Sleep-Disordered Breathing Destabilizes Ventricular Repolarization

Soroosh Solhjoo1, Mark C. Haigney1,2, Trishul Siddharthan3, Abigail Koch3, Naresh M. Punjabi3

1 F. Edward Hébert School of Medicine, Bethesda, Maryland, USA
2 Military Cardiovascular Outcomes Research (MiCOR), Bethesda, Maryland, USA
3 University of Miami Miller School of Medicine, Miami, Florida, USA

Corresponding Author: Soroosh Solhjoo, PhD, E-mail: ss@jhmi.edu

Author Contributions: SS, NMP, and MCH designed the study. SS and NMP analyzed the data. SS, NMP, and MCH interpreted the results and wrote the manuscript. All authors reviewed the results and approved the final manuscript.

Support: The Defense Health Agency (HU00011920029 to MCH and SS), the Jay P. Sanford Award (to SS), and the National Institutes of Health (HL117167, HL146709, HL167121, P50MD017347 to NMP).

Disclaimer: The opinions and assertions expressed herein are those of the authors. They do not reflect the official policy or position of the Uniformed Services University of the Health Sciences or the Department of Defense.

Short Title: Sleep apnea, intermittent hypoxemia, and QTVI

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Rationale: Sleep-disordered breathing (SDB) increases the risk of cardiac arrhythmias, sudden death, and all-cause mortality.

Objectives: To characterize the associations between SDB, intermittent hypoxemia, and the QT variability index (QTVI), a measure of ventricular repolarization lability associated with a higher risk for cardiac arrhythmias, sudden death, and cardiovascular mortality.

Methods: Polysomnograms from three cohorts were used: a matched sample of 122 participants with and without severe SDB, a matched sample of 52 participants with and without incident SDB, and a cohort of 19 healthy adults exposed to intermittent hypoxia and ambient air on two separate days. Electrocardiographic measures were calculated from one-lead electrocardiograms.

Measurements and Main Results: Compared to those without SDB, participants with severe SDB had larger QTVI (-1.19 vs. -1.43, \(P=0.027\)), heart rate (68.34 vs. 64.92 beats/minute; \(P=0.028\)), and hypoxemia burden during sleep as assessed by the total sleep time with oxygen saturation less than 90% (TST\(_{90}\); 11.39% vs. 1.32%, \(P<0.001\)). TST\(_{90}\), but not the frequency of arousals, was a predictor of QTVI. Heart rate and QTVI during sleep were predictive of all-cause mortality. In the cohort with incident SDB, the mean QTVI increased from -1.23 to -0.86 over 5 years (\(P=0.017\)). Finally, in the cohort of healthy adults, exposure to intermittent hypoxia for four hours increased QTVI (-1.85 vs. -1.64; \(P=0.016\)).

Conclusions: Prevalent and incident SDB are associated with ventricular repolarization instability, which predisposes to ventricular arrhythmias and sudden cardiac death. Intermittent hypoxemia can destabilize ventricular repolarization and may mediate the increased mortality in SDB.

Keywords: QT variability index, QTVI, Sleep Heart Health Study, intermittent hypoxia
INTRODUCTION

Sleep-disordered breathing (SDB) is a common disorder with a prevalence in the range of 9%-38% (1, 2). Approximately 90% of men and 78% of women between the ages of 65 to 80 years in the general population have SDB (3). Recurrent episodes of decreased airflow (hypopnea) or no airflow (apnea) in SDB are associated with swings in intrathoracic pressure, hypoxemia, hypercapnia, and arousals from sleep. There is unequivocal evidence that SDB is associated with hypertension, cardiovascular disease, and a higher predisposition for cardiac arrhythmias (4-11). Conduction abnormalities, bradyarrhythmias, and both atrial and ventricular tachyarrhythmias are more prevalent in people with than without SDB (11). A growing body of empirical evidence also indicates that SDB is a risk factor for sudden cardiac death (12-15).

The role of SDB in triggering malignant arrhythmias can be assessed through its association with abnormal electrocardiographic (ECG) features known to be associated with an increased risk of sudden cardiac death. It is well established that the beat-to-beat QT variability index (QTVI), a measure of ventricular repolarization lability, is predictive of ventricular arrhythmias and sudden cardiac death (16-21). Elevated QTVI has also been linked to a higher propensity for all-cause and cardiovascular mortality (22). An increase in QTVI indicates that the QT interval is varying out of proportion to heart rate variability. SDB-associated nocturnal hypoxemia, hypercapnia, and sleep fragmentation can increase the sympathetic nervous system’s activity which, in turn, can modulate the QT interval through mechanisms independent of its effect on heart rate (23-25) and result in an increase in QT variability that is out of proportion to the variability in heart rate (26-28). Therefore, SDB should increase QTVI. However, the current body of evidence is limited,
and significant gaps remain in our understanding of the effects of SDB on QTVI. First, available data are conflicting, with studies showing no association (29), a positive association (30), or an inverse association (31) between SDB severity and QTVI. Second, it remains to be determined whether incident SDB leads to longitudinal changes in ventricular repolarization. Finally, there are no data as to whether intermittent hypoxemia or sleep fragmentation, the two pathophysiological concomitants of SDB, can independently alter QTVI. Therefore, the current study sought to determine whether prevalent and incident SDB are associated with ventricular repolarization instability and to characterize the role of intermittent hypoxemia and recurring arousals in increasing QTVI.

METHODS

Sample Selection

Three distinct cohorts were selected for this study. The first two cohorts were derived from the Sleep Heart Health Study (SHHS), a longitudinal study on the cardiovascular consequences of SDB (32-34). Of the 6,441 participants who completed the baseline SHHS examination and polysomnography, 3,296 had a follow-up polysomnogram approximately five years later. To minimize confounding, participants with prevalent myocardial infarction, coronary artery bypass surgery, heart failure, or angina and those on beta-blockers, calcium channel blockers, or antiarrhythmic agents were excluded.

To assess whether prevalent SDB is associated with a higher QTVI, a cross-sectional sample from the baseline SHHS examination was selected that included participants with severe SDB (apnea/hypopnea index (AHI)≥33 events/hour, i.e.,
95th percentile) along with a group of age (±1 year), sex, BMI (±1 kg/m²), and race-matched participants without SDB (AHI<1.33 events/hour; i.e., 25th percentile). A second sample of SHHS participants was selected to assess whether incident SDB and associated nocturnal hypoxemia increase QTVI over time. The second sample consisted of participants initially without SDB with total sleep time with oxyhemoglobin saturation (SpO₂) less than 90% (TST<0.22% (i.e., 50th percentile) who then developed SDB and had a TST≥10.4% (i.e., 90th percentile) at the follow-up polysomnogram five years later. An age (±1 year), sex, BMI (±1 kg/m²), and race-matched group of comparator participants was also identified without incident SDB and had a TST<0.22% during both the baseline and follow-up polysomnograms.

A third cohort of healthy adult volunteers was recruited from the local community as part of an experimental study on the acute effects of intermittent hypoxia, as previously described (35). For each volunteer, the experiment was done on two separate days. On one day, the subject was exposed to intermittent hypoxia, and on the other, to normoxia. The order of exposures to intermittent hypoxia or normoxia was random. Intermittent hypoxia was induced using a standard nasal mask connected to a three-way valve by alternating the airflow between hypoxic gas (5% O₂, 95% N₂) and ambient air (21% O₂, 79% N₂). SpO₂ and ECG were recorded continuously. The first four hours of each day were used to assess the effects of intermittent hypoxia on QTVI. See the online supplement for additional detail.

ECG Signal Processing

The ECG signal was analyzed using customized software developed in MATLAB (Mathworks, Natick, MA) to derive measures of heart rate (HR), heart rate variability, and
QTVI over a predefined epoch length. The standard deviation of the intervals between successive normal beats (SDNN) was calculated as the time-domain measure of heart rate variability. Spectral analysis was used to derive frequency-domain measures of heart rate variability. QT variability was measured using a template-matching algorithm (16, 36) and was calculated as QTVI=$\log_{10}\left(\frac{QT_{\text{variance}}}{QT_{\text{mean}}^2} \cdot \frac{HR_{\text{variance}}}{HR_{\text{mean}}^2}\right)$.

Statistical Analyses
Repeated measurements of electrocardiographic parameters over consecutive epochs were summarized using medians, which were subsequently compared using the t-test for independent or paired samples as appropriate. Normality was tested using the Lilliefors test. Multivariable linear regression based on least-squares estimation was used to characterize the association between QTVI and hypoxemia burden. The least absolute shrinkage and selection operator (lasso) (37) was used to determine the main contributors to mortality among the demographic, polysomnographic, and electrocardiographic parameters based on multivariable logistic regression models. Statistical analyses and graphing were done using the R statistical package, glmnet package (38), MATLAB, and Origin (OriginLab, Northampton, MA).

RESULTS

Prevalent SDB and Ventricular Repolarization Instability
Sixty-one participants (45 males, 16 females) with severe SDB met the inclusion criteria of the cross-sectional sample and were matched with 61 participants without prevalent SDB. The average AHI was 46.28 and 0.62 events/hour in participants with and without SDB, respectively. The two groups were matched by age, sex, race, and BMI (Table 1).
TST$_{90}$ was greater in those with than without severe SDB. The severe-SDB group had a higher mean heart rate and SDNN during sleep than those without SDB. QTVI was also higher with SDB, indicating greater ventricular repolarization lability. Stratified analyses by rapid eye movement sleep (REM) and non-REM (NREM) sleep showed similar findings with a higher QTVI with SDB irrespective of sleep stage (Table S1 and Figure 1).

Logistic regression analyses were used to determine whether electrocardiographic (heart rate, SDNN, and QTVI), demographic (age, sex, BMI, smoking status), and polysomnographic measures (AHI, frequency of arousals, and TST$_{90}$) were associated with all-cause mortality over an average follow-up of 8.2 years. Heart rate and QTVI were the only two predictors of all-cause mortality selected by the lasso analysis with an area under the receiver operating characteristic curve (AUC) of 0.75 (95% confidence interval: 0.63-0.87) based on 10-fold cross-validation. Including all other covariates in addition to heart rate and QTVI resulted in no significant increase in AUC. Multivariable linear regression analysis showed that higher TST$_{90}$ values were associated with greater QTVI independent of age, sex, BMI, and smoking status. For a 10% increase in TST$_{90}$, QTVI increased by 0.13. No association was noted between the frequency of arousals and QTVI.

Incident SDB and Ventricular Repolarization Instability

Based on the finding that TST$_{90}$ was independently predictive of QTVI in the cross-sectional sample, the role of incident SDB in increasing QTVI was examined. Twenty-six participants (8 males, 18 females) met the criteria for the longitudinal sample with incident SDB and were matched with 26 participants without incident SDB at the 5-year follow-up. Table 2 shows the demographic, polysomnographic, and electrocardiographic data. In
participants who developed SDB, AHI increased from 2.54 ± 0.72 events/hour at baseline to 13.74 ± 3.5 events/hour at follow-up. The AHI remained unchanged in those without incident SDB. Mean heart rate, SDNN, and QTVI during sleep did not change in those who did not develop SDB between the two visits. However, in those with incident SDB, QTVI increased from -1.23 ± 0.15 to -0.86 ± 0.14 (P = 0.017, Figure 2). Stratified analysis by sleep stage revealed that incident SDB was associated with increased QTVI during NREM but not REM sleep (Table S2).

Intermittent Hypoxia and Ventricular Repolarization Instability

To assess the adverse effects of hypoxemia on QTVI, ECG data from 19 healthy volunteers exposed to intermittent hypoxia or normoxia were used. The average age and BMI of the 19 healthy volunteers were 25.5 (Range: 18.0–37.0) years and 25.2 (21.7–33.0) kg/m², respectively. On the day of the intermittent hypoxia exposure, the participants were exposed to the hypoxic gas mixture 24.59 ± 0.78 times/hour for an average of 67.52 ± 2.79 seconds per event. Consequently, mean SpO₂ was significantly lower with intermittent hypoxia (90.90 ± 0.20%) than with normoxia (97.37 ± 0.20%, P < 10⁻¹³, Table S3). Heart rate transiently increased with each episode of hypoxia (Figure 3), leading to increased heart rate variability. SDNN was also higher (P = 0.014) during the first hour of intermittent hypoxia than normoxia. Other electrocardiographic measures (i.e., NN interval, LF/(HF+LF), and QTVI) were similar between the two conditions during the first hour. No significant changes were observed in any electrocardiographic measures between the first and the fourth hour of normoxia (Table 3). However, between the first and the last hour of intermittent hypoxia, heart rate and the LF/(LF+HF) ratio increased while log(HF) decreased, indicating a shift in
sympathovagal balance towards increased sympathetic activity (Table 3). QTVI also increased with intermittent hypoxia over the four hours (Table 3). By the 4th hour of the experiments, heart rate, SDNN, LF/(LF+HF), and QTVI were all significantly higher with intermittent hypoxia than normoxia (Figure 3).

DISCUSSION

The data presented herein demonstrate that SDB is associated with ventricular repolarization instability. In a cohort of middle-aged and older adults, compared to those without SDB, severe SDB was associated with a higher QTVI. The severity of nocturnal hypoxemia, but not the frequency of arousals, was associated with a higher QTVI, which was, in turn, predictive of all-cause mortality. Longitudinal data showed that incident SDB was associated with increased QTVI over five years. Finally, in a sample of healthy adults, experimental exposure to intermittent hypoxia progressively increased QTVI.

The last decade has seen enormous growth in the evidence linking SDB to ventricular arrhythmias and sudden cardiac death (12, 14, 39-43). Epidemiological data have shown that SDB is associated with a higher burden of complex ventricular ectopy (i.e., bigeminy, trigeminy, and quadrigeminy), non-sustained ventricular tachycardia, and sudden cardiac death (11). A meta-analysis of 22 studies (42,099 participants) reported that the SDB-related relative risk for sudden death was 1.74 (95\% CI: 1.40–2.10) (43). Subgroup analysis of studies with polysomnography data revealed a dose-response association between SDB severity and the risk of sudden cardiac death. Several biological mechanisms can explicate the observed clinical and epidemiological associations between SDB and sudden cardiac death. Upper airway collapse during sleep can induce ventricular electromechanical decoupling and thereby create an
arrhythmogenic substrate, as evident by transient prolongation of the QT interval (44). In an observational cohort study of 10,701 adults undergoing a diagnostic clinical polysomnogram, resuscitated or fatal sudden cardiac arrest was best predicted by an AHI ≥ 20 events/hour, mean nocturnal oxygen saturation < 93%, and lowest oxygen saturation ≤ 78% (14). Thus, SDB may increase the risk of sudden cardiac death in part through the effects of nocturnal hypoxemia. In vivo experimental studies show that chronic intermittent hypoxemia can augment sympathetic activity, alter ventricular repolarization, and increase the risk of sudden cardiac death (45). Hypoxia has been reported to increase the late component of the sodium current and alter the L-type calcium current in vitro (46-48). Further, hypoxia regulates the L-type calcium channels by increasing their sensitivity to β-adrenergic stimulation (49). Significant instability in action potential duration, including early afterdepolarizations, is detected when hypoxia is combined with activation of the sympathetic nervous system using isoproterenol in adult guinea pig myocytes or the Luo-Rudy in silico model (50). Therefore, the hypoxemia and sympathetic activation associated with SDB are expected to increase QT variability.

The QT interval's beat-to-beat variability, incorporated in QTVI, was proposed by Berger et al. (36) as a measure of ventricular repolarization lability to forecast the occurrence of reentrant ventricular arrhythmias in patients with dilated cardiomyopathy. In the absence of cardiac pathology, QTVI increases with age and is higher in women than men (51). Studies that have characterized QTVI have consistently found that a higher QTVI is associated with a greater risk for ventricular arrhythmias, sudden cardiac death, and both all-cause and cardiovascular mortality (17-22). However, there have been major gaps in our understanding of the association between SDB and QT variability, and
available data are limited and conflicting due to methodological differences in study design and the lack of control for confounding factors (29-31). The data presented herein provide unequivocal support for the role of SDB in adversely influencing QTVI, given the availability of cross-sectional, longitudinal, and experimental evidence. By minimizing confounding, the current study also implicates ventricular repolarization instability as a potential mediator of all-cause mortality in SDB.

The argument for a causal link between SDB, ventricular repolarization instability, and mortality is furthered by the observation in the current study that experimental exposure to intermittent hypoxemia for as little as four hours destabilized ventricular repolarization. The lack of an association between the frequency of arousals from sleep and QTVI in the current study could be related to the small sample sizes in the cross-sectional and longitudinal analyses. Recurrent arousals from sleep increase sympathetic nervous system activity (52), which can increase QT variability and arrhythmogenicity. In fact, data from an epidemiological study of older men showed that excessive QTVI during arousals predicted all-cause and cardiovascular mortality (53). Such arousal-induced increases in QTVI appeared to be transient, as there were no associations between pre-arousal QTVI and mortality. Our results, however, suggest a cumulative impact of intermittent hypoxemia on cardiac repolarization. Indeed, in the longitudinal analysis, the mean QTVI increased to -0.86 in those with incident SDB without any concurrent medical conditions, including heart failure. The high level of repolarization instability present with incident SDB is comparable to that seen in heart failure patients with an increased risk for mortality (22). Additionally, the QTVI levels seen with incident SDB were similar to that of patients on chronic methadone therapy, who experience nocturnal hypoxemia and a
predisposition for high density of premature ventricular contractions during sleep (54). Methadone, an opioid that inhibits both hERG and I\(_{K1}\) currents (55), is associated with a significant risk for arrhythmias and sudden nocturnal death (56). The present study suggests that a similar proarrhythmic effect might be associated with intermittent hypoxemia and sympathetic stimulation.

Several strengths and limitations of the current study warrant discussion. Strengths include the matching of study participants with severe SDB to those without SDB for the cross-sectional comparisons on QTVI, thus minimizing the effects of confounding covariates, assessing the effects of incident SDB on QTVI, demonstrating the impact of experimentally induced intermittent hypoxemia, and the use of full-montage polysomnography to characterize SDB and ventricular repolarization abnormalities during sleep. Weaknesses included the limited sample size, the lack of data on a dose-response association between SDB and QTVI, and the lack of an assessment of potential interactions between SDB and other factors (i.e., age, sex) that increase QTVI. Another potential limitation is that the current study used matched subsets of the Sleep Heart Health Study cohort instead of the whole cohort. The decision to use matched subsets was based on several advantages offered by matching (57). One major advantage of matching, particularly pair matching, is that it does not require any assumptions regarding the functional form (i.e., linear vs. non-linear) of the association between a potential confounder (e.g., age, sex, prevalent medical conditions) and the outcome (i.e., QTVI). Additionally, matching is advantageous when there are many confounders because it is often challenging to accurately model all of the associations between the panel of confounders and the outcome while matching subgroups is relatively simple. Matching
also protects against extrapolation of inferences from the region of covariate overlap
between groups. It avoids identifying associations based on chance which can result from
readjusting a regression model after examining estimates of a particular covariate. Finally,
identifying a rigorously matched sample allowed us to carefully annotate the ECG record
of smaller samples for sleep and wake epochs while removing artifacts in the signal. In
summary, the current study motivates investments in future efforts on whether treatment
of SDB with positive airway pressure therapy is associated with improvements in
ventricular repolarization and downstream effects on cardiovascular and all-cause
mortality, particularly in at-risk patients such as those with congestive heart failure.

ACKNOWLEDGMENTS

The authors thank Drs. Habil Zare (The University of Texas Health Science Center,
San Antonio, TX) and Courtney M. Johnson (Johns Hopkins University School of
Medicine, Baltimore, MD) for thoughtful discussions and suggestions.
REFERENCES

FIGURE LEGENDS

Figure 1. QTVI was higher in participants with severe SDB. The diagram shows the mean QTVI measurements for participants without SDB (N = 61, red) and with severe SDB (N = 61, blue).

Figure 2: Incident SDB destabilized ventricular repolarization. The diagram shows QTVI for participants with and without incident SDB. QTVI significantly increased in participants who developed SDB. N = 26 in each group. P values are for the paired samples t test between baseline and follow-up measurements for each group.

Figure 3. Temporal effects of intermittent hypoxia on electrocardiographic measures. The left panel shows data on one subject during ~ 20 minutes of exposure to intermittent hypoxia. Cyclical changes were noted in the heart rate and QT interval with intermittent hypoxia. The right panel shows the NN interval, SDNN, LF/(HF+LF) ratio, and QTVI of the 19 subjects for each hour of the four hours of exposure to intermittent hypoxia and normoxia. * indicates P < 0.05 for comparing the two conditions during the corresponding hour.
Table 1. Demographic, polysomnographic, and electrocardiographic data for the cross-sectional sample comparing severe SDB versus no SDB.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>No SDB</th>
<th>Severe SDB</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>60.54 (1.00)</td>
<td>60.72 (1.01)</td>
<td>0.899</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>29.28 (0.48)</td>
<td>29.45 (0.50)</td>
<td>0.802</td>
</tr>
<tr>
<td>Polysomnographic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AHI (/hour)</td>
<td>0.62 (0.05)</td>
<td>46.28 (1.59)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Mean SpO₂ (%)</td>
<td>95.07 (0.23)</td>
<td>93.75 (0.20)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>TST₉₀ (%)</td>
<td>1.32 (0.61)</td>
<td>11.39 (1.42)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Electrocardiographic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QTVI</td>
<td>-1.43 (0.06)</td>
<td>-1.19 (0.08)</td>
<td>0.027</td>
</tr>
<tr>
<td>HR (beats/min)</td>
<td>64.92 (1.11)</td>
<td>68.34 (1.08)</td>
<td>0.028</td>
</tr>
<tr>
<td>SDNN (msec)</td>
<td>32.01 (2.21)</td>
<td>41.48 (3.25)</td>
<td>0.018</td>
</tr>
<tr>
<td>QTc (msec)</td>
<td>442.58 (4.80)</td>
<td>457.86 (4.20)</td>
<td>0.018</td>
</tr>
</tbody>
</table>

Values are the mean (SEM). P values are for the Student’s t test comparing matched participants with and without SDB. N = 61 for each group.
Table 2. Demographic, polysomnographic, and electrocardiographic data for the longitudinal sample of the participants with and without incident SDB.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Baseline Without SDB</th>
<th>Baseline Incident SDB</th>
<th>Follow-up Without SDB</th>
<th>Follow-up Incident SDB</th>
<th>P value Follow-up</th>
<th>P value Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>63.88 (1.86)</td>
<td>64.08 (1.87)</td>
<td>0.942</td>
<td>69.15 (1.83)</td>
<td>69.12 (1.84)</td>
<td>0.988</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>27.24 (0.87)</td>
<td>27.70 (1.00)</td>
<td>0.732</td>
<td>26.87 (0.81)</td>
<td>28.45 (1.18)</td>
<td>0.272</td>
</tr>
<tr>
<td>Polysomnographic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AHI (/hour)</td>
<td>2.79 (0.58)</td>
<td>2.54 (0.72)</td>
<td>0.793</td>
<td>3.36 (0.67)</td>
<td>13.74 (3.50)</td>
<td>0.005</td>
</tr>
<tr>
<td>Mean SpO2 (%)</td>
<td>95.81 (0.21)</td>
<td>94.98 (0.24)</td>
<td>0.012</td>
<td>95.59 (0.23)</td>
<td>91.26 (0.15)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>TST90 (%)</td>
<td>0.05 (0.01)</td>
<td>0.05 (0.01)</td>
<td>0.905</td>
<td>0.03 (0.01)</td>
<td>21.79 (2.08)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Electrocardiographic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QTVI</td>
<td>-1.26 (0.09)</td>
<td>-1.23 (0.15)</td>
<td>0.876</td>
<td>-1.24 (0.10)</td>
<td>-0.86 (0.14)</td>
<td>0.034</td>
</tr>
<tr>
<td>HR (beats/min)</td>
<td>64.16 (1.51)</td>
<td>64.68 (1.74)</td>
<td>0.824</td>
<td>64.10 (1.75)</td>
<td>66.86 (2.08)</td>
<td>0.315</td>
</tr>
<tr>
<td>SDNN (msec)</td>
<td>28.39 (2.64)</td>
<td>27.66 (2.69)</td>
<td>0.846</td>
<td>27.43 (2.34)</td>
<td>24.41 (3.01)</td>
<td>0.432</td>
</tr>
<tr>
<td>QTc (msec)</td>
<td>436.85 (5.43)</td>
<td>447.39 (8.40)</td>
<td>0.297</td>
<td>444.93 (5.27)</td>
<td>450.34 (6.03)</td>
<td>0.503</td>
</tr>
</tbody>
</table>

Values are the mean (SEM). P values are for the Student’s t test comparing participants who developed SDB (N = 26) to those who did not (N = 26).
Table 3. Electrographic measures during normoxia versus intermittent hypoxia.

<table>
<thead>
<tr>
<th>Electrocardiographic Parameters</th>
<th>1<sup>st</sup> hour</th>
<th>4<sup>th</sup> hour</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normoxia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QTVI</td>
<td>-1.89 (0.09)</td>
<td>-1.86 (0.06)</td>
<td>0.412</td>
</tr>
<tr>
<td>HR (beats/min)</td>
<td>63.61 (2.43)</td>
<td>64.73 (2.15)</td>
<td>0.183</td>
</tr>
<tr>
<td>SDNN (msec)</td>
<td>94.28 (8.99)</td>
<td>90.56 (7.65)</td>
<td>0.336</td>
</tr>
<tr>
<td>Log(HF)</td>
<td>3.11 (0.11)</td>
<td>3.06 (0.10)</td>
<td>0.189</td>
</tr>
<tr>
<td>LF/(HF+LF)</td>
<td>0.59 (0.02)</td>
<td>0.59 (0.03)</td>
<td>0.715</td>
</tr>
<tr>
<td>Intermittent hypoxia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QTVI</td>
<td>-1.85 (0.04)</td>
<td>-1.64 (0.07)</td>
<td>0.016</td>
</tr>
<tr>
<td>HR</td>
<td>63.31 (1.51)</td>
<td>69.21 (2.14)</td>
<td>0.001</td>
</tr>
<tr>
<td>SDNN</td>
<td>111.15 (7.99)</td>
<td>104.19 (8.29)</td>
<td>0.317</td>
</tr>
<tr>
<td>Log(HF)</td>
<td>3.17 (0.09)</td>
<td>3.01 (0.09)</td>
<td>0.046</td>
</tr>
<tr>
<td>LF/(HF+LF)</td>
<td>0.61 (0.03)</td>
<td>0.67 (0.02)</td>
<td>0.014</td>
</tr>
</tbody>
</table>

Values are the mean (SEM). P values are for the paired t test between normoxia and intermittent hypoxia experiments. N = 19.
Figure 1. QTVI was higher in participants with severe SDB. The diagram shows the mean QTVI measurements for participants without SDB (N = 61, red) and with severe SDB (N = 61, blue).
Figure 2. Incident SDB destabilized ventricular repolarization. The diagram shows QTVI for participants with and without incident SDB. QTVI significantly increased in participants who developed SDB. N = 26 in each group. P values are for the paired samples t test between baseline and follow-up measurements for each group.
Figure 3. Temporal effects of intermittent hypoxia on electrocardiographic measures. The left panel shows data on one subject during ~ 20 minutes of exposure to intermittent hypoxia. Cyclical changes were noted in the heart rate and QT interval with intermittent hypoxia. The right panel shows the NN interval, SDNN, LF/(HF+LF) ratio, and QTVI of the 19 subjects for each hour of the four hours of exposure to intermittent hypoxia and normoxia. * indicates $P < 0.05$ for comparing the two conditions during the corresponding hour.