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Abstract 48 

Wastewater-based surveillance (WBS) has been established as a powerful tool that can guide health 49 

policy at multiple levels of government. However, this technology has not been well assessed at more 50 

granular scales, including large work sites such as University campuses. Between August 2021-April 51 

2022, we explored the occurrence of SARS-CoV-2 RNA in wastewater from multiple complimentary 52 

sewer catchments and residential buildings spanning the University of Calgary’s campus and how this 53 

compared to levels from the municipal wastewater treatment plant servicing the campus.  54 

Concentrations of wastewater SARS-CoV-2 N1 and N2 RNA varied significantly across six sampling 55 

sites – regardless of several normalization strategies – with certain catchments consistently 56 

demonstrating values 1–2 orders higher than the others. Additionally, our comprehensive monitoring 57 

strategy enabled an estimation of the total burden of SARS-CoV-2 for the campus per capita, which 58 

was significantly lower than the surrounding community (p≤0.01).  Real-time contact tracing data was 59 

used to confirm an association between wastewater SARS-CoV-2 burden and clinically confirmed 60 

cases proving the potential of WBS as a tool for disease monitoring across worksites. Allele-specific 61 

qPCR assays confirmed that variants across campus were representative of the community at large, 62 

and at no time did emerging variants first debut on campus.  This study demonstrates how WBS can 63 

be efficiently applied to locate hotspots of disease activity at a very granular scale, and predict disease 64 

burden across large, complex worksites. 65 

 66 

Keywords: Wastewater-based epidemiology, worksite, Epidemiology, dormitories, residences, 67 

wastewater treatment plant, nodal monitoring 68 

Synopsis: ‘This study establishes that wastewater-based surveillance with a node-based sampling 69 

strategy can be used to passively monitor for disease, locate disease "hotspots” and approximate the 70 

burden of infected individuals’71 
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1. Introduction 72 

To cope with the COVID-19 pandemic crisis, governments worldwide have implemented a range of 73 

measures to mitigate the spread of the virus, including large-scale clinical testing. While diagnostic 74 

testing is tremendously important, it is limited in its capacity to perform population-level surveillance 75 

owing to tremendous human and capital resources to run community testing centers.1  In addition, 76 

clinical testing is biased by relying on voluntary participation and towards individuals with 77 

symptomatic disease.2 Wastewater-based surveillance (WBS) has emerged as a novel tool for 78 

monitoring population health3 serving to complement clinical testing providing real-time data on the 79 

burden of disease in a monitored sewershed. Advantages of WBS include i) comprehensive, inclusive, 80 

serial monitoring of the population with relatively low costs, and ii) unbiased data collection of 81 

biological material from all society members including marginalized populations and those unable to 82 

access clinical testing.1, 3, 4  WBS for SARS-CoV-2 surveillance has been adopted worldwide5, 83 

including Canada where it currently covers ~62 % of the country’s population.6  Generally, WBS 84 

programs monitor SARS-CoV-2 RNA in untreated sewage from wastewater treatment plants 85 

(WWTPs) and thus assess disease burden at the level of an entire community. Community-based 86 

studies have identified SARS-CoV-2 WBS as a leading indicator for cases (4-6 days), hospitalizations, 87 

and deaths.7-10 However, studies where monitoring has been performed at a more granular scale (e.g., 88 

defined sub-catchments within a larger sewershed or specific facilities) are less common, and more 89 

work is needed to clearly demonstrate the similar benefits in more local contexts with sewer 90 

catchments that enable wastewater sampling corresponding to smaller zones. 91 

Such granular scale WBS is challenging when it comes to selecting sampling locations because i) it 92 

requires detailed data on defined sampling nodes (e.g., each node and their GPS coordinates) and their 93 

connectivity (to determine if overlapping catchments exist and may confound analysis), ii) nodes 94 

should have enough wastewater flow to ensure sufficient volume during continuous collection. A 95 

recent study in the City of Calgary evaluating neighborhood-scale sub-catchment monitoring (serving 96 

populations of 13,000 to 73,000) within larger WWTP catchments (serving 290,000 to 1,048,000) 97 

showcased the utility of node-based sampling in identifying specific sub-catchment(s) with 98 
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disproportionate infection burden.11 WBS at an even more granular scale (e.g., buildings) as a node-99 

based sampling strategy could help to specify more clearly ‘hotspots’ for infection transmission.12, 13 100 

One area of focused WBS that has generated significant interest is university/college campuses.  101 

University campuses consist of a vast array of building complexes where a high degree of social 102 

interaction is expected between students, staff, and faculty. High rates of SARS-CoV-2 transmission 103 

are possible in the absence of mitigating steps. While there have been university campus-wide studies, 104 

spatial distribution of SARS-CoV-2 RNA within the university campus, and studies enabling a 105 

comprehensive assessment of the total disease burden have not as yet been performed. Thus far, 106 

University-based studies assessing SARS-CoV-2 RNA in wastewater have primarily focused on 107 

longitudinal analysis rather than spatially resolved analysis14, 15 or only on individual 108 

dormitories/residential buildings16-18, limiting their impact. 109 

Herein we describe a longitudinal nodal-based WBS monitoring program for SARS-CoV-2 RNA at 110 

the University of Calgary (UofC), Calgary, Alberta, Canada. The main campus is situated on 530-111 

acres in the Northwest quadrant of the city and were monitored using WBS from Aug 31, 2021–Apr 112 

24, 2022, along with the municipal WWTP which serves the campus. Our primary research objectives 113 

were to i) locate specific sub-catchment(s) within the University where SARS-CoV-2 RNA exists in 114 

differential abundance and associate this with COVID-19 case occurrence, and ii) determine the 115 

relative risk of COVID-19 on campus, as inferred by SARS-CoV-2 wastewater burden, relative to the 116 

surrounding community. We hypothesized that i) higher abundance of SARS-CoV-2 RNA would be 117 

found in buildings with higher social connectivity and that this would be associated with COVID-19 118 

reported cases; and, ii) the abundance of SARS-CoV-2 RNA in campus wastewater would be lower 119 

than the surrounding community given a highly educated population, campus mandate for universal 120 

masking, a high prevalence of accessible hand hygiene product through campus, and a vaccine 121 

mandate (or weekly negative test) required to attend campus. 122 
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2. Materials and Methods 123 

2.1. Defining sampling nodes across the UofC sewershed 124 

UofC is among the ten largest Universities in Canada with >26,000 full-time undergraduate students, 125 

6,000 graduate students and 1,800 academic and 3,200 non-academic staff.19  The main campus is 126 

situated in Northwest Calgary on a parcel of 530-acres (2.13 km2). Campus sampling locations were 127 

chosen to deliver a minimum number of manhole-accessible sites providing maximum coverage of 128 

campus buildings, using GIS-based analysis of the sewer pipe network (Fig. 1). Residence halls were 129 

also included based upon presence of an accessible sampling location within the building’s plumbing 130 

network capturing ≥50% of the residential areas of that building. This was accomplished by manually 131 

reviewing the engineering drawings of the dormitory plumbing systems, visually inspecting each 132 

prospective sampling location and then selecting the site that optimally captured the building’s 133 

wastewater in a safe, access-controlled manner. 134 

Three nodes were selected to capture the building complexes in the Northwest (NW), Northeast (NE), 135 

and South (SO) zones of the campus (Fig. 1). Six buildings drain into both NW and NE within these 136 

catchments and are indicated as MIX (see Fig. 1; colored in orange). Both residence halls (RH1 and 137 

RH2) are within the NW catchment thus enabling even more granular scale sampling nodes. The entire 138 

monitoring program captured 7 residential halls, 39 lecture/research facilities and 5 recreational 139 

facilities (including dining/fitness buildings) (Fig. 1). Our monitoring catchments cover >80% of the 140 

total residence population (i.e., those living in dormitories) and >83 % of the campus aerial footprint.  141 

Calgary is Canada’s fourth largest city by population and its third most ethnically diverse.11, 20  Three 142 

WWTPs serve an estimated 1,441,268 people.21 UofC falls exclusively within the catchment zone of 143 

the largest WWTP, serving 1,047,662 individuals and receiving 303.7-604.6 ML/day. 144 

2.2. Wastewater Collection 145 

Wastewater samples were collected from the sites described above 2-3× per week from August 31, 146 

2021–April 30, 2022, using a workflow described previously.11, 12  In short, CEC Analytics V1 (C.E.C 147 
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Analytics, Canada) and ISCO 6712 (Teledyne ISCO, USA) autosamplers collected 2L (CEC) or 10L 148 

(ISCO) 24-hours composite samples that were stored at 4°C and transported to Advancing Canadian 149 

Water Assets (ACWA). Upon arrival, samples were thoroughly mixed and aliquoted into 50mL 150 

centrifuge tubes for downstream analysis. More details on field sampling techniques are described in 151 

the Supplement. 152 

2.3. Sample processing and RNA extraction 153 

Sample processing and RNA extraction was performed following established workflows.11, 12, 22, 23 In 154 

brief, 40mL of thoroughly mixed wastewater subsamples was added to 50mL falcon tubes prefilled 155 

with 9.5 g of sterile NaCl and 400ul of TE buffer and were then spiked with 200µL of Bovine 156 

Coronavirus (BCoV) (final concentration: 5×105 50% tissue-culture-infective dose (TCID50) per mL) 157 

as an internal control and vortexed for 30 seconds. Solids were then removed via vacuum filtration 158 

through a 5 µm polyvinylidene difluoride membrane, where samples were filtered directly into 40ml 159 

of 70% ethanol. This solution was then passed through a Zymo Spin™ III-P silica column (Zymo 160 

Research, USA). 24 More details can be found in the Supplement.  161 

2.4. Quantitative RT-qPCR 162 

RT-qPCR assays were performed following established workflows.11, 12, 24 In short, two regions of the 163 

nucleocapsid gene (N1 and N2) were used to quantify total SARS-CoV-2 RNA copies/mL in every 164 

wastewater sample.25-27 We also analyzed variants of concern (VOC), including Delta, Omicron 165 

(BA.1, and BA.2) using the N200 multiplex assay24,28 or 69/70del assay29 for a subset of samples for 166 

WWTP (44 samples), RH1 (18 samples), SO (18 samples), NW (17 samples), and NE (9 samples) 167 

from November 28, 2021-April 27, 2022. BCoV (Bovine Coronavirus) was analyzed as an internal 168 

spike control, and PMMoV (Pepper Mild Mottle Virus) was analyzed as a potential human feces 169 

biomarker.12, 23, 30  All samples were analyzed in triplicate, including non-template controls for each 170 

run using QuantStudio-5 Real-Time PCR System (Applied Biosystems, USA). Samples with a 171 

quantification cycle (Cq)<40 were considered positive.11, 12  Key quality parameters (i.e., efficiency, R2 172 

of regression curve, Y-intercept, and slope) for qPCR standard curves are shown in Table S1. Detailed 173 
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information (e.g., oligonucleotide sequences and thermal cycling conditions) can be found in previous 174 

publications.11, 12, 24  The raw data were subjected to further quality control and performed similarly to 175 

previously published works(see Supplementary Results 2.1).11, 12, 24  Finally, concentrations for N1, 176 

N2, and PMMoV were averaged weekly for each monitoring location. Those averaged concentrations 177 

(for each week) were used in most downstream analyses, and the data presented in Dataset S1. 178 

2.5. Chemical analysis  179 

In addition to PMMoV, a total of five wastewater cations (sodium, chloride, potassium, magnesium, 180 

and calcium) were chosen to explore their association with SARS-CoV-2 as potential normalization 181 

markers for human activity. These cations are associated with human excreta, especially urine31, 32  and 182 

potentially useful for correcting possible underestimation of SARS-CoV-2 levels due to dilution 183 

effect33, 34, which could be particularly important in small catchments. Relationships between N1 and 184 

N2 gene abundance and wastewater cations were examined for samples collected during August 31, 185 

2021 to January 04, 2022 (n=13 to 36 depending on sampling site). To analyze cations, wastewater 186 

samples were thoroughly homogenized, and filtered through 1.5μm dried pre-rinsed Grade 934-AH® 187 

RTU glass microfiber filters (Whatman, UK) by 12mL. The filtrate was filtered again through a 188 

0.45μm PVDF membrane UNIFLO® syringe filter (Whatman, UK), distributed to a tube for ion 189 

chromatography, and then stored at 4ºC until analysis. Those processed samples were analyzed using 190 

Metrohm 930 Compact Ion Chromatography Flex (Metrohm, Switzerland).  191 

2.6. Modelling expected COVID-19 cases per capita across UofC Campus 192 

Cases per capita in UofC main campus (𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈) was calculated using raw (i.e. un-normalized) 193 

SARS-CoV-2 RNA concentrations according to the following relationship referring to (Eq.S4) in the 194 

Supplement  195 

𝐶𝐶𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 ∶  𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 =
𝑛𝑛𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

𝑁𝑁𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊
∶  𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈   196 

i.e., 𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 =  𝐶𝐶𝐶𝐶𝐶𝐶𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊  ∙  𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈
 𝑈𝑈𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

  (Eq.1) 197 
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Where, 𝑁𝑁𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 indicates the total population in the catchment area for WWTP (n=1,047,62211 ; 198 

𝑛𝑛𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 is incident number of new cases occurring daily (i.e., confirmed COVID-19 infected 199 

individuals) in the catchment area for WWTP; 𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 and 𝐶𝐶𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 indicate concentration of SARS-200 

CoV2 RNA for UofC and WWTP respectively, and could be calculated according to (Eq.S6) in the 201 

Supplement. 202 

To mitigate uncertainty which may arise from possible differences in human excreta across samples, 203 

𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 was also calculated using normalized SARS-CoV-2 RNA concentration according to the 204 

following relationship referring to (Eq.S5) in the Supplement.  205 

𝐶𝐶𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

𝐶𝐶𝑒𝑒−𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊
∶  

𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈
𝐶𝐶𝑒𝑒−𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈

=
𝑛𝑛𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

𝑁𝑁𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊
∶  𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈   206 

i.e., 𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 =  𝐶𝐶𝐶𝐶𝐶𝐶𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊  ∙  𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈∙𝑈𝑈𝑒𝑒−𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

 𝑈𝑈𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊∙𝑈𝑈𝑒𝑒−𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈
  (Eq. 2) 207 

Where, 𝐶𝐶𝑒𝑒−𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 , and 𝐶𝐶𝑒𝑒−𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 indicate concentration of human excreta surrogates for UofC and 208 

WWTP, and could be calculated according to (Eq. S6) in the Supplement. 209 

2.7. Uncertainty analysis 210 

As wastewater flow data for UofC was unavailable, models described in 2.6 rely on assuming that  211 

flow quantities are proportional to catchment surface areas (i.e., total footprint of all buildings) (see 212 

Supplementary Method 1.3 in the Supplement). We assumed that uncertainty in this model derives 213 

mostly from variability of gross surface area in prediction of flow quantity. Therefore, prediction 214 

errors from these sources were propagated using a Monte-Carlo randomization simulation adapted 215 

from other relevant works.35, 36 The term surface area (𝐴𝐴) was randomized by multiplying the 216 

uncertainty factor (𝑎𝑎) which is variable ranging from 0.2 (20%) to 2.0 (200%) assuming that the actual 217 

ratio of flow quantity lies within these boundaries.  218 

𝑉𝑉𝑆𝑆𝑆𝑆 ∶  𝑉𝑉𝑁𝑁𝑊𝑊 ∶  𝑉𝑉𝑁𝑁𝑁𝑁−𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑎𝑎1 ∙ A𝑆𝑆𝑆𝑆 ∶ 𝑎𝑎2 ∙ A𝑁𝑁𝑊𝑊 ∶ 𝑎𝑎3 ∙ A𝑁𝑁𝑁𝑁−𝑀𝑀𝑀𝑀𝑀𝑀 219 

Where, 𝑎𝑎1, 𝑎𝑎2, and 𝑎𝑎3 are random variables ranging from 0.1 to 2.0, also are independent from each 220 

other. 221 
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The simulation was repeated 1,000 times, and interquartile ranges (IQR, Q1 – Q3) for each prediction 222 

value are displayed as error bars in the model. Furthermore, the p-value for permutation test was 223 

defined as ‘the ratio of counts where 𝐶𝐶𝐶𝐶𝐶𝐶𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 > 𝐶𝐶𝐶𝐶𝐶𝐶𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 to 1,000 (= the number of simulation 224 

trials)’ for each time point. Only time-paired data points were compared between each site. The 225 

modelling was performed using R (v4.1.2), and related datasets/R codes will be available in the first 226 

author’s GitHub page (https://github.com/myjackson) upon acceptance of this manuscript. 227 

2.8. Clinical case documentation 228 

Information on city-wide, new daily cases of clinically confirmed COVID-19 (patient swabs 229 

confirmed with a clinical RT-qPCR) were provided by a single comprehensive public health system, 230 

Alberta Health Services (AHS) via the Centre for Health Informatics online COVID Tracker 231 

(https://covid-tracker.chi-csm.ca/). The information was gathered between August 31, 2022, and 232 

March 31, 2022, and a subset of this data (i.e., August 31, 2021 – January 04) was subjected to further 233 

analysis. New cases were binned by individual postal codes (using the first three of six digits) as an 234 

indicator of the home address of newly diagnosed cases. Cases were then assigned to the appropriate 235 

WWTP serving their primary residence.   236 

Comparative analyses were conducted across two distinct time periods; Period A (Aug 31, 2021-Dec 237 

12, 2021) and Period B (Dec 13, 2021-April 25, 2021) owing to fundamental changes occurring 238 

through the pandemic. In particular, during the Omicron waves (Period B, defined when the first case 239 

was documented in Calgary), clinical case occurrence for the first time vastly exceeded the ability of 240 

health services to screen and detect the population.   241 

Documenting campus-associated confirmed-COVID-19 cases and ascribing them to a specific primary 242 

building was performed in real-time by the University of Calgary’s Occupational Health and Staff 243 

Wellness for students and employees who self-reported a positive COVID-19 test during the pandemic 244 

period from September 2021. Confirmed cases were excluded from attending campus for a minimum 245 

of 10 days (reduced to 5 days after January 3rd, 2022) and complete symptom resolution. The 246 

information gathered between September 21, 2021–April 2022 was used to trace the primary buildings 247 

where individuals with confirmed COVID-19 were located. We assigned study-specific personal 248 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 6, 2023. ; https://doi.org/10.1101/2023.03.03.23286756doi: medRxiv preprint 

https://github.com/myjackson
https://covid-tracker.chi-csm.ca/
https://doi.org/10.1101/2023.03.03.23286756


identifiers to each affected individual and avoided personal identifying information. The information 249 

gathered in the original report includes: i) ‘date of positive test result’, ii) ‘date university informed of 250 

illness’, iii) ‘recent university location(s) visited and the date when the person visited that location’, 251 

and iv) ‘date of onset of symptoms’, etc. However, in some instances case information was not always 252 

fully declared (i.e., the recent university location(s) visited, and the date(s) when the person visited), 253 

and such cases were excluded. As a result, the information from 463 out of 721 reported individuals 254 

was used in downstream analyses. The raw data is not shown for ethical consideration, but could be 255 

provided upon reasonable request to the authors. The full set of processed data is shown in Dataset S2. 256 

The patient identifiers (PID) are not known to anyone outside our research group, so individuals 257 

remain anonymous. 258 

To model the movement of confirmed COVID-19 infected individuals across campus, we relied on 259 

self-reported activity tracing. To identify individual buildings where COVID-19 positive individuals 260 

visited, we first counted the number of positive individuals who visited each building using the 261 

information iii) above. For example, for each building, the recently visited PIDs were listed (Dataset 262 

S2). Then, we counted the total affected-visits for each building. In this way, each PID was often 263 

counted multiple times in situations where the person visited multiple locations or one location on 264 

multiple days during the monitoring period. As the majority of SARS-CoV-2 RNA shedding occurs in 265 

the few days before and after symptom onset12, 22, the visits ± 2 days of the ‘date of onset of 266 

symptoms’ were considered valid, otherwise excluded in the following analysis. Total affected-visits 267 

is named ‘number of cases’. Finally, the number of cases was subjected to further analysis. For 268 

instance, the cases were averaged weekly, and aggregated by monitoring catchment for each 269 

monitoring week (Fig. S5). 270 

During the monitoring period, on-campus residents (i.e. those residing full-time in dormitories) who 271 

were confirmed as COVID-19 positive were quarantined according to the following principles: i) if a 272 

case was reported by an individual living in a single unit with a bathroom– not shared with another, 273 

the individual was isolated in place (a total of 10 residential halls, CR, YA, CD, GL, KA, AU, RU, IH, 274 

OL, or VC (Fig. 1)), ii) if all occupants of a shared apartment are positive, they would continue to 275 

isolate in their same apartment in their residential hall, and iii) if the positive individual shares an 276 
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apartment with someone who is not also positive, they were moved to another suite, VC for their 277 

isolation period. Our monitoring program included most of the isolation places (i.e., a total of 8 out of 278 

10 places, CR, YA, CD, GL, KA, AU, RU, and IH; see Fig. 1). 279 

2.9. Statistical analysis 280 

Kruskal-Wallis test followed by a post-hoc Wilcoxon rank-sum test was performed to test if there 281 

were significant differences between groups. For pairwise tests, p-values were adjusted using the 282 

Benjamini-Hochberg method. Additionally, Spearman correlation analysis was performed to test if 283 

there were significant relationships between the two factors. Finally, Fisher’s exact test was 284 

implemented to test the potential association between two variables (i.e., SARS-CoV-2 signals versus 285 

campus-associated COVID-19 cases). One-sided test was employed under the expectation that those 286 

two might be positively associated. Then, Fisher’s exact test was repeated for each pair of wastewater 287 

SARS-CoV-2 signals (N1 or N2) against cases reported; a week earlier (-1 week) cases, those on the 288 

same week (+0 week), or the week following (+1 week) under the hypothesis that wastewater signals 289 

serve as an early warning sign of COVID-19 cases. The key rationale was explained in more detail in 290 

the Supplementary Method 1.5. All analyses were done using R version 4.1.2., and related datasets/R 291 

codes will be available in the first author’s GitHub page (https://github.com/myjackson) upon 292 

acceptance of this manuscript. 293 

2.10. Ethics 294 

This study received approval from the Conjoint Research Health Ethics Board of the University of 295 

Calgary (REB20–1544). 296 

3. Results 297 

3.1. Longitudinal tracking wastewater-borne SARS-CoV-2 RNA across campus 298 

Between August 3, 2021–April 30, 2022, a total of 58 (RH1) and 18 (RH2) samples were obtained 299 

from the residence halls, 45 (NE), 48 (SO), and 42 (NW) samples were obtained from the campus 300 
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catchments, and 89 samples were obtained from WWTP, providing 12 – 25 data points per location 301 

after being averaged weekly. The lower number of samples collected for campus locations primarily 302 

relates to more complicated access for these sampling points (e.g., manholes in the open (public) area 303 

for the campus sampling points versus either within buildings or from the WWTP facility. The outdoor 304 

locations (manholes) also experienced a higher rate of failure to collect especially during cold weather 305 

(<-20 ֯C) for campus sites. 306 

During this time the City of Calgary experienced three successive “waves” of COVID-19 307 

(corresponding to the fourth, fifth and sixth waves since the start of the pandemic). Tracked via 308 

wastewater, the first of these waves during the monitoring period peaked on September 06, 2021, 309 

followed by January 03 and April 18, 2022. Allele-specific PCR to detect VOC in WWTP samples 310 

confirmed it was the Delta variant that was dominant during the fourth-wave (peaking September 06, 311 

2021), and Omicron lineages were dominant during the fifth (BA.1 peaking January 03, 2022) and 312 

sixth waves of this study (BA.2 peaking April 18, 2022, the third wave in this study) (Fig. S6). 313 

Notably, the burden of wastewater-detected SARS-CoV-2 N1 and N2 for the two latter waves caused 314 

by Omicron lineages vastly exceeded that of Delta. 315 

SARS-CoV-2 N1 and N2 concentrations across campus monitoring sites generally, but not always 316 

mirrored those of the community WWTP (Fig. 2). Values from WWTP were higher than those across 317 

campus, with some exceptions. While the highest N1 and N2 values observed from campus 318 

monitoring sites (i.e., SO, NE, and NW) occurred during the peaks of each wave experienced in the 319 

community, random spikes in N1 and N2 also occurred during community troughs and appeared 320 

randomly suggesting brief periods of increased disease burden. Analysis of VOC across UofC campus 321 

mirrored those for WWTP –Delta was dominant in Period-A (Aug 31, 2021-Dec 12, 2021) for those 322 

locations where data was available (i.e., SO, and NW) (Fig. S7 & S8) and Omicron lineages were 323 

dominant in Period-B for SO, NW, NE, and RH1 while. In no instances did the emerging VOC occur 324 

disproportionally within the campus environment relative to that of the community. 325 
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3.2. Correlating wastewater SARS-CoV-2 RNA with clinically confirmed cases  326 

A median of 153 (IQR 73 – 240) cases per day were clinically confirmed across the catchment of the 327 

WWTP during the period monitored (August 31, 2021 – January 04, 2022; a total of 36 data points). 328 

These cases were correlated with raw-, and also normalized-SARS-CoV-2 N1 and N2 signals using 329 

different investigational markers (i.e., PMMoV, sodium, chloride, potassium, calcium, and 330 

magnesium) for the corresponding date ranges. The raw (i.e., un-normalized) N1 and N2 signals (i.e., 331 

copies/mL) correlated with confirmed cases the best (where N2 was more sensitive than N1) 332 

suggesting biomarkers for normalization did not denoise variability associated with human excreta 333 

over time. However, for comparing different smaller catchment results with each other, we expected 334 

the variability in human wastes between sites could be large, especially when the characteristics of 335 

those populations may be very different, e.g., residential versus non-residential areas of the campus. 336 

Accordingly, while we used raw SARS-CoV-2 concentrations as our primary outcome for intra-site 337 

comparisons, PMMoV and ion normalization were assessed as a confirmatory secondary outcome 338 

measure.  339 

3.3. Comparing SARS-CoV-2 RNA signals across different sampling locations  340 

Comparison across different locations was conducted for each of the two separate periods, for instance 341 

Period-A (Aug 31, 2021-Dec 12, 2021) and B (Dec 13, 2021-April 25, 2021). There were significant 342 

differences in both raw and normalized wastewater SARS-CoV-2 RNA concentrations between 343 

monitoring sites during the study (Period-A to -B) based on Kruskal-Wallis test (p<0.001). In Period-344 

A, a post-hoc analysis using Wilcoxon-rank sum test revealed that SARS-CoV-2 RNA N1 and N2 345 

concentrations in campus locations were 1 – 2 orders of magnitude lower than the community WWTP 346 

(p≤0.005) (Table 1 & Fig. 3). Furthermore, there were significant differences in both N1 and N2 347 

concentrations between campus locations. For instance, the values for NE were 1 – 2 orders of 348 

magnitude lower than NW and SO, and such difference was non-parametrically significant using 349 

Wilcoxon rank-sum tests for NW (p≤0.038) (Table 1). SARS-CoV-2 N1 and N2 concentrations for 350 

two dormitories (i.e., RH2 and RH1) were similar to NE (p≥0.428) but lower than SO (p≤0.026) and 351 
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NW (p≤0.038), based on Wilcoxon rank-sum test (Table 1). In general, normalized trends of SARS-352 

CoV-2 burden between sites mirrored those of raw values (Table S3). The normalized N1 and N2 353 

concentrations for WWTP were higher than for all the campus locations using post-hoc Wilcoxon 354 

rank-sum test in all comparisons (p≤0.008) (Table S3). Among university campus locations, the 355 

normalized N1 and N2 values for NE were lower than NW or SO in many instances (Table S3). 356 

In Period-B, the N1 and N2 concentrations increased considerably compared to Period-A at WWTP 357 

and across campus (Fig. 3). However, the values for the campus were still significantly lower than for 358 

WWTP for both N1 and N2 based on a post-hoc Wilcoxon rank-sum test (p≤0.013; see Table 1). The 359 

degree of increase for RH1 was the most pronounced among all monitored sites. For instance, the 360 

median N1 concentration for RH1, and SO samples profoundly increased, for instance by >2 order of 361 

magnitude (from 0.0 to 184.7 copies/mL for RH1; from 7.6 to 369.8 copies/mL), while the median 362 

concentration for other campus locations increased only by approximately 1 order of magnitude (from 363 

0.0 to 19.4 copies/mL for NE; from 8.1 to 94.3 copies/mL for NW). In all cases, the normalized 364 

concentrations for SO were significantly higher than for NE based on Wilcoxon rank-sum tests in all 365 

cases using N1 (p≤0.025), and most cases for N2. The normalized concentrations for WWTP were 366 

significantly higher than all the UofC campus locations in all cases using N2 (p≤0.014), and in many 367 

cases except for chloride, sodium, and potassium using N1 (p≤0.036) (Table S4).  368 

3.4.  SARS-CoV-2 RNA measured in campus wastewater catchments correlates with regional case 369 

occurrence  370 

The association between COVID-19-confirmed clinical cases and wastewater-N1 or N2 concentrations 371 

was tested using a one-sided Fisher’s exact test under the null hypothesis that those two factors were 372 

independent for each location (Table 2). An association between cases and a concentration was 373 

observed at most monitoring sites (i.e., p<0.05 at RH1, NE, or SO) for samples collected before (-1 374 

week) and the same week (+0 week) using either N1 or N2 as an indicator. As expected, given the 375 

mandatory exclusion of confirmed cases from campus following the diagnosis, samples collected the 376 

week (+1 week) did not associate. 377 
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3.5. Wastewater-measured SARS-CoV-2 enabled estimation of COVID-19 cases per capita across 378 

UofC campus 379 

COVID-19 cases per capita for the entire UofC monitored catchments comprising NW, NE, and SO 380 

during the entire monitoring period (both -A and -B) were estimated according to (Eq. 1) using raw 381 

concentrations, and also (Eq. 2) using normalized concentrations. SARS-CoV-2 N2 data was used in 382 

this analysis due to its stronger association with clinically confirmed cases (see 3.2, also Table S2). 383 

Following this, the modelled aggregate SARS-CoV-2 burden for UofC was compared with the values 384 

for the surrounding community (i.e., WWTP catchment) (Fig. 4). For most time points, cases per 385 

capita in the community (as measured at WWTP) were significantly higher than for UofC (p<0.001). 386 

The results using different methods of potential normalization generally mirrored the raw 387 

concentrations (Table 3). 388 

Overall, median predicted incident cases per capita (cases per 100,000 scaling factor) for UofC was 389 

5.9-fold lower than for WWTP using raw concentration (p<0.001), and 2.2–5.2-fold lower than for 390 

WWTP using normalized concentrations (≤0.01). For instance, the median cases per 100,000 was 8.8 391 

(IQR 6.9-14.8) for the WWTP catchment, and predicted to be 1.5 (IQR 0.5-2.7) for the entire UofC 392 

monitoring catchment using raw SARS-CoV-2 RNA concentration. The median values of cases per 393 

capita per 100,000 for UofC when assessed using normalized concentrations were 1.8 (IQR 0.7-3.3) 394 

for PMMoV, 1.7 (IQR 0.6-3.1) for calcium, 2.9 (IQR 1.0-5.3) for chloride, 1.7 (IQR 0.6-3.1) for 395 

magnesium, 2.6 (IQR 0.9-4.7) for potassium, and 4.0 (IQR 1.4-7.6) for sodium.  396 

4. Discussion 397 

4.1. A nodal-based sampling approach reveals ‘hotspots’ for COVID-19 cases within the campus 398 

This study demonstrated that WBS using spatially resolved node-based sampling approach enables 399 

SARS-CoV-2 activity to be located and quantified across a large University campus on a granular 400 

scale. Such an approach has previously been proven effective in cities at a neighborhood scale.11  One 401 

of the challenges for granular scale monitoring is identifying sampling nodes that adequately cover 402 
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most of the targeted community. This requires a careful analysis of geographic information of 403 

involved sewersheds and assessing the connectivity between sampling nodes so that the sub-404 

catchments (for each node) can be collected comprehensively. Other studies have explored SARS-405 

CoV-2 WBS in individual buildings across university campuses. However, those studies either 406 

targeted residences and dormitories16, 18, 37 or combined residential and non-residential buildings in a 407 

very limited fashion.15, 17, 38  A comprehensive longitudinal assessment of a campus community or 408 

large work facility has not previously been performed. Our approach is unique relative to other studies 409 

because our monitoring catchments cover the vast majority of buildings (>83%) on a 530-acres 410 

campus through the deployment of a modest number of sample collection devices. 411 

SO and NW portions of the campus consistently showed high levels of SARS-CoV-2 using raw and 412 

normalized data, demonstrating hotspots for COVID-19 occurrences. For example, RH1, a dormitory, 413 

could be one of the buildings where highest disease incidence occurs and disproportionately contribute 414 

to a high level of SARS-CoV-2 signals for NW, at least during Period-B (see Fig. 3). This is consistent 415 

with other reports demonstrating high secondary COVID-19 case occurrence in dormitories.16, 17, 38  416 

The catchment SO includes three additional residence halls (KA, AU, and RU; see pink sections of 417 

Fig. 1), and these may be a reason why SO demonstrated particularly high levels of SARS-CoV-2 418 

signals, especially during Period-B (Fig. 3). Unlike NW and SO, the catchment area for NE does not 419 

include any such buildings, rather is predominately comprised of lecture halls and administration 420 

offices – this might be one of the reasons why the level of SARS-CoV-2 concentration for NE was low 421 

relative to SO or NW. The ability to discern the building(s) with the highest number of cases per 422 

capita however, is unknowable in this study. WBS at even more granular scales (i.e., building level) 423 

could be followed for those specific building types within catchments of interests, for instance NW 424 

and SO in this study, during disease outbreaks, although this would significantly increase the cost of 425 

active monitoring by introducing many more nodes. 426 

Comparing the concentration of SARS-CoV-2 RNA in wastewater across different sampling locations, 427 

makes it possible to locate the catchment(s) where infected individuals are disproportionally located. 428 

However, for such cross-site comparisons, there is a possibility that target analyte abundance could be 429 

underestimated in catchment(s) where a high volume of water use relative to individuals is expected 430 
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(e.g., non-residential buildings). For this reason, we used normalized concentration as a secondary 431 

outcome measure when comparing SARS-CoV-2 RNA concentrations across different locations so 432 

that we could, in theory, compensate for such underestimation, especially in NE. Other studies have 433 

also found that human-specific surrogates did not necessarily improve correlation between confirmed 434 

cases and normalized SARS-CoV-2 signals using longitudinal data39, 40, similar to our own 435 

observations. Another study demonstrated that while normalization using human excretory surrogates 436 

did not improve overall correlation of longitudinal data, it still significantly improved the correlation 437 

when using “pooled” data for 12 different communities.41 This implies that whether normalization 438 

improves the correlation between wastewater data and clinical cases depends on site, thus site-specific 439 

longitudinal assessments should take precedence.  440 

4.2. Campus-wide WBS is positively associated with confirmed COVID-19 case occurrence 441 

demonstrating its potential for disease monitoring  442 

A positive association between COVID-19 cases and wastewater signals in the majority of instances 443 

(see 3.4 and Table 2) indicates that WBS has the potential for passive disease monitoring at a granular 444 

scale. This positive association has previously been reported in other targeted, granular scale 445 

monitoring programs. For instance, a positive correlation between wastewater SARS-CoV-2 levels 446 

and confirmed cases was observed in hospitals12, 42 and university dormitories38, and also larger 447 

building complexes.14  However, adapting WBS as an early warning for COVID-19 cases on a more 448 

granular scale may not provide the same lead time relative to clinical diagnoses as was observed early 449 

in the pandemic now that testing capacity has markedly increased. Indeed, the early warning scenario 450 

(-1 week) did not lead to lower p-values relative to the no time-lag scenario when comparing 451 

confirmed COVID-19 cases and wastewater SARS-CoV-2 in this campus monitoring program. A 452 

similar observation was reported in another study where node-based sampling strategies were applied 453 

for monitoring different neighborhoods at a range of scales (from 853 to 9,094 serving populations) in 454 

Illinois, USA.43 The authors reported that a correlation between wastewater signals and confirmed 455 

cases varied significantly by neighborhood, and an early warning scenario (-1 week) did not 456 

necessarily result in a better correlation.43  457 
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Similar to other studies correlating wastewater measured SARS-CoV-2 with COVID-19 disease 458 

occurrence was our reliance on clinically confirmed cases to build models. Individuals with 459 

asymptomatic and pauci-symptomatic disease are thusly not captured in this syndromic surveillance-460 

driven manner.44, 45 As university campuses generally comprise a younger cohort relative to the 461 

general population, the number of asymptomatic infections is expected to have been higher.46 462 

Furthermore, as case reporting to University staff was voluntary, it is possible that not all confirmed 463 

cases were properly reported. As data was collected by university staff with the primary intent of 464 

actionability, cases with missing data (i.e., those with inaccurate dates and details on campus 465 

associated movements) were not necessarily followed up on resulting in an incomplete dataset. 466 

Finally, the analysis of both wastewater samples and the corresponding campus-confirmed clinical 467 

cases were confounded by the use of weekly-aggregate data comparisons. As daily reported cases were 468 

discontinuous, and at times relatively low (median=1 and IQR=0-3 for NW; median=0 and IQR=0-1 469 

for NE and SO; med=0 and IQR=0-0 for RH1 and 2), the paired comparison between wastewater 470 

signals and reported cases was difficult for campus sites, which is why comparisons were made using 471 

weekly-aggregate signals. Daily comparisons would allow for a more accurate analysis of the potential 472 

lead time generated through granular WBS, however, such an approach would also create considerable 473 

operational and cost challenges. 474 

4.3. SARS-CoV-2 activity across University campus was lower than the surrounding community  475 

Our results in Fig. 3 and Fig. 4 demonstrated a much lower viral burden in wastewater across the 476 

campus relative to the surrounding community. The relatively low SARS-CoV-2 burden within UofC 477 

campus wastewater likely relates to strict COVID-19 mitigating measures mandated within the 478 

campus. The ‘COVIDSafe Campus’ run by the university during the pandemic47 included mandated 479 

proof of vaccination (or documented weekly-negative testing) in order to attend campus, an enforced 480 

universal masking mandate and wide availability of hand hygiene product, and a consistent effort for 481 

increasing public awareness of COVID-19.  482 
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Recent studies have suggested that similar COVID-19 mitigating strategies employed at other 483 

university campuses have likewise been effective and that universities were not a large source of 484 

disease propagation. For instance, a SARS-CoV-2 phylogenetic study performed at the University of 485 

Michigan, USA, revealed that the descendants of SARS-CoV-2 from student cases were rarely found 486 

in the community during the next wave.48 In another study performed at the University of Cambridge, 487 

UK, the authors revealed that the majority of SARS-CoV-2 genomes from students originated from a 488 

single genetic cluster – the cases occurred after a single event (e.g., social gathering outside the 489 

campus), suggesting a limited introduction of the virus into the community.49 Likewise, we did not 490 

observe new VOC occur earlier within the campus than the general community. Collectively these 491 

studies suggest that the intensive efforts to reduce forward transmission of COVID-19 adopted in 492 

higher education settings could be applied to other contexts to mitigate further disease spread in those 493 

environments. 494 

4.4. Other notable limitations 495 

There are several other noteworthy limitations of this study. For instance, toileting patterns do vary 496 

considerably across space and time. In particular, there have been reports documenting that many 497 

individuals prefer to defecate at home50, and these active cases would therefore be underrepresented in 498 

work-based studies. Accordingly, work (or school)-based studies such as those monitoring campuses 499 

may underestimate the true burden of infected populations within. We attempted to mitigate for this 500 

factor by assessing SARS-CoV-2 RNA concentration both raw, and normalized against fecal and 501 

population surrogates, where we observed the same general trends.  502 

Furthermore, the monitoring in this study was performed when not all students and employees had 503 

fully returned to in-person learning/work; a small number continued to telecommute from home and, 504 

therefore, may not fully represent the entire university community. Thus, care has to be taken when 505 

interpreting our results – the results in this study do not indicate for instance that university members 506 

tend to have lower disease infection rates then populations outside the campus, but rather suggest that 507 

university campus is not the place where high cases per capita exist, or diseases were contained 508 
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relatively well ‘within the campus’. Finally, wastewater-based monitoring at a granular scale may not 509 

fully represent actual case burden within the catchment because individual confounding differences 510 

may have a larger effect relative to community monitoring. Viral shedding may vary by individual51 511 

and the chances of capturing shedding events when autosamplers were being operated are highly 512 

stochastic, etc. We attempted to address this issue by employing 24-hours composite sampling over a 513 

“grab” sampling strategy, and by achieving a reasonably high sample size (i.e., up to 35 points for 514 

weekly aggregated signals from 89 individual data points) followed by various statistics (e.g., non-515 

parametric tests such as Kruskal-Wallis, Wilcoxon tests). In this way, our wastewater results could 516 

provide an “approximate” to the case per capita existing in each monitoring catchment. 517 

To our knowledge, this is the first study to comprehensively assess SARS-CoV-2 (and VOC) burden 518 

across a large university campus using a spatially resolved, nodal based strategy. We have confirmed 519 

the potential of this platform technology to perform population health monitoring through wastewater 520 

analysis. This study has established wastewater-based surveillance is positively associated with 521 

clinical cases at a granular scale, suggesting it can be used synergistically with contact tracing in order 522 

to identify ‘hotspots’ for COVID-19 occurrence across campus (i.e., building). This study also 523 

confirmed the markedly lower rates of SARS-CoV-2 across campus, lending support to the importance 524 

of restrictive measures in mitigating COVID-19’s potential for spread across worksites.  525 
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Figures and Tables 703 

  704 

Figure 1. University of Calgary main campus highlighting different sewershed catchments (colour key is shown in the figure legend). NW, NE, and SO indicate 705 
Northwest, Northeast, and South catchments, respectively. RH1 and 2 represent the two student residence halls. The area MIX (colored in orange) belongs to both 706 
NW, and also NE. Five university buildings outside our monitoring catchments, but which still belong to the main campus were colored in ‘dark grey’. L1 – 64 (in 707 
light grey) represent un-serviced parking lots. The figure was modified from http://www.ucalgary.ca/map. 708 
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 709 

Figure 2. Log10-transformed concentrations (copies/mL) of SARS-CoV-2 N1 and N2 profiles in campus wastewater sub-catchments demonstrate much lower 710 
values relative to the receiving municipal WWTP during the study period (August 31, 2021 – April 30, 2022). WWTP indicates the municipal wastewater treatment 711 
plant servicing the surrounding community, and also UofC main campus. See Fig. 1 for the locations and catchment area. *=missing data. Date (in x-axis) : 712 
dd.mm.yyyy.713 
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 714 

Figure 3. Log10-transformed concentrations of SARS-CoV-2 N1 (left) and N2 (right) by sub-catchment 715 
monitoring location variably demonstrate differences between locations during Period-A (Aug 31, 2021-716 
X) and -B (Y-April 30, 2022) with (upper), and without normalization (lower). See Table 2 and 3 for 717 
the results from Wilcoxon rank-sum tests.718 
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 719 

Figure 4. Log10-transformed cases per capita estimated for UofC according to Eq.1 (for raw-720 
concentration) or Eq.2 (for normalized-concentrations using PMMoV and chemical agents), and 721 
measured for the surrounding community (i.e., WWTP) during the entire monitoring period. Cases per 722 
capita was calculated for each data point (i.e., time point), and displayed using trend lines (linearly 723 
extrapolated between two data points) over time in (a), and using box plots after aggregated by group in 724 
(b). Only paired data points were shown, and statistically compared between each other using 725 
Permutation test. Error bars for the modelled (UofC’s) values indicate IQR (Q1-Q3) derived from 726 
uncertainty analysis (see 2.7). 727 

 728 
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Table 1. Comparing SARS-CoV-2 RNA raw concentrations between different UofC monitoring 729 
locations during Period-A and -B using Wilcoxon rank-sum test. P-adjusted for pairwise comparison 730 
using Benjamini & Hochberg method. Those pairs that statistically differed with (p<0.05) are 731 
highlighted in red.  732 

Period Indicator Location RH2 RH1 NE SO NW 

Period-A N1 

RH1 0.675 - - - - 
NE 0.968 0.650 - - - 
SO 0.026 0.014 0.020 - - 
NW 0.014 0.005 0.005 0.863 - 
WWTP 0.000 0.000 0.000 0.005 0.001 
NE 0.944 0.428 - - - 
SO 0.052 0.020 0.068 - - 
NW 0.038 0.015 0.038 0.736 - 
WWTP 0.000 0.000 0.000 0.002 0.002 

Period-B N1 

RH1 - - - - - 
NE - 0.019 - - - 
SO - 0.156 0.000 - - 
NW - 0.491 0.002 0.006 - 
WWTP - 0.003 0.000 0.013 0.000 
NE - 0.107 - - - 
SO - 0.238 0.001 - - 
NW - 0.829 0.006 0.029 - 
WWTP - 0.000 0.000 0.000 0.000 

 733 
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Table 2. The Fisher’s exact test results (p-value) for testing interdependency between wastewater 734 
SARS-CoV-2 signals and COVID-19 confirmed cases across UofC campus under each assumption. ‘-1 735 
week’, ‘+0 week’, and ‘+1 week’ indicate an early warning, no time lag, and time lag scenario, 736 
respectively (see Fig. S1 in the Supporting Information for details). The results with p < 0.05 were 737 
highlighted in red.  738 

Location 
N1 N2 

(-1 week) (+0 week) (+1 week) (-1 week) (+0 week) (+1 week) 
RH1 0.001 0.000 1.000 0.001 0.000 1.000 
RH2 0.273 0.333 0.333 1.000 1.000 0.083 
NE 0.029 0.008 0.154 0.029 0.071 0.433 
SO 0.021 0.205 0.163 0.002 0.048 0.163 
NW 0.099 0.193 0.063 0.099 0.193 0.063 

 739 

740 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 6, 2023. ; https://doi.org/10.1101/2023.03.03.23286756doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.03.23286756


Table 3. Comparing modelled COVID-19 cases per capita between WWTP and UofC campus using 741 
raw and normalized values. The p-values were calculated using Permutation test (see 2.7), and indicate 742 
the proportion of the number of cases where cases per capita for UofC > cases per capita for WWTP to 743 
1,000 (=the number of total simulation runs). Those pairs that statistically differed with (p < 0.05) are 744 
highlighted in red. 745 

Date Raw 
Normalized 

PMMoV Magnesium Potassium Sodium Calcium Chloride 
18.10.2021 <0.001 0.003 0.003 0.003 0.003 0.003 0.003 
25.10.2021 <0.001 0.003 0.003 0.003 0.003 0.003 0.003 
01.11.2021 <0.001 0.003 0.003 0.003 0.003 0.003 0.003 
08.11.2021 0.247 0.278 0.328 0.578 0.809 0.318 0.658 
15.11.2021 0.981 0.972 0.999 0.999 0.999 0.999 0.999 
22.11.2021 <0.001 0.003 0.003 0.003 0.003 0.003 0.003 
29.11.2021 <0.001 0.003 0.003 0.003 0.007 0.003 0.003 
06.12.2021 <0.001 0.003 0.003 0.003 0.003 0.003 0.003 
10.01.2022 <0.001 0.003 0.003 0.003 0.003 0.003 0.003 
31.01.2022 <0.001 0.003 0.003 0.003 0.003 0.003 0.003 
07.02.2022 <0.001 0.003 0.003 0.003 0.003 0.003 0.003 
21.02.2022 <0.001 0.003 0.003 0.003 0.022 0.003 0.003 
28.02.2022 <0.001 0.003 0.003 0.003 0.124 0.003 0.004 
21.03.2022 <0.001 0.003 0.003 0.003 0.003 0.003 0.003 
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