Supplementary Information

Multivariate brain-based dimensions of child psychiatric problems: degrees of generalizability

- 1. Supplementary tables 1-5
- 2. Supplementary figures 1-2

Supplementary Table 1 *MRI acquisition parameters in ABCD*

	Matrix	Slices	FOV	TR (ms)	TE (ms)	TI (ms)	Flip Angle (deg)	MultiBand Acceleration	Acquisition Time
Siemens									
T1	256×256	176	256×256	2500	2.88	1060	8	Off	7:12
fMRI	90×90	60	216×216	800	30	N/A	52	6	
Philips									
T1	256×256	225	256×240	6.31	2.9	1060	8	Off	5:38
fMRI	90×90	60	216×216	800	30	N/A	52	6	
GE									
T1	256×256	208	256×256	2500	2	1060	8	Off	6:09
fMRI	90×90	60	216 × 216	800	30	N/A	52	6	

Note. Parameters retrieved from the ABCC collection (https://collection3165.readthedocs.io/en/stable/inputs/).

Supplementary Table 2 *MRI acquisition parameters in Generation R*

	Matrix	Slices thickness (mm)/ Number of slices	FOV	TR (ms)	TE (ms)	TI (ms)	Flip Angle (deg)
GE 750							
T1	220×220	1.0/230	220×220	8.77	3.4	600	10
fMRI	64×64	4.0/36	216×216	1760	30	N/A	85

Note. T1-weighted images were obtained using a coronal inversion recovery fast spoiled gradient recalled sequence using ARC acceleration (GE option BRAVO). Rs-fMRI data were obtained using an interleaved axial echo planar imaging sequence. Total duration of the resting-state scan was 5 minutes 52 seconds for each child.

Supplementary Table 3 Canonical correlations in training and test sets of ABCD across 10 splits (Train-test split with pooled multisite data)

	Canonical Correlations	Training	Test	Spar	sity
G 11: 1	r ₁	0.20	0.10***	Rs-fMRI	0.4
Split 1	r_2	0.18	0.06*	CBCL	0.5
	r ₃	0.19	0.10***		
	r_{I}	0.18	0.13**	Rs-fMRI	0.4
Split 2	r_2	0.17	0.09*	CBCL	0.5
	<i>r</i> ₃	0.15	0.11**		
	r_{I}	0.18	0.12***	Rs-fMRI	0.4
Split 3	r_2	0.17	0.06*	CBCL	0.5
	<i>r</i> 3	0.17	0.07*		
	r ₁	0.16	0.12***	Rs-fMRI	0.3
Split 4	r_2	0.16	0.09**	CBCL	0.5
	r ₃	0.14	0.10**		
	r_{l}	0.19	0.16***	Rs-fMRI	0.5
Split 5	r_2	0.19	0.06*	CBCL	0.5
	r_3	0.16	0.11***		
	rı	0.15	0.15***	Rs-fMRI	0.3
Split 6	r_2	0.14	0.07*	CBCL	0.6
	r3	0.09	0.07**		
	r_{I}	0.17	0.12***	Rs-fMRI	0.4
Split 7	r_2	0.14	0.06*	CBCL	0.5
	r3	0.15	0.10***		
	r_{l}	0.17	0.13***	Rs-fMRI	0.3
Split 8	r_2	0.14	0.06*	CBCL	0.5
	r_3	0.15	0.08**		
	r_{l}	0.18	0.10***	Rs-fMRI	0.4
Split 9	r_2	0.16	0.06*	CBCL	0.5
	<i>r</i> ₃	0.16	0.07**		
	r_{l}	0.18	0.13***	Rs-fMRI	0.3
Split 10	r_2	0.15	0.07**	CBCL	0.5
	r_3	0.15	0.09**		

Note. We pooled the data from 21 sites together and randomly split it into a training set (ABCD_{Training}, 80% of the data) and a test set (ABCD_{Test}, 20% of the data). The canonical correlations in the ABCD_{Test} sets were calculated by applying the weight vectors obtained from the ABCD_{Training} set SCCA model to the test sets. This process was repeated 10 times in the 10 training-test splits. * p < 0.05, ** p < 0.01, *** p < 0.001

Supplementary Table 4

Failed gold-standard generalizability test in Generation R

Canonical	ABC	Comment on D	
correlations	training set	test set	Generation R
r_{I}	0.20	0.13***	0.04
r_2	0.19	0.08**	0.03
r_3	0.17	0.06*	0.03

Note. Canonical correlations in ABCD were averaged across the 10 train-test splits. r_1 : *** p < 0.001 across all 10 train-test splits. r_2 : ** p < 0.01 in 8 train-test splits. r_3 : * p < 0.05 in 5 train-test splits. r_1 Generation p: p < 0.01 in 3 train-test splits.

Supplementary Table 5

Correlations between the first three brain canonical variates and cognitive ability (n=5,269)

	Fluid intelligence		crystallized intelligence		matrix reasoning		total cognition	
•	B (95% CI)	P	B (95% CI)	p	B (95% CI)	p	B (95% CI)	p
CV1	0.05 [0.02, 0.08]	< .001	0.06 [0.02, 0.07]	< .001	0.03 [0.01, 0.06]	0.01	0.06 [0.03, 0.08]	<.001
CV2	0.03 [0.01, 0.06]	0.01	0.04 [0.02, 0.07]	< .001	0.04 [0.01, 0.06]	0.003	0.05 [0.02, 0.07]	<.001
CV3	0.02 [-0.01, 0.04]	0.22	0.02 [-0.01, 0.04]	0.22	0.03 [0.003, 0.05]	0.03	0.02 [-0.004, 0.04]	0.11

Note. Separate linear regression analysis of cognitive ability and the first three brain canonical variates. Betas are standardized. All the models were adjusted for child age, child sex, race/ethnicity, parental education, and scanning sites. After excluding the participants with missing values in any of the four cognitive abilities, the final sample size of this analysis is 5,269. **CV1**: brain canonical variate 1, **CV2**: brain canonical variate 2, **CV3**: brain canonical variate 3.

Supplementary Figure 1

CBCL canonical loadings in ABCD and Generation R in qualitative replication

Note. The comparison of canonical loadings for CBCL syndrome scores in ABCD and Generation R. **a.** The canonical loadings of CBCL syndrome scores in ABCD. **b.** The canonical loadings of CBCL syndrome scores in Generation R. **CV1**: canonical variate 1, **CV2**: canonical variate 2, **CV3**: canonical variate 3.

Supplementary Figure 2

Canonical loadings in Generation R in qualitative replication

a. CBCL loadings

b. Resting-state connectivity canonical variates

Note. a. the five canonical variates survived permutation tests in Generation R. b. brain connectivity modules involved in the three identified canonical variates in Generation R that are similar with ABCD.