Coverage of state-initiated contact-tracing during COVID-19 and factors influencing it: evidence from real-world data

Denis Mongin1,*, Nils Bürgisser2, Delphine Sophie Courvoisier3, and the Covid-SMC Study Group†

1Faculty of Medicine, University of Geneva, Geneva, Switzerland
2General internal medicine division, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
3Division Quality of care, Faculty of Medicine, University of Geneva, Geneva, Switzerland

†Membership of the Covid-SMC Study Group is provided in the supplementary material.

*Correspondance to:
Denis Mongin
+41 223723642
denis.mongin@unige.ch
Hôpital Beau séjour, service de rhumatologie.
26 avenue de Beau Séjour
1206 Genève
Switzerland

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Contact tracing has been one of the central non-pharmaceutical interventions implemented worldwide to try to control the spread of Sars-CoV-2, but its effectiveness strongly depends on its ability to detect contacts. To investigate this issue, we analysed an extensive operational database of SARS-CoV-2 tests in Geneva and used permutations statistics to estimate the number of secondary infectious contacts occurring at the same address. Results show that manual contact tracing captured on average 41% of the secondary infections occurring at the address, with variation in time from 23% during epidemic peaks to 60% during low epidemic activity. The under-reporting of contacts is influenced by both socio-economic and structural factors. People living in wealthy neighbourhoods are less likely to report contacts (adjusted odds ratio (aOR): 1.6). People living in buildings are also less likely to report contacts, with an aOR of 1.08 to 3.14 depending on the variant of concern, the size of the building and if the building had shops. This under-reporting of contacts in buildings decreased during periods of mandatory mask wearing and restriction of private gathering, highlighting the importance of public measures in reducing unnoticed infections in shared spaces. More effective contact tracing strategy should be partly digitalized to avoid saturation of contact tracing capacity during high activity of the pandemics. Public message and outreach should communicate on avoiding unnoticed infectious contacts in large building and may benefit from targeting specific population, such as those in wealthy areas.
Research in Context

Evidence before this study

We searched MEDLINE via Pubmed and the WHO-COVID-19 research database from the database inception until February 27, 2023 for relevant studies on the effect of contact tracing to curb COVID-19 transmission or on contact tracing coverage, with no language restriction, using the following terms: (COVID-19) AND (Contact tracing) AND (Efficacy or effectiveness or digital or transmission or coverage).

Similarly to what has been reported by a recent systematic review evaluating the effect of contact tracing in controlling the spread of infectious disease, we mostly found mathematical modelling studies, and 13 observational studies. Observational studies have contrasted results about contact tracing effectiveness. Only 2 of them report global contact tracing coverage, estimated as the percentage of cases that were identified as contacts, which are below 11%. No study identify the factors affecting the contact tracing coverage. Modeling studies identified the adherence to quarantine, the notification delay and the contact tracing coverage (for manual contact tracing) or the app adherence (for mobile app based contact tracing) as the key factors for contact tracing efficiency.

Added value of this study

An operational COVID-19 infections database register and the use of permutation tests allowed a precise quantification of the coverage of the manual contact tracing system of the state of Geneva, Switzerland, and the factor affecting it. On average, 41% of the infected persons residing at the same address were reported. The rich information available in the register was used to identify the factors associated with under-reporting, which were wealthy neighborhoods, large buildings, and non-vaccination of the index-contact pair.

Implications of all the available evidence

Implementing more efficient contact tracing for future covid-19 resurgence or other pandemics is crucial. A multi-modal approach, consisting of manual and digital contact tracing and prevention of unnoticed infection, with a particular focus on populations with high contact under-reporting, could help reduce the transmission of infectious disease. However, at least for similar highly contagious aerosol-transmitted diseases, contact tracing will not be sufficient, and systemic policies such as masking, air filtration or gathering restrictions may be necessary.
Introduction

The worldwide surge of COVID-19 in the early 2020 forced governments around the world to implement a large panel of measures, including non-pharmaceutical interventions (NPI)(1,2) to try to reduce the spread of SARS-CoV-2. These interventions ranged from lockdowns, travel restrictions, schools or public building closures, interdiction of large events to contact tracing, with variable effect on the disease propagation(1).

Among the non-pharmaceutical interventions, contact tracing rapidly became a central measure to limit the propagation of the virus(3). The idea of contact tracing is to prevent persons who have been in contact with an infected index case from further propagating the virus, by limiting their social interactions(4) before they become contagious. The contact tracing can be manual, semi-automated after a positive test result, or based on mobile app. It can be initiated by the health authorities (state-initiated) or by the citizen (citizen-initiated).

Finally, it can be exerted forward, to look for contacts of the index cases that can be infected afterward, or backward, to look for the contacts that contaminated the index case. Although theoretically effective(5), backward contact tracing has almost never been implemented worldwide(6).

The efficacy of forward contact tracing is perfect if all contacts are identified (by the index case or by an app), are notified before they become contagious(7), and comply with protective measures (quarantine, face coverings). In real-world settings, the true effectiveness of contact tracing was estimated from a reduction of 63% of new infections to no difference(8) depending on the study and country involved. Contact tracing apps are a good illustration of this phenomenon: they have received a lot of attention(9), have been developed in many places(10) and have been shown, in controlled setting, to have large potential effect(11). Nevertheless, ecological studies obtained varying effectiveness, which can be high upon proper uptake and adherence(11) to very small, ranging from 0,1% to 11% additional infections detected by digital tracing alone(12).

There are several reasons for the relatively low effectiveness of contact tracing. First, contacts may not follow recommendations, for instance they may evade quarantine or not use protective measures such as masks. Second, for manual contact tracing, the delay in notification and the number of contacts identified(13) may limit its effectiveness, since each new contact requires a minimum amount of time to be reached(14) and not all contacts can be reached in time to apply effective measures against the spread of SARS-CoV-2. Third, there could be intentional or un-intentional under-reporting. In other words, an index case may intentionally not declare contacts, or they could simply not be aware of being in contact with someone. Indeed, SARS-CoV-2 is airborne(15), and multiple examples of contamination across closed space without direct encounter between
index and contact cases have been reported, such as contamination through corridors(16), shared space(17), ventilation systems(18), or even air leak through the roof(19).

The aim of this study is to estimate the contact tracing coverage and the risk factors associated with under-reporting of contacts by the index cases. To this mean, we used permutation statistics on more than 142'000 reported infections to estimate the number of persons infected by someone living at the same address. Using contact information provided by these cases, we estimate the number of infections that have been declared as contacts, and assess its association with demographic and socio-economic factors.

Methods

Data

The dataset used for this study consisted of all positive COVID-19 tests performed by persons living in the state of Geneva. These data stem from the Actionable Register of Geneva Outpatients and inpatients with SARS-CoV-2 (ARGOS) database(20), which is an ongoing operational COVID-19 database created by the Geneva health state agency (Geneva Directorate of Health). The register contains sociodemographic details, baseline and follow-up COVID-19 related health indicators and contact information of all COVID-19 positive tested persons residing in the State of Geneva, Switzerland.

Setting and period

We used data from the 01-06-2020 to 1st February of 2022 having an address (3.4% of the infections did not have an address). Geneva is a mainly urban state of 511’921 inhabitants as of the last census in December 2021, with a high population density. It is divided geographically in 417 administrative neighbourhoods (sous-secteurs) with a median population of around a thousand persons. Each address of the dataset was geocoded using the exhaustive list of all addresses of the State of Geneva, and each neighbourhood area was associated with a socio-economic indicator (the CATI index) index ranging from 0 (wealthy) to 6 (most deprived) provided by the centre for the analysis of territorial inequalities (see details in supplementary material and (21)).

As the ARGOS data did not contain information about the SARS-CoV-2 variant type (Variant of Concerns, VoCs), we divided the study period into period of predominance of SARS-CoV-2 VoCs, based on the data provided by Covariants and the Global Initiative on Sharing Avian Influenza Data(22) in the Geneva region:

- EU1 from 01-06-2020 to 01-02-2021
- Alpha from 02-02-2021 to 01-07-2021
- Delta from 02-07-2021 to 20-12-2021
- Omicron from 21-12-2021 to 01-02-2022 (mainly BA.1)

Declared contacts

Person with a positive SarS-CoV-2 test had the obligation to declare their contacts. Contacts were persons having an interaction with the infected person during at least 15 min at less than 1.5m, up to 48 hours before the symptoms and up to 5 days before the test if no symptoms. In January 2021, an anthropologist was hired by the state COVID unit and efforts were made to convince infected persons to declare their contact during the phone interviews.

Declared contact in Geneva had the obligation to quarantine during 10 days since the implementation of contact tracing. Children below 12 years were exempted of quarantine. The 8th February, 2021, it was allowed to shorten the quarantine at day 7 with a negative SarS-CoV-2 PCR test. The quarantine was shortened to 7 days the 31th of December 2021, and to 5 days the 12th of January 2022. By end of 2021, vaccinated persons or persons with a positive test during the last 4 month did not have the obligation to quarantine after a contact with an infected index. Since October 2020, health professionals were allowed to work even if quarantined.

Contact information was initially collected by personal telephone interviewing of the index case (February 2020 to end of April 2020). From May 2020, index cases had the possibility to provide their contacts names and phone through an online form, and information was completed when the index case was called. Contacts were sent a message telling them they were contact and should quarantine, and were then contacted by phone. Additionally, an online form was implemented at the end of September 2020 to support the phone calls, where the contacts could complete the required information themselves. From mid December 2021, the phone calls could not be maintained due to the high number of cases, therefore contact information was only obtained from the online forms.

Outcomes: secondary infections occurring at the same address and absence of reporting

The primary outcome is the number of secondary infections occurring at the same address.

To estimate this number, we first calculated concurrent infections of two persons living at the same address and having a positive COVID-19 result less than 10 days apart. The date associated with the concurrent infection was the middle date between the two test results. We then used the exhaustive list of declared contacts to define the binary variable “absence of reporting” as being 0 if the concurrent infection was captured by the contact tracing and 1 otherwise. We considered the possibility that the concurrent infection was declared by the index or by the contact.
Concurrent infections capture both secondary infections at the address and concomitant infections not related to the address (i.e. two person living at the same address can be infected 10 days apart by other persons anywhere else). To estimate the true number of secondary infections occurring at the same living address, we used permutation tests. Permutation tests aim at estimating the outcome under the null hypothesis, in this case when the concurrent infections are independent from the living address. Thus, we randomly permuted all addresses within each neighbourhood 1000 times and computed, for each permuted sample, the number of concurrent infections at the same address. Addresses were permuted within the same categories of building type. The number of secondary infections occurring at the living address was then estimated as the median excess number of concurrent infections, which is the difference between the raw number of concurrent infection at a given address and the ones obtained by permutation.

Statistical analysis

Confidence interval of estimation of secondary infections occurring at the same address was operationalized as the 2.5% and 97.5% quantile of the difference between the raw number of concurrent infection at a given address and the ones obtained by permutation. This analysis was stratified by VoCs.

To examine the association of gender, vaccination, living characteristics and socio-economic characteristics with potential under-reporting of contacts, we applied to concurrent infections calculated on the raw data and on each permutations a generalized linear model using the absence of reporting as outcome, with CATI index, type of building, number of people living at the address, immune status of the two persons of the concurrent infection dyads and their gender as covariate. The immune status was recalculated for each permutation at the date corresponding to the corresponding concurrent infections. The final estimates of the model were given by the median and 2.5% 97.5% quantile of the differences between the coefficients obtained on the raw dataset and the ones obtained on each of the permuted datasets.

All analysis were performed using R.4.1.0, and the high performance computing facility “Baobab” of the University of Geneva. The code used for the analysis can be found in the following Gitlab repository https://gitlab.com/dmongin/scientific_articles/-/tree/main/contact_tracing. Data are available upon request at https://edc.hcuge.ch/surveys/?s=TLT9EHE93C.

Covariates

The immune status was operationalized as fully vaccinated if both persons were vaccinated with at least one dose, mixed if one of the two was vaccinated with at least one dose, and not vaccinated if none was vaccinated.
The immunity status was calculated at the date of secondary infection. Gender was operationalized as men if both persons were men, women if both were women, and mixed otherwise.

The type of building was operationalized in 6 categories (detailed explanation in supplementary material):

- Building at the address with between 1 or 2 inhabitants (houses with isolated persons)
- Building with more than 2 inhabitants:
 - Houses (family houses)
 - Building with no shops and less than 40 inhabitants
 - Building with no shops and more than 40 inhabitants
 - Building with shops and less than 40 inhabitants
 - Building with shops and more than 40 inhabitants

Of note, in the Geneva region, buildings in the city often have shops on the ground floor, compared to buildings in more rural areas.

Results

Over the period considered, 25'297 addresses had at least two persons with a positive test result less than 10 days apart (i.e. at least one concurrent infection, table 1). The median number of concurrent infection dyads at these addresses was 3, though it was lowest during the alpha wave (1 [1, 3]) and highest during the omicron wave (3 [1, 10]). The addresses were mainly situated in the wealthiest (37%) and poorest areas (29%), and concerned a median amount of 29 persons, with no notable change across time. The main type of building were buildings with no shops and less than 40 inhabitants (32%), followed by buildings with shops and more than 40 inhabitants, buildings with shops and less than 40 inhabitants (17%), family houses (16%), building with shops and more than 40 inhabitants (13%) and houses with maximum 2 persons (3%).

Excess concurrent infections (include state versus neighbourhood baseline?)

During the period of interest, 171'945 raw concurrent infections occurred (see table 2). The null hypothesis estimation yielded 120'958 [122'387, 119'580] concurrent infections. The estimated excess number of concurrent infections occurring at the same address is then 50'987 [49'558, 52'365].
Proportion of infections reported through contact tracing

The 20'974 declared contact, living at the same address than their index case and who became positive during the 10 days following the index case test result, accounted for 41.2% [40.2, 42.4] of the estimated address concurrent infections. This percentage was at its lowest during the EU1 wave with 33.7% [33.1, 34.4], rose above 50% for alpha and delta wave (52.2% [51.5, 52.9] and 51.4% [50.4, 52.6] respectively), and decreased to 41.8% [40.0, 43.6] during the omicron wave.

The monthly evolution of this percentage of infections captured by contact tracing fluctuated between 67% and 23% (figure 1), and tended to be lower when the number of COVID-19 cases was high. The lowest values of contact reported were observed during the two periods reaching more than 10’000 COVID19 cases per month (the peak of EU1 wave, and the end of delta/start of omicron wave). Of note the strong increase of the rate of contacts reported in January 2021, from 23% to 50%.

Determinants of absence of reporting

When compared to the adult age category (17 to 65 years old), a contact child (age under 17) tended to have more chance to be under-reported during early VoCs. During the EU1 wave, an index younger than 17, especially during the omicron wave, had less chance to have its contact reported (OR 1.29 [1.08, 1.52]).

The socio-economic status of the neighbourhood had a strong dose-response association with under-reporting: persons from the poorest neighbourhood were less likely to under-declare their contacts, with an odd ratio reaching 0.58 [0.47, 0.72] for the most disadvantaged neighbourhood during omicron (table 3).

The type of building had significant effects during the EU1, delta and omicron wave with an effect that tended to increase in time, but no significant effect during the alpha wave. When compared to family houses, under-reporting increased with the number of inhabitants in buildings and with the presence of shops. In detail, we observed no significant effect for building without shops and less than 40 inhabitants, an OR for not reporting contact from 1.78 [1.21, 2.94] to 2.06 [1.46, 3] during EU1 and omicron respectively for building without shops with more than 40 inhabitants, 1.86 [1.2, 2.99] to 2.4 [1.68, 3.53] during EU1 and omicron respectively for building with shops and less than 40 inhabitants, and 2.56 [1.71, 4.08] to 3.14 [2.23, 4.57] during EU1 and omicron respectively for building with shops and more than 40 inhabitants. Houses with isolated persons had no significant difference of reporting except during the delta period, but with a very large confidence interval (3.48 [1.18, 8.99]).
Being vaccinated favoured the declaration of contacts only when one of the two persons implied was vaccinated, the effect reaching significance during the delta wave when the index was vaccinated and the contact not (OR 0.69 [0.5, 0.91]) and during omicron for the opposite case (OR 0.83 [0.65, 1.03]).

Discussion

The complete database of COVID-19 infections occurring in Geneva over a period of almost 2 years allowed us to estimate the capacity of contact tracing to capture infectious contacts occurring at the same living address. In this study, on average, contact tracing allowed to detect 41% of the actual infections occurring at the living address. This percentage varied in time and was lower during the winter wave of 2020 and at the beginning of the Omicron wave. The principal determinants of absence of reporting of contacts were living in a rich socio-economic neighbourhood, younger age, and living in populated building with shops. Mixed vaccination status (one vaccinated, the other not) was associated with better reporting.

Contact tracing can have an effect on disease transmission only for VoCs with relatively low reproduction numbers, as long as the coverage of contact is high and the delay of notification of the contacts stays short. Indeed simulation studies with isolation only (14) showed that detecting only 40% of the contacts allows to control more than 80% of outbreaks for low reproductive numbers, but fails to control more than 10% of them if the reproductive number is of 3.5. Modelling studies (7,23) estimated that the effect of contact tracing started to have a real impact on the reproduction number if more than 50% of contacts were reached. Other studies(24) showed that reducing the contact tracing coverage from 80% to 40% multiply at least per 2 the probability of a large outbreak even with few cases. Given that the reproduction number of variants alpha, delta and omicron is above 3 and close to 8 for the latter(25,26), and that the proportion of contacts traced decreased during high viral activity periods, the impact of the manual contact tracing on the spread of COVID-19 may have been rather limited after the first two waves (27).

Several mechanisms can contribute to low coverage of contact tracing. The first one is the saturation of the contact tracing capacities, due to limited number of personnel and resources required to perform the contact tracing. A second one is intentional under-reporting, encompassing contacts not declared to avoid quarantine measures (28), but also contacts not declared because they were exempted of quarantine such as health professional, vaccinated persons or children below 12 years. A last mechanism could be non-intentional unreported contacts, which are infectious relation that are not perceived as such, such as using the elevator after
someone who is infected, crossing an infected neighbor at the shop down the building, being infected across the corridor(16), etc.

Our study yield indications of these three mechanisms. The effect of the contact-tracing capacities is evidenced in our study by the decrease of the percentage of contacts reported during periods with high number of infected cases declared, reaching value as low as 20%. The increase of contact reported in January 2021 seems to correspond with the implementation of guidelines within the state COVID-19 unit to encourage the infected persons to declare their contacts during the phone interviews.

The findings of this study suggest intentional under-reporting. For instance, the higher tendency to under-report children before the omicron wave is consistent with the exemption of kids from quarantine at the beginning of the pandemics. A second clear indicator of the behavioral part of under-reporting lies in the higher chance of not declaring contacts in wealthy neighborhoods. This result may stem from the fact that persons living in wealthy neighbourhoods may have jobs allowing to remote work, and have therefore a lower need of official quarantine certificates. It is also in line with observed tendency of high social class individuals to exhibit higher unethical decision-making tendencies or higher tendency to break the law(29,30). The third indicator is the higher reporting of contacts when one of the index or contact is vaccinated, which may be due to the perception that contact tracing is more useful, or reflect a better compliance to national guidelines (31).

Finally, the effect of building type on the propensity to report contacts supports the existence of unnoticed infectious contacts. Indeed, the fact that under-reporting was higher in buildings than in family houses, especially during the Omicron wave, suggests the occurrence of unnoticed infections in the common areas, which more numerous and common for buildings than for houses. Under-reporting was higher in building with more inhabitants and in buildings with shops, indicating that part of these un-noticed contacts may happen in shared social places. It could also be due to the fact that buildings with shops are more frequent in urban area, with higher population density. The absence of effect of the building type on under-reporting of contacts during the alpha wave can be explained by the health policies implemented during that period. Indeed, the following measures were implemented from the 18th of January 2021, and then gradually relaxed between May and June 2021: mandatory remote work if possible, mandatory face masking at work and in shops, and restriction of public and private gathering to 5 persons maximum. This finding indicates that these public health policies reduced the amount of unnoticed infectious contacts.
There are several limitations in this study. First, due to our analysis design, we restricted the study to infection occurring at the address. As a consequence, tests results without addresses (3.4%) were removed from our analysis, leading to potential selection bias. Also, our analysis does not consider infectious contacts occurring at other places, and similar analysis performed at the working place or in different settings could be of interest. Second, the use of aggregated socio-economic indicator at the neighbourhood level could cause ecological fallacy, where the effect observed is caused by a variable at the person level. Finally, as with every observational study, we cannot rule out residual confounding in the multivariable analysis, although the rich register data allowed adjusting for most of the important factors.

Nevertheless, this study offers a solid estimation of the proportion of reported infectious contacts at a given address using an extensive operational register of all SarS-CoV-2 tests performed in the state of Geneva during a period covering four variants of concern. The analysis based on a permutation tests at the neighbourhood level allowed to rule out potential contaminations at other places such as schools, grocery shops or public transportation, providing insights into the systemic, behavioural and living factors influencing the report of contacts. The overall contact coverage and its tendency to decrease during high epidemic activity periods indicate that contact tracing alone cannot mitigate contagious disease such as SarS-CoV-2. Contact tracing coverage could be improved by social outreach targeting population such as those living in healthy neighbourhoods and by avoiding unnoticed infections with additional non pharmaceutical intervention such as mask wearing, air cleaning or gathering restrictions.

Contributors
Denis Mongin performed the data curation, participated in the analysis conception and performed the analysis, created the data visualisation, designed the article and wrote the article; Nils Bürgisser participated to the literature review and to the writing of the article, participated to the result interpretation and revised critically the article; Delphine S. Courvoisier acquired the financial support for the project, conceptualised the analysis, participated in the data interpretation and revised critically the article. Denis Mongin, Guillaume Schimmel, Gustavo Laurie and Delphine Courvoisier had full access to the dataset. Denis Mongin and Delphine Courvoisier verified the data. All authors were responsible for the decision to submit for publication.

Ethic consent
Research received the agreement of the Cantonal Ethic Committee of Geneva (CCER protocol 2020-01273). Individuals who refused to share their data were removed from the analysis.
Data sharing statement

The de-identified database underlying this article will be shared on reasonable request using the form (https://edc.hcuge.ch/surveys/?s=TLT9EHE93C). The code used for the analysis is available at the following repository: https://gitlab.com/dmongin/scientific_articles/-/tree/main/contact_tracing.

Declaration of Interests

We declare no competing interests.

Funding

This research was supported by the research project SELFISH, financed by the Swiss National Science Foundation, grant number 51NF40-160590 (LIVES Center international research project call).

Acknowledgements

We thank the Geneva Directorate of Health for collecting and providing the data.

References

25. Liu Y, Rocklöv J. The effective reproductive number of the Omicron variant of SARS-CoV-2 is several times relative to Delta. J Travel Med. 2022 May 31;29(3):taac037.

Table 1: characteristics of the addresses at which at least one concurrent infection occurred, for the overall period (overall) and stratified by variant. CATI score is the socio-economic index of the neighbourhood, with 0 the wealthiest and 6 the poorest.

<table>
<thead>
<tr>
<th></th>
<th>Overall</th>
<th>EU1</th>
<th>alpha</th>
<th>delta</th>
<th>omicron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of addresses</td>
<td>25'196</td>
<td>6'596</td>
<td>2'805</td>
<td>5'007</td>
<td>10'788</td>
</tr>
<tr>
<td>Number of concurrent infections per address</td>
<td>3.00 [1.00, 6.00]</td>
<td>2.00 [1.00, 4.00]</td>
<td>1.00 [1.00, 3.00]</td>
<td>2.00 [1.00, 4.00]</td>
<td>3.00 [1.00, 10.00]</td>
</tr>
<tr>
<td>CATI score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>9'238 (37.0)</td>
<td>2'334 (35.6)</td>
<td>936 (33.6)</td>
<td>1'881 (38.0)</td>
<td>4'087 (38.3)</td>
</tr>
<tr>
<td>1</td>
<td>3'939 (15.8)</td>
<td>992 (15.1)</td>
<td>476 (17.1)</td>
<td>773 (15.6)</td>
<td>1'698 (15.9)</td>
</tr>
<tr>
<td>2-3</td>
<td>4'419 (17.7)</td>
<td>1'206 (18.4)</td>
<td>496 (17.8)</td>
<td>844 (17.0)</td>
<td>1'873 (17.6)</td>
</tr>
<tr>
<td>4-6</td>
<td>7'360 (29.5)</td>
<td>2'027 (30.9)</td>
<td>874 (31.4)</td>
<td>1'456 (29.4)</td>
<td>3'003 (28.2)</td>
</tr>
<tr>
<td>Building type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family houses (reference)</td>
<td>4010 (15.9)</td>
<td>873 (13.2)</td>
<td>397 (14.1)</td>
<td>838 (16.7)</td>
<td>1'902 (17.6)</td>
</tr>
<tr>
<td>House with isolated persons</td>
<td>726 (2.9)</td>
<td>250 (3.8)</td>
<td>79 (2.8)</td>
<td>108 (2.1)</td>
<td>289 (2.7)</td>
</tr>
<tr>
<td>Building without shops less than 40 inhabitants</td>
<td>8'076 (31.9)</td>
<td>2'021 (30.5)</td>
<td>826 (29.4)</td>
<td>1'548 (30.8)</td>
<td>3'681 (34.0)</td>
</tr>
<tr>
<td>Building without shops more than 40 inhabitants</td>
<td>5'029 (19.9)</td>
<td>1'444 (21.8)</td>
<td>687 (24.4)</td>
<td>1'075 (21.4)</td>
<td>1'823 (16.8)</td>
</tr>
<tr>
<td>Building with shops less than 40 inhabitants</td>
<td>4'256 (16.8)</td>
<td>1'142 (17.3)</td>
<td>406 (14.4)</td>
<td>757 (15.0)</td>
<td>1'951 (18.0)</td>
</tr>
<tr>
<td>Building with shops more than 40 inhabitants</td>
<td>3'200 (12.6)</td>
<td>888 (13.4)</td>
<td>417 (14.8)</td>
<td>705 (14.0)</td>
<td>1'190 (11.0)</td>
</tr>
</tbody>
</table>
Table 2: Number of persons infected at the same address within 10 days of each other, in the real data base, when permuting addresses on the state level (state base permutation), or on the neighbourhood level (neighbourhood base permutation). Estimations for permutation are the median of 1000 permutations given with their percentile confidence intervals (2.5% - 97.5% range).

<table>
<thead>
<tr>
<th></th>
<th>total</th>
<th>EU1</th>
<th>alpha</th>
<th>delta</th>
<th>omicron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of raw concurrent infections</td>
<td>171'945</td>
<td>38'562</td>
<td>9'551</td>
<td>19'382</td>
<td>99'397</td>
</tr>
<tr>
<td>Number of contacts declared living at the same address</td>
<td>21'028</td>
<td>5'341</td>
<td>3'687</td>
<td>5'085</td>
<td>6'877</td>
</tr>
<tr>
<td>percentage of contagions declared</td>
<td>41.2 [40.2, 42.4]</td>
<td>33.7 [33.1, 34.4]</td>
<td>52.2 [51.5, 52.9]</td>
<td>51.4 [50.4, 52.6]</td>
<td>41.8 [40, 43.6]</td>
</tr>
</tbody>
</table>
Table 3: Odds ratio (OR) with their associated confidence interval [IR] of the multivariable generalized model of under-reporting of the secondary infection. OR with and IR not encompassing 1 are grey shaded.

<table>
<thead>
<tr>
<th>Variable</th>
<th>EU1</th>
<th>alpha</th>
<th>delta</th>
<th>omicron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact age (reference: 17-65)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-16</td>
<td>1.27 [0.91, 1.68]</td>
<td>1.17 [0.9, 1.49]</td>
<td>1.17 [0.96, 1.43]</td>
<td>1.08 [0.9, 1.13]</td>
</tr>
<tr>
<td>65+</td>
<td>0.95 [0.64, 1.32]</td>
<td>0.9 [0.43, 1.63]</td>
<td>0.85 [0.44, 1.37]</td>
<td>1.12 [0.7, 1.69]</td>
</tr>
<tr>
<td>Index age (reference: 17-65)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-16</td>
<td>1.13 [0.79, 1.55]</td>
<td>1.23 [0.93, 1.61]</td>
<td>0.98 [0.80, 1.21]</td>
<td>1.29 [1.08, 1.52]</td>
</tr>
<tr>
<td>65+</td>
<td>0.93 [0.63, 1.28]</td>
<td>0.89 [0.37, 1.56]</td>
<td>0.87 [0.45, 1.4]</td>
<td>0.70 [0.29, 1.19]</td>
</tr>
<tr>
<td>Cati score (reference: 0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.91 [0.69, 1.19]</td>
<td>0.79 [0.58, 1.09]</td>
<td>0.88 [0.68, 1.15]</td>
<td>0.82 [0.65, 1.01]</td>
</tr>
<tr>
<td>2-3</td>
<td>0.68 [0.52, 0.9]</td>
<td>0.87 [0.63, 1.17]</td>
<td>0.87 [0.67, 1.12]</td>
<td>0.77 [0.63, 0.96]</td>
</tr>
<tr>
<td>4-6</td>
<td>0.64 [0.51, 0.83]</td>
<td>0.64 [0.48, 0.86]</td>
<td>0.66 [0.52, 0.86]</td>
<td>0.58 [0.47, 0.72]</td>
</tr>
<tr>
<td>Gender (reference: men-men)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women-women</td>
<td>1.17 [0.83, 1.69]</td>
<td>0.96 [0.69, 1.4]</td>
<td>1.35 [1.03, 1.82]</td>
<td>1.07 [0.83, 1.37]</td>
</tr>
<tr>
<td>mixed</td>
<td>1.19 [0.9, 1.65]</td>
<td>1.11 [0.84, 1.49]</td>
<td>1.20 [0.94, 1.56]</td>
<td>1.06 [0.87, 1.3]</td>
</tr>
<tr>
<td>Type of building (single house)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>House with isolated persons</td>
<td>1.91 [1.81, 4.12]</td>
<td>1.46 [0.49, 4.7]</td>
<td>3.48 [1.18, 8.99]</td>
<td>2.24 [0.93, 4.48]</td>
</tr>
<tr>
<td>Building without shops less than 40 inhabitants</td>
<td>1.10 [0.73, 1.82]</td>
<td>0.76 [0.43, 1.41]</td>
<td>1.09 [0.7, 1.81]</td>
<td>1.18 [0.81, 1.75]</td>
</tr>
<tr>
<td>Building without shops more than 40 inhabitants</td>
<td>1.78 [1.21, 2.94]</td>
<td>1.03 [0.64, 1.81]</td>
<td>1.65 [1.11, 2.65]</td>
<td>2.06 [1.46, 3]</td>
</tr>
<tr>
<td>Building with shops less than 40 inhabitants</td>
<td>1.86 [1.2, 2.99]</td>
<td>1.23 [0.72, 2.35]</td>
<td>1.91 [1.2, 3.21]</td>
<td>2.4 [1.68, 3.53]</td>
</tr>
<tr>
<td>Building with shops more than 40 inhabitants</td>
<td>2.56 [1.71, 4.08]</td>
<td>1.08 [0.66, 1.96]</td>
<td>2.01 [1.28, 3.3]</td>
<td>3.14 [2.23, 4.57]</td>
</tr>
<tr>
<td>Immunity (both non vaccinated)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Index : not vaccinated; contact : vaccinated</td>
<td>0.66 [0.2, 1.32]</td>
<td>0.86 [0.64, 1.12]</td>
<td>0.83 [0.65, 1.03]</td>
<td></td>
</tr>
<tr>
<td>Index : vaccinated; contact : not vaccinated</td>
<td>0.63 [0.2, 1.26]</td>
<td>0.69 [0.50, 0.91]</td>
<td>0.83 [0.67, 1.05]</td>
<td></td>
</tr>
<tr>
<td>Index : vaccinated; contact : vaccinated</td>
<td>1.34 [0.01, 6.12]</td>
<td>0.97 [0.69, 1.33]</td>
<td>0.90 [0.72, 1.13]</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1: Monthly time evolution of the median percentage of address co-infection captured by the contact tracing system (upper panel), compared to the monthly evolution of the number of cases in Geneva (lower panel), for the four periods considered in the present analysis.