_{\text{GBI}}\), and E\(_{\text{GBI}}\) were calculated as \(a_{11}^2 + a_{12}^2, e_{11}^2 + e_{12}^2, a_{22}^2,\) and \(e_{22}^2\), respectively. We also re-assess the sex difference via an additional sex-limited saturated bivariate twin model.
Only full MZ and DZ twin pairs were included in the twin modeling. We dropped the opposite-sex DZ pairs and stratified the univariate and bivariate twin models by sex. Age, reported in the young adulthood survey, was adjusted in univariate and bivariate models for the outcome in young adulthood. The R package “OpenMx” was used\(^50\).
Data Availability

The FinnTwin12 data is not publicly available due to the restrictions of informed consent. However, the FinnTwin12 data is available through the Institute for Molecular Medicine Finland (FIMM) Data Access Committee (DAC) (fimm-dac@helsinki.fi) for authorized researchers who have IRB/ethics approval and an institutionally approved study plan. To ensure the protection of privacy and compliance with national data protection legislation, a data use/transfer agreement is needed, the content and specific clauses of which will depend on the nature of the requested data.

Acknowledgement

We would like to acknowledge Dr. Anttila Pia and Dr. Hellén Heidi from the Finnish Meteorological Institute for providing the annual summary of air quality data in Finland. We would like to acknowledge Dr. Maria Foraster from the Barcelona Institute for Global Health (ISGlobal) for her contribution to data enrichment. We would like to thank Xavier Escribà-Montagut from ISGlobal for technical support on the R package “rexposome”. FinnTwin12 wishes to thank all participating twins, their parents, and teachers.

Funding

This research was partly funded by the European Union’s Horizon 2020 research and innovation program under grant agreement No 874724 (Equal-Life). Equal-Life is part of the European Human Exposome Network. Data collection in FinnTwin12 has been supported by the National Institute of Alcohol Abuse and Alcoholism (grants AA-12502, AA-00145, and AA-09203 to Richard J. Rose) and the Academy of Finland (grants 100499, 205585, 118555, 141054, 264146, 308248, 312073, 336823, and 1352792 to Jaakko Kaprio). Jaakko Kaprio acknowledges support by the Academy of Finland (grants 265240, 263278).

Ethical statement

The ethics committee of the Department of Public Health of the University of Helsinki (Helsinki, Finland), the ethics committee of the Helsinki University Central Hospital District (Helsinki, Finland), and the Institutional Review Board of Indiana University (Bloomington, Indiana, USA) approved the FinnTwin12 study protocol. All participants and their parents/legal guardians gave informed written consent to participate in the study. The authors assert that all procedures contributing to this work comply with the ethical standards of the relevant national and institutional committees on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008.
Reference

11. Choi, K. W. *et al.* An Exposure-Wide and Mendelian Randomization Approach to

fertility require large sample sizes. Environ. Int. 125, 505–514 (2019).

Table 1: Characteristics of ExWASes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Number of individual twins</th>
<th>Number of exposures</th>
<th>Number of P values</th>
<th>Significant threshold (-log10(P value))</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBI in young adulthood</td>
<td>3025</td>
<td>385</td>
<td>501</td>
<td>3.51</td>
</tr>
<tr>
<td>Incidence of MDD in young adulthood</td>
<td>1236</td>
<td>385</td>
<td>501</td>
<td>3.47</td>
</tr>
<tr>
<td>GBI at age 17</td>
<td>4127</td>
<td>286</td>
<td>394</td>
<td>3.44</td>
</tr>
</tbody>
</table>
Table 2: Characteristics of included twins according to the ExWAS

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Participants included in the ExWAS of GBI score (individual twin n=3025)</th>
<th>Incidence of MDD (individual twin n=1236)</th>
<th>GBI score (individual twin n=4127)</th>
<th>At age 17</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (%) / Mean (SD)</td>
<td>N (%) / Mean (SD)</td>
<td>N (%) / Mean (SD)</td>
<td></td>
</tr>
<tr>
<td>GBI score</td>
<td>4.4 (4.7) / /</td>
<td>5.0 (4.9) / /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDD incidence</td>
<td>/</td>
<td>152 (12.3) / /</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>/</td>
<td>1084 (87.7) / /</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Sex</td>
<td>Male 1318 (43.6) 564 (45.6) 1988 (48.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Female 1707 (56.4) 672 (54.4) 2139 (51.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zygosity</td>
<td>Monozygotic 1050 (34.7) 513 (41.5) 1362 (33.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dizygotic 1833 (60.6) 721 (58.3) 2577 (62.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unknown 142 (4.7) 2 (0.2) 188 (4.6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parental education</td>
<td>Limited 1743 (57.6) 672 (54.4) 2392 (58.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intermediate 666 (22.0) 305 (24.7) 950 (23.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High 616 (20.4) 259 (21.0) 785 (19.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoking (young adulthood)</td>
<td>Never 1617 (53.5) 614 (49.7) / /</td>
<td></td>
<td></td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Former 339 (11.2) 115 (9.3) / /</td>
<td></td>
<td></td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Occasional 304 (10.1) 132 (10.7) / /</td>
<td></td>
<td></td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Current 765 (25.3) 375 (30.3) / /</td>
<td></td>
<td></td>
<td>/</td>
</tr>
<tr>
<td>Work (young adulthood)</td>
<td>Full-time work 1556 (51.4) 497 (40.2) / /</td>
<td></td>
<td></td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Part-time work 388 (12.8) 236 (19.1) / /</td>
<td></td>
<td></td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Irregular work 368 (12.2) 338 (27.4) / /</td>
<td></td>
<td></td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Not working 713 (23.6) 165 (13.4) / /</td>
<td></td>
<td></td>
<td>/</td>
</tr>
<tr>
<td>Secondary level school (young adulthood)</td>
<td>Vocational 1025 (33.9) 377 (30.5) / /</td>
<td></td>
<td></td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Senior high school 1826 (60.4) 778 (62.9) / /</td>
<td></td>
<td></td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>None 174 (5.8) 81 (6.6) / /</td>
<td></td>
<td></td>
<td>/</td>
</tr>
<tr>
<td>Age (young adulthood)</td>
<td>24.2 (1.7) 22.4 (0.7) / /</td>
<td></td>
<td></td>
<td>/</td>
</tr>
<tr>
<td>Smoking (age 17)</td>
<td>Never / /</td>
<td>1218 (29.5) / /</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Former / /</td>
<td>1418 (34.4) / /</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Occasional / /</td>
<td>445 (10.8) / /</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Current / /</td>
<td>1046 (25.4) / /</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study and work status (age 17)</td>
<td>Neither study nor work / /</td>
<td>150 (3.6) / /</td>
<td></td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Only study / /</td>
<td>3406 (82.5) / /</td>
<td></td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Both study and work / /</td>
<td>571 (13.8) / /</td>
<td></td>
<td>/</td>
</tr>
</tbody>
</table>
Figure 1: Association results between exposure and log-transformed GBI score in young adulthood, adjusted for covariates

Panel A is a Manhattan association plot for exposures in relation to log-transformed GBI score in young adulthood. The y-axis is showing statistical significance as $-\log_{10}(P \text{ value})$. Panel B presents the adjusted beta for significant exposures in descending order (from harmful to protective). The adjusted covariates were: sex, zygosity, parental education, smoking in young adulthood, work status in young adulthood, secondary level school in young adulthood, and age when twins provided the GBI assessment in young adulthood.

Figure 2: Bivariate Cholesky AE model for the exposome score and log-transformed GBI score in young adulthood

A stands for standardized variance of additive genetic effect. E stands for standardized variance of unique environmental effect. MZ and DZ stand for monozygotic and dizygotic twin pairs, respectively. The 95% confidence intervals of standardized variances and pathway coefficients are presented in Supplementary Table 4.
Male (188 MZ and 162 DZ pairs)

- $A_{\text{exposome}} = 0.68$
 - $a_{11} = 0.81$
 - $a_{12} = -0.11$
 - $e_{11} = -0.55$
 - $e_{12} = 0.05$

- $A_{\text{GBI}} = 0.49$
 - $a_{22} = -0.59$

- Exposome score (scaled)

- log-transformed GBI score in young adulthood

- $E_{\text{exposome}} = 0.32$

Unique environmental factor explained 23.06% of the covariance

Female (278 MZ and 218 DZ pairs)

- $A_{\text{exposome}} = 0.75$
 - $a_{11} = -0.85$
 - $a_{12} = -0.20$
 - $e_{11} = 0.49$
 - $e_{12} = -0.06$

- $A_{\text{GBI}} = 0.50$
 - $a_{22} = 0.58$

- Exposome score (scaled)

- log-transformed GBI score in young adulthood

- $E_{\text{exposome}} = 0.25$

- $E_{\text{GBI}} = 0.50$

Unique environmental factor explained 12.85% of the covariance