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Abstract:  

Accurate stratification of coronary artery disease (CAD) risk remains a critical need. A new 
polygenic score (GPSMult) incorporates CAD genome-wide association data across five 
ancestries (>269,000 cases, >1,178,000 controls) with genetic association data for ten CAD 
risk factors. GPSMult associates with an OR/SD 2.14, (95%CI:2.10-2.19,P<0.001) for 
prevalent CAD and HR/SD 1.73 (95%CI 1.70-1.76,P<0.001) for incident CAD. When 
compared with the previously published GPS2018 in external datasets, GPSMult demonstrated 
73%, 46%, and 113% increase in effect size for individuals of African, European, and South 
Asian ancestry, respectively, and significantly outperformed recently published CAD 
polygenic scores. GPSMult identifies individuals with CAD risk extremes, including the top 3% 
of the population at equivalent risk for a new CAD event as those with prior CAD having a 
second event. Integrating GPSMult with the Pooled Cohort Equations results in 7.0% 
[95%CI:5.9%-8.2%,P<0.001] net reclassification improvement at the 7.5% threshold. Large-
scale integration genetic association data for CAD and related traits from diverse populations 
meaningfully improves polygenic risk prediction. 
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INTRODUCTION: 
Coronary artery disease (CAD) remains the leading cause of death worldwide and 

identification of at-risk individuals remains a critical public health need.1 If identified early, at-
risk individuals can benefit from more efficiently targeted lifestyle interventions and 
cholesterol-lowering medications toward lifelong risk mitigation.2 However, commonly used 
clinical risk estimators for CAD were optimized for use in middle-aged adult populations in 
historical cohort studies and consequently underperform in younger populations or 
individuals of non-European ancestries.3–6 As CAD is a heritable disease, leveraging the 
increasing amount of widely available genetic data offers additional opportunities to 
significantly enhance CAD risk prediction across all groups early in life, particularly at the 
extremes of the risk distribution.7,8  

Polygenic scores integrate data from genome-wide association studies into a single 
quantitative and predictive metric of inherited risk.9–12. Several studies to date have stratified 
individuals into substantial gradients of CAD risk based on their polygenic score beyond their 
clinical risk factor profiles.13–17 Given this potential, polygenic scores are now already being 
deployed clinically across some biobanks and returned through direct-to-consumer testing 
platforms.18,19 The past decade has seen numerous advances in score development, 
however, there still remains room for improvement in their performance, particularly among 
individuals of non-European ancestry.20 Simulation studies suggest that larger sample sizes 
of GWAS have the potential to more accurately estimate the effect size associated with each 
SNP to improve scores for CAD.21 Polygenic scores integrating GWAS data from individuals 
of diverse ancestries in addition to that of the target population show relative improvement in 
predictive accuracy compared with methods only utilizing GWAS data from a single ancestry 
source.22–26 Furthermore, the principles of genetic correlation suggest benefit in incorporating 
information from GWAS of related traits to refine polygenic prediction in the trait of 
interest.27–34  

Alongside considerable enthusiasm for polygenic scores to enable a new era of 
preventive clinical medicine is recognition of several key unmet needs before polygenic 
scores can be more widely implemented. First, polygenic scores have reduced predictive 
performance in individuals of non-European ancestry.35 This largely stems from relative 
underrepresentation of other ancestries in prior GWAS discovery cohorts. Recent efforts 
have focused on conducting GWAS in larger and more ancestrally diverse populations and 
designing methods leveraging ancestry-specific linkage disequilibrium patterns to help 
improve score performance.25,36–42 Second, although available scores associate strongly with 
prevalent disease, they perform less well in predicting incident disease, which would offer 
more clinical utility.14 Finally, most risk prediction models to date are based either on genetic 
or clinical risk factors, but better integration of these modalities and estimation of a clinically 
actionable risk estimate is needed.43–45  

To address these needs, we used information from five-fold larger and more 
ancestrally diverse GWAS compilation compared to prior efforts along with methods 
leveraging commonalities in mechanistic pathways to develop a new polygenic risk score for 
CAD. 
 
RESULTS: 

Summary statistics from GWAS for CAD, other atherosclerotic diseases, and their 
risk factors across over 1.2 million individuals from multi-ancestry cohorts were aggregated 
to design polygenic risk scores for CAD (Figure 1, Supplementary Table 1). These scores 
were trained within the UK Biobank cohort in 116,649 individuals of European ancestry and 
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then validated in the remaining independent study population of 325,991 individuals (54.3% 
female, 7281 African, 1,464 East Asian, 308,264 European, and 8,982 South Asian 
ancestry) (Supplementary Table 2).46 The participants in the training and validation cohorts 
are independent from the individuals analyzed in the previously conducted GWAS from 
which summary statistics were obtained. A total of 58 ancestry- and trait-specific scores 
were included in the GPS training analysis, with 32 scores significantly contributing to overall 
prediction after optimization of score selection and weighting through logistic regression 
(Figure 2A and 2B).  
 
Association of GPSMult with prevalent disease in UK Biobank 

The resulting best performing score (GPSMult) demonstrated a strong association with 
prevalent CAD, with significant improvement from previously published scores. Among 
308,264 European ancestry individuals in the hold-out validation dataset, GPSMult was 
associated with an odds ratio per standard deviation increase (OR/SD) of 2.14 (95%CI:2.10-
2.19) in a model adjusted for age, sex, genotyping array, and the first ten principal 
components of genetic ancestry, with significant improvement over from prior published 
scores from the Polygenic Score Catalog without UK Biobank participants in discovery data 
(Supplementary Table 3).47 This corresponded to a Nagelkerke R2 of 0.07 and a logit liability 
R2 of 0.19 (Supplementary Figure 1). After adjusting for correlated clinical risk factors 
including systolic and diastolic blood pressure, LDL cholesterol, HDL cholesterol, 
triglycerides, diabetes, body mass index, and chronic kidney disease, this risk estimate was 
only modestly attenuated to an OR/SD 2.07 (95% CI 2.02-2.13) (Supplementary Table 4). 
The associations between GPSMult and CAD were largely consistent across studied 
subgroups, but some evidence of heterogeneity was found when restricting to men (OR/SD 
2.20, 95% CI 2.15-2.26, p<0.001) when compared with women (OR/SD 1.94, 95% CI 1.86-
2.03, p<0.001), with p-heterogeneity <0.001 (Supplementary Figure 2). Additionally, the 
association between GPSMult and CAD was stronger in younger individuals ages 40-54 years 
(OR/SD 2.17, 95%CI 2.04-2.31, p<0.001) and 55-64 years (OR/SD 2.18, 95%CI 2.11-2.25, 
p<0.001), when compared with older individuals ages 65-75 years (OR/SD 2.08, 95%CI 
2.01-2.15, p<0.001), consistent with recent studies (Supplementary Figure 2).7,48–50 

GPSMult showed stronger association with CAD risk when compared with the 
previously published GPS2018

14 in direct comparison using the same group of individuals for 
validation. Among individuals with CAD, the median percentile of GPSMult is significantly 
higher than that of the GPS2018, 75 (IQR 50 - 91) vs 69 (IQR 43 - 88) (Figure 3A). Among 
individuals of European ancestry, individuals in the bottom and top centile of the polygenic 
score had a 0.8% and 12.3% prevalence of CAD, respectively, with GPS2018, compared with 
0.7% and 16.3% prevalence of CAD with and GPSMult (Figure 3B). Given improved 
stratification with this newly developed polygenic score, both tails of the score distribution 
were associated with a greater magnitude of risk when compared with GPS2018. With the 
GPS2018, the top 8.3%, 3.1%, and 1.4% of the population had 3-fold, 4-fold, and 5-fold 
greater odds for CAD relative to the middle quintile of the population, respectively, whereas 
with the GPSMult, the top 20%, 9.6%, and 4.9% of the population had 3-fold, 4-fold, and 5-fold 
greater odds for CAD relative to the middle quintile of the population, respectively (Figure 
3C, Supplementary Table 5). Conversely, with the GPS2018, the bottom 1.7%, 0.5%, and 
0.1% of the population had 1/3, 1/4, and 1/5 the odds for CAD relative to the middle quintile 
of the population, respectively, whereas with the GPSMult, the bottom 13.9%, 1.7%, and 0.2% 
of the population had 1/3, 1/4, and 1/5 odds for CAD relative to the middle quintile of the 
population, respectively (Figure 3D). 
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Validation of GPSMult in external cohorts 

GPSMult was also strongly associated with prevalent CAD in external cohorts, with 
significant improvement from prior published scores. Published polygenic scores for CAD 
from the Polygenic Score Catalog and GPSMult were calculated in an identical group of 
individuals to facilitate direct comparison within individuals of African and European Ancestry 
in Million Veteran Program51 and South Asian ancestry in Genes & Health52 (Figure 4, 
Supplementary Tables 6-7). For each group, these individuals were not included in 
published GWAS summary statistics39,53 used for GPSMult derivation. Among 33,096 
individuals of African ancestry in the Million Veterans Program, GPSMult was associated with 
an OR/SD of 1.24 (95% CI 1.21-1.29, P<0.001) for CAD in a model adjusted for age, sex, 
genotyping array, and the first ten principal components of genetic ancestry, corresponding 
in a 73% relative improvement in effect size compared with GPS2018 and 39% improvement 
when compared with the recently published PRS2022,

9 respectively (P=0.008). Similarly, 
among 124,467 individuals of European ancestry in the Million Veteran Program, GPSMult 
was associated with an OR/SD of 1.72 (95% CI 1.69-1.75, P<0.001), corresponding in a 
46% and 13.6% relative improvement in effect size compared with GPS2018 and PRS2022,

9 
respectively (P<0.001). Additionally, among 27,990 individuals of South Asian ancestry in 
Genes and Health, GPSMult was associated with an OR/SD of 1.83 (95% CI 1.69-1.99, 
P<0.02), corresponding to a 113% (P<0.001) and 29% (P=0.02) relative improvement in 
effect size compared with GPS2018 and PRS2022, respectively (Figure 4). 

 
Association of GPSMult with incident disease in UK Biobank 

The GPSMult was predictive of incident CAD events over median [interquartile range] 
12.0 [11.2-12.7] years of follow-up across all four ancestral groups in the UK Biobank. 
Across the entire UK Biobank study validation population without prior CAD, individuals in 
the bottom centile of the GPSMult had a 1.1% incidence of CAD while individuals in the top 
centile had a 11.7% incidence of CAD. Overall, GPSMult was associated with a hazard ratio 
per standard deviation (HR/SD) of 1.73 (95% CI 1.70-1.76, P<0.001), compared with HR 
1.49 (95% CI 1.47-1.52, p<0.001) found with GPS2018. When stratified by ancestry, risk 
estimates remained consistent across individuals of East Asian (HR/SD 1.72, 95% CI 1.13-
2.60, P=0.011), European (HR/SD 1.75, 95% CI 1.71-1.78, P<0.001), and South Asian 
(HR/SD 1.62, 95% CI 1.49-1.77, P<0.001) ancestry, but score performance was weakest 
among individuals of African (HR/SD 1.25, 95% CI 1.07-1.46, p=0.004) ancestry (Figure 5A). 
Across all individuals in the UK Biobank validation dataset, GPSMult demonstrated 38% 
relative improvement in effect size compared with GPS2018. Of this, 26% improvement 
resulted from larger sample size of the primary CARDIOGRAMplusC4D GWAS (excluding 
UK Biobank participants), 9% improvement from incorporation of multi-ancestry CAD 
summary statistics, and 3% improvement from leveraging genetic commonalities with CAD 
risk factors to refine score weighting (Figure 5B). Incorporation of multi-ancestry and multi-
trait genetic data resulted in greater relative gains in incident disease prediction for 
individuals in each ancestry, with improved relative effect sizes of 143%, 71%, 38%, and 
23% for individuals of African, East Asian, European, and South Asian ancestry, 
respectively, compared to GPS2018 performance in those groups. These also translated into 
significant gains in prediction by GPSMult relative to the initial GPS2018 performance in 
European ancestry, now with improved prediction in African ancestry (relative effect size 
0.55 increased from 0.23) (Figure 5B) and performance surpassing the reference score in 
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East Asian ancestry (relative effect size 1.37, increased from 0.80) and South Asian 
ancestry (relative effect size 1.19, increased from 0.97). 

 
Assessment of disease risk in the extremes of the GPSMult distribution 

Additionally, we hypothesized that the GPSMult could identify individuals in the 
clinically relevant extreme tails of its distribution. Current cardiovascular disease prevention 
guidelines recommend statin therapy for individuals with prior coronary artery disease, 
peripheral artery disease, ischemic stroke, diabetes mellitus, or severe hypercholesterolemia 
(LDL >=190 mg/dL) to help mitigate their high risk of cardiovascular disease and mortality.2 
In the high end of GPSMult, we sought to identify individuals with genetic risk of equivalent 
magnitude to that of individuals with these clear indications for statin therapy. In prospective 
analyses of individuals without prior CAD, those within the top 3 percentiles of GPSMult had 
equivalent disease risk of incident CAD as the recurrent event risk for an individual who had 
a CAD event prior to enrollment, adjusting for age and sex (Supplementary Figure 3A). 
Furthermore, individuals without peripheral artery disease (PAD) in the top 8% of polygenic 
score distribution had incident CAD risk equivalent to individuals with prior PAD; individuals 
without diabetes in the top 21% of polygenic score distribution had incident CAD risk 
equivalent to individuals with prior diabetes; and individuals without severe 
hypercholesterolemia (estimated untreated LDL cholesterol ≥ 190 mg/dL) in the top 29% of 
polygenic score distribution had incident CAD risk equivalent to individuals with prior 
hypercholesterolemia (Supplementary Figures 3B-D). Conversely, in the low end of the 
GPSMult distribution, individuals in the bottom 5 percentiles were associated with a significant 
reduction in incident CAD risk (HR 0.27, 95%CI 0.21-0.35, P<0.001) when compared with 
the middle quintile (40-59%). When comparing individuals who smoke and are in the bottom 
5 percentiles of GPSMult with non-smokers in the middle quintile, the associated reduction in 
the absolute incidence of CAD offsets approximately 60 pack-years of smoking. 
Furthermore, individuals in the 5-9th percentiles of GPSMult had a significant reduction in 
CAD risk (HR 0.55, 95%CI 0.49-0.62, P<0.001) when compared with the middle quintile. 
These individuals experienced comparable risk reduction as those individuals carrying 
variants in PCSK9 associated lifelong low levels of LDL cholesterol (Supplementary Figure 
4).54,55 

 
Modeling of GPSMult with clinical risk predictors 

A risk prediction approach integrating clinical and genetic risk using the American 
College of Cardiology/American Heart Association Pooled Cohort Equations (PCE),5 
GPSMult, and their interaction in a single model was used to predict 10-year CAD risk 
estimates in the UK Biobank validation population. Accounting for the interaction between 
the polygenic score and clinical risk estimate improves performance beyond the simple 
addition of the two, with lower GPSMult weighting with higher PCE estimates (effect size -
0.60, Pinteraction <0.001). This combined model effectively improved risk prediction when 
compared with PCE alone. When binned by different PCE estimates, this model 
demonstrated striking stratification of CAD incidence across the GPSMult distribution, with 
significant differences observed in ancestry-based subgroups (Figure 6A). The gradient in 
risk predicted by this model from top to bottom centile was largest in South Asian ancestry 
individuals with high PCE risk (5.1% to 29.1%), compared with European ancestry 
individuals (2.6% to 20.6%). When compared with the PCE risk estimate incorporating 
clinical risk factors alone, integration of the PCE with GPSMult contributed to significantly 
higher discrimination and predictive performance across the entire tested population. First, 
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discrimination was assessed in Cox regression models including various covariables using 
Harrell’s C-Statistic. A gradient in improvement was seen using models using age and sex 
alone (C-statistic 0.710, 95%CI 0.706 - 0.715), PCE which is inclusive of age and sex (C-
statistic 0.739, 95% CI 0.735-0.744), and the model integrating PCE, GPSMult and their 
interaction term (C-statistic 0.763, 95%CI 0.759-0.768) (Figure 6B). Similar improvements in 
C-statistic were observed for models tested in subgroups stratified by ancestry 
(Supplementary Table 8). Second, categorized net reclassification improvement (NRI) was 
calculated across the entire study population using a threshold of 7.5% (NRI 0.075) of the 
predicted 10-year risk of CAD, which is the clinically accepted estimated risk threshold for 
recommending initiation of statin therapy for prevention of CAD. The risk model combining 
PCE and GPSMult resulted in significant improvements in the categorical net reclassification 
index (NRI = 7.0%, +8.1% for incident cases and -1.1% for non-cases), with GPSMult 
resulting in greater up classification of risk largely in individuals who go on to develop 
disease (Figure 6C). Third, when compared with established risk enhancing factors for CAD 
risk, categorization within the top 10 percentiles of the GPSMult distribution corresponded to a 
significantly higher net reclassification over the use of PCE estimate alone (3.7%) as 
compared to other risk enhancers like elevated lipoprotein(a) (with NRI 1.3%) 
(Supplementary Figure 5). Similar results in NRI were observed across other ancestries 
(Supplementary Table 9). Additionally, similar trends in predictive performance, 
discrimination, and reclassification were observed with integration of the QRISK score with 
GPSMult (Supplementary Tables 8-9).  

 
Association of GPSMult with recurrent disease in UK Biobank 

 In addition to first events, the GPSMult predicted recurrent CAD events in individuals 
with prior CAD. GPSMult was associated with a HR/SD of 1.13 (95% CI 1.08-1.18, P<0.001), 
comparable to prior studies.56 Although a significantly less pronounced effect estimate as 
compared to prediction of first CAD event, the predictive performance of GPSMult this context 
was comparable to that of diastolic blood pressure (HR 1.11, 95%CI 1.06-1.16,  P<0.001) 
and glycated hemoglobin (HR 1.07, 95%CI 1.02-1.12,  P<0.001) (Supplementary Figure 6).  
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DISCUSSION: 
A new polygenic score for CAD incorporating multi-ancestry summary statistics from 

GWAS for CAD and related risk factor traits on a large scale demonstrated significantly 
improved performance when compared to prior published scores. External validation in fully 
independent datasets derived from the Million Veterans Program and the Genes & Health 
studies, confirming enhanced prediction compared to previously published polygenic scores 
across all studied ancestries. The enhanced predictive capacity of this score was particularly 
pronounced in the extremes of the score distribution, enabling–in some cases–identification 
of healthy individuals with risk of CAD equivalent to those with pre-existing disease. When 
added to risk scores used in current clinical practice, GPSMult significantly improved 
discrimination and reclassification relevant to clinically important decision thresholds, such 
as decision to initiate statin therapy. 

This work builds on prior studies in providing a framework for generating the best 
possible polygenic score for any trait, within the limitations of available GWAS with finite 
sample sizes and under-representation of diverse populations. The GPSMult incorporates 
CAD summary statistics from large non-European ancestry biobanks leading to a total CAD 
GWAS summary statistics of over 269,000 cases and over 1,178,000 controls, including 
many-fold larger representation of individuals of non-European ancestries than previously 
published efforts.39,52,57–59 This results in substantial improvements in prediction for 
individuals of East and South Asian ancestry, reflecting greater representation of summary 
statistics from Biobank Japan and Genes & Health. However, the majority of improvement in 
effect size is attributable to use of summary statistics from the largest CAD GWAS to date 
(CARDIOGRAMplusC4D consortium, excluding UK Biobank participants), particularly in 
European ancestry individuals.9 The modest improvements in prediction observed among 
individuals of African ancestry are likely due to underrepresentation of this group in GWASs 
to date.35 Due to smaller haplotype blocks observed in individuals of African ancestry, a 4- to 
7-fold larger GWAS representation is needed to yield comparable prediction gains.60 The 
additional incorporation of genetic associations with CAD-related risk factors across 
ancestries into calculating GPSMult significantly improves prediction beyond using summary 
statistics from CAD GWAS alone, with impact most notable in individuals of non-European 
ancestry. This may potentially be due to greater representation of these ancestries in the 
discovery GWAS for CAD risk factor traits.61–63 With these additions, the phenotypic variance 
explained by GPSMult for CAD calculated as R2 on the logit-liability scale was 0.19. Although 
this estimate remains below the estimated SNP heritability for CAD of 0.4 - 0.6, it surpasses 
the phenotypic variance explained of 0.14 by the largest component GWAS from the 
CARDIOGRAMplusC4D consortium.39,64,65  

Improvements in polygenic score performance can help better facilitate clinical 
decision making. Prospective trials are already underway returning polygenic risk information 
to patients,66,67 and medical societies have begun to provide provisional guidance on their 
use.68 Furthering these goals, GPSMult is able to better identify individuals at the highest risk 
for developing incident CAD to potentially guide early preventive interventions.69,70 Building 
on prior work advocating for use of polygenic scores as a risk-enhancing factor to guide 
decision making regarding statin therapy in individuals at borderline or intermediate CAD 
risk, the current work more strongly supports use in primary screening across the population 
to target interventions.71 Current cardiovascular prevention guidelines recommend statin 
initiation for individuals solely based on having any of the following conditions as they 
portend a high risk of a new atherosclerotic cardiovascular disease event: prior CAD, 
ischemic stroke, PAD, diabetes, or severe hypercholesterolemia.2 This score identified 3% of 
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the population with equivalent risk for a new CAD event as the risk for a recurrent CAD event 
in individuals who have had prior disease. Similarly, the top 8%, 21%, and 29% of the 
GPSMult distribution–despite having no known CAD–had equivalent risk of incident CAD as 
individuals with prior peripheral artery disease, diabetes mellitus, and severe 
hypercholesterolemia, respectively. Because all three of these designations are currently 
clinical indications for statin therapy, a high GPSMult could be employed to identify additional 
individuals for cholesterol-lowering therapies as an adjunct to current guidelines. 
Furthermore, given the GPSMult’s ability to identify these individuals with the highest 
propensity for developing CAD, these scores could be employed to enrich for high genetic 
risk individuals in CAD prevention trials to maximize event rates and minimize drug trial 
costs.72 The GPSMult could also be employed to identify the individuals with the highest risk 
of recurrent events for targeted, otherwise costly therapies which have been shown to be 
beneficial in this population.73,74 Additionally, GPSMult also identifies individuals in the lower 
end of genetic risk who are seemingly protected from CAD with similar risk reduction as that 
of carriers of variants in the PCSK9 gene leading to lifelong reductions on low-density 
lipoprotein cholesterol.54,55 
 Furthermore, a risk model incorporating polygenic risk with the PCE estimated risk is 
applied to individuals across different ancestries to demonstrate improved predictive 
performance.43,44 This improved performance illustrates the potential for an integrated 
absolute risk prediction model.43–45,75 For example, this model is particularly useful in 
differentiating risk in the high-risk South Asian ancestry population, where traditional clinical 
risk estimators often fail to capture the increased risk associated with this ancestry.4 The 
integration of the GPSMult with PCE builds on prior efforts which demonstrated improvement 
in model discrimination by now showing nearly identical improvement in C-statistic (0.03) in 
between models incorporating i) age and sex, ii) PCE alone, and iii) combined genetic and 
clinical risk across the population.7,76,77 However measures of C-statistic alone are not 
optimal or fully comprehensive in evaluating models that predict future risk.78 GPSMult 
demonstrates nearly three-fold greater net reclassification of CAD cases/noncases when 
added to the PCE 10-year risk assessment to guide statin initiation as compared with 
established ‘risk enhancing factors.’79 Further work is needed to incorporate additional risk 
factors. To aid in future model calibration efforts, there is a need for population-level disease 
incidence and mortality data disaggregated by ancestral sub-groups.67 

These results should be interpreted within the context of limitations. Polygenic scores 
were developed and validated in individuals of European ancestry and then externally 
validated in non-European ancestry populations, and this may be partially contributing to 
poorer predictive performance in these groups. These results underscore the need for larger 
and more representative GWAS studies. UK Biobank participants were recruited at age 40-
69 years, raising the possibility of survivorship or selection bias that limits generalizability to 
younger patients, however recent studies have demonstrated reliable performance of GPS in 
younger age groups.8 All UK Biobank disease endpoints were similarly ascertained through 
participant self-report, diagnosis codes from inpatient admissions, national procedure, and 
death registries. Participants in research studies tend to be healthier than the general 
population80 — recalibration of disease risk models for a given target population may be 
needed prior to clinical deployment.  

In conclusion, incorporating GWAS data for CAD and related traits from multiple 
ancestries on a large-scale leads to significantly improved performance of GPSMult in 
external validation among diverse ancestry populations when compared with previously 
published scores. This approach is generalizable to all traits and results in a polygenic score 
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that is able to better identify individuals at the highest and lowest ends of risk, significantly 
reclassifies risk beyond clinical risk estimators, and has the potential to advance clinical 
decision making.  

 
METHODS: 
Data availability: 

All data are made available from the UK Biobank to researchers from universities and 
other institutions with genuine research inquiries following institutional review board and UK 
Biobank approval. This research was conducted using the UK Biobank resource under 
Application Number 7089 and secondary data use was approved by the Mass General 
Brigham institutional review board. Summary statistics from Biobank Japan are available at 
http://jenger.riken.jp/en/result. Summary statistics for the Coronary ARtery DIsease 
Genomewide Replication and Meta-analysis plus The Coronary Artery Disease Genetics 
consortium (CARDIoGRAMplusC4D) study are available at 
http://www.cardiogramplusc4d.org. Summary statistics from FinnGen are available at 
https://www.finngen.fi/en/access_results.  Summary statistics from Genes & Health are 
available at https://www.genesandhealth.org/research/scientific-data-downloads. Summary 
statistics from the Million Veteran Program are available in dbGaP (accession number 
phs001672). The full GPSMult weights will be made available in the Polygenic Score Catalog.  
 
Study populations: 

The UK Biobank is a prospective cohort study that enrolled over 500,000 individuals 
between the ages of 40 and 69 years between 2006 and 2010.46,81 A detailed questionnaire 
completed by UK Biobank participants at enrolment assessed self-report of ancestry, 
lifestyle factors, including smoking. Anthropometric measurements including body-mass 
index were measured at the initial enrollment visit. Biomarkers including serum lipid 
concentrations and renal function markers were assessed at time of enrolment as part of the 
study protocol. Diagnoses of peripheral artery disease (PAD), diabetes, and hypertension 
were determined based on self-report or hospitalization records confirming a clinical 
diagnosis, as previously described.4,82 

Participants within the Million Veteran Program were recruited from more than 75 
Veteran Affairs Medical Centers nationwide since 2011, with >885,000 individuals currently 
enrolled.51 Each participant has consented to linkage to their electronic medical record, 
wherein ICD9/10 diagnosis codes, Current Procedural Terminology (CPT) codes, clinical 
laboratory measurements, and reports of diagnostic imaging modalities are available. 
Participants were also asked to complete baseline and lifestyle questionnaires to further 
augment data contained in the electronic health record.  

Genes & Health is a UK-based cohort of over 48,000 British Pakistani and 
Bangladeshi individuals recruited and consented for lifelong electronic health record access 
and genetic analysis.52 Medical records are linked to ICD10, OPCS, and SNOMED diagnosis 
and procedural codes across inpatient and hospital settings as well as clinical laboratory 
measurements, and a baseline questionnaire.  

  
Clinical endpoints: 

Ascertainment of CAD at enrollment in the UK Biobank was based on self-report, 
hospitalization records or death registry confirming diagnosis of myocardial infarction or its 
acute complications, or a coronary revascularization procedure (coronary artery bypass graft 
surgery or percutaneous angioplasty/stent placement), as previously described.82,83 The 
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earliest date at which the diagnosis was ascertained was considered as the diagnosis date. 
For individuals with CAD prior to enrollment, recurrence of CAD was determined based on 
diagnosis of a myocardial infarction or revascularization in the follow-up period, as previously 
described.84 

Within the Million Veteran Program, ICD9, ICD10, and CPT codes from both inpatient 
and outpatient encounters were used to curate and classify CAD cases based on having a 
myocardial infarction or undergoing revascularization, identified as subjects with at least two 
codes (of any category) that occurred on distinct dates within a 12 month window, as 
previously described.39 Incident cases were identified as those with the first of the two 
qualifying codes occurring after enrollment. The remaining CAD cases, including through 
self-report, were considered prevalent. 

In the Genes & Health study, ICD10 and SNOMED codes from the linked electronic 
health record were used to classify CAD cases defined as myocardial infarction or 
revascularization based on first diagnosis date, as described elsewhere.53 Prevalent cases 
were defined as events prior to enrollment while events occurring after enrollment were 
designated as incident disease.  
 
GPS construction: 

Summary statistics from recent CAD GWAS studies (Genes & Health, FinnGen, 
Million Veterans Program, Biobank Japan, and CARDIOGRAMplusC4D excluding UK 
Biobank samples) conducted in individuals of diverse ancestries were used to determine 
primary CAD score weights (Supplementary Table 1).9,39,52,57,58 UK Biobank participants were 
not included among these discovery cohorts to preserve them as an independent hold-out 
dataset for training and validation of the GPSMult (Supplementary Table 2). Ancestry-specific 
linkage disequilibrium reference panels were extracted from the 1000 Genomes Project 
phase 3 data to match with the ancestry for the discovery GWAS, and only unrelated 
samples were used.85 GPSMult construction was comprised in a two layer process, with layer 
1 consisting of combining multiple polygenic scores derived from different ancestry-specific 
GWAS data for each trait, and layer 2 consisting of combining the multi-ancestry CAD 
polygenic score with similarly constructed multi-ancestry CAD-related trait scores predicting 
CAD (Figure 1) to generate GPSMult. 

Separate GPS were constructed for each ancestry-stratified CAD GWAS using the 
LDPred2 method, which is a Bayesian approach to calculate a posterior mean effect for all 
variants based on an effect size in the prior GWAS and subsequent shrinkage based on 
linkage disequilibrium.86 Only HapMap3 variants – a set of >1.4 million variants compiled by 
the International HapMap Project which capture common patterns of variation in a variety of 
human populations – were included for score calculation.87 The default parameters used in 
the LDPred2 method included the proportion of variants to be causal (cut-offs of p=1.0x10-04, 
1.8x10-04, 3.2x10-04, 5.6x10-04, 1.0x10-03, 1.8x10-03, 3.2x10-03, 5.6x10-03, 1.0x10-02, 1.8x10-02, 
3.2x10-02, 5.6x10-02, 1.0x10-01, 1.8x10-01, 3.2x10-01, 5.6x10-01 and 1), the scale of heritability 
(s=0.7,1 and 1.4), and whether or not a sparse LD matrix was applied.14,86,88 Combinations of 
these parameters resulted in 102 candidate GPSs for each set of ancestry-stratified GWAS 
summary statistics. The best GPS was selected among these candidates by assessing their 
performance in predicting prevalent CAD in an independent 116,649 individuals of White 
British ancestry from UK Biobank (this data set was used in all the score selection 
procedures thereafter and same group of individuals used to train previously published score 
GPS2018).

14 For selecting the best combination of CAD GPS scores from each ancestry-
specific CAD GWAS for mixing, the discriminative capacities (Akaike information criterion, 
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AIC) of these GPS combinations for predicting CAD were assessed using the stepAIC 
function from R MASS package.89 A logistic regression model was used to estimate the 
mixing weights for each individual ancestry-specific GPS. These GPSs were then linearly 
combined together into a single CADGPS score (layer 1, Figure 1). Similar procedures were 
followed for other atherosclerotic diseases (ischemic stroke, PAD)61,90 and risk factor traits – 
LDL cholesterol, HDL cholesterol, triglycerides62,79, diabetes91, systolic blood pressure92, 
diastolic blood pressure, chronic kidney disease63, body-mass index93 (Supplementary Table 
1, Figure 1).  

Then, these multi-ancestry, trait-specific GPSs were linearly combined with the multi-
ancestry CAD GPS (from layer 1) to generate the final GPSMult (layer 2). Just as for layer 1, 
the discriminative capacities (AIC) of these GPS combinations for predicting CAD were 
assessed to identify the best combination of trait-level scores for mixing.89 A logistic 
regression model was used to estimate the mixing weights for each individual ancestry-
specific GPS using the stepAIC function as described above. These GPSs were then linearly 
combined together into a single GPSMult score (layer 2, Figure 1). Of 58 GWAS- and 
ancestry-specific GPS that went through layers 1 and 2 of selection and mixing, 32 
contributed to the final GPSMult, incorporating GWAS summary statistics from multiple 
ancestries and multiple CAD-related traits (Figure 2). LDPred2 parameters selected for each 
score, whether the score survived after feature selection, and mixing weights from layers 1 
and 2 are listed in Supplementary Table 1.  
 
GPS validation:  

The GPSMult was compared to previously published polygenic scores for CAD. The 
variant effect sizes were downloaded from PGS Catalog and calculated in the same UK 
Biobank validation dataset of 308,264 European ancestry individuals for direct 
comparison.13–15,47,59,70,75,76,94–105 See Supplementary Table 3-5 for score accession numbers 
and performance metrics. The validation datasets were composed of UK Biobank 
participants separate from those used to train the GPSMult. These individuals underwent 
genotyping using the UK BiLEVE Axiom Array or UK Biobank Axiom Array, containing over 
800,000 variants spanning the genome.46 Imputation was performed using the Haplotype 
Reference Consortium resource, the UK10K panel, and the 1000 Genomes panel.85,106,107 
We identified a subset of 488,243 participants with genotyping array data. After additional 
exclusion of 45,602 individuals for high heterozygosity or genotype missing rates, discordant 
reported versus genotypic sex, putative sex chromosome aneuploidy, excess relatedness 
(third-degree relative or closer), withdrawal of informed consent derived centrally, or 
unreported ancestry and 116,650 individuals used for score training, 325,991 individuals 
(54.3% female, 2.2% African, 0.4% East Asian, 92.0% European, and 2.7% South Asian) 
were included in the validation cohort for subsequent analyses. 

Among Million Veteran Program participants, 157,563 individuals not included in the 
previously published CAD GWAS39 were included and comprised of 33,096 (21%) 
individuals of African ancestry and 124,467 (79%) individuals of European ancestry 
(Supplementary Table 2). Individuals were genotyped using the Affymetrix Axiom array and 
imputed to the TOPMed reference panel. Variants and sample quality control were 
previously described.108  

Within the Genes & Health study, individuals not included in the previously published 
CAD GWAS53 were included and comprised 16,874 participants of South Asian ancestry 
(Supplementary Table 2). These individuals underwent genotyping using the Illumina 
Infinium Global Screening Array v3 and imputed using the GenomeAsia pilot reference 
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panel. Variants with low call rate (<0.99), rare variants with minor allele frequency 
(MAF)�<�1%, and variants that failed the Hardy–Weinberg test (p�<�1�×�10−6) in a 
subset of samples with low level of autozygosity were removed.  

Across all cohorts, individuals were analyzed in distinct self-identified groups of 
African, East Asian, European, and South Asian ancestries. The generated polygenic scores 
were residualized for the first ten principal components of genetic ancestry and then scaled 
to a mean of 0 and standard deviation of 1 for each ancestral group.  
 
Statistical analysis: 

Comparison of baseline characteristics between individuals with high or average 
genetic risk based on polygenic score was performed with the Chi-squared test for 
categorical variables, analysis of variance (ANOVA) for a subset of continuous variables with 
normal distributions, and Mann-Whitney U test for continuous variables with nonparametric 
distributions. Individuals with a given magnitude of increased risk were identified by 
comparing progressively higher percentile cut-offs to the middle quintile population in a 
logistic regression model predicting disease status and adjusted for baseline model 
covariates. Individuals were next binned into 100 groupings according to percentile of the 
GPSMult and the unadjusted prevalence of CAD within each bin was determined.  

Risk for prevalent disease was calculated using logistic regression models, including 
baseline model covariates defined as enrollment age, sex, genotyping array, and the first 10 
principal components of genetic ancestry. Risk for incident CAD was calculated using Cox 
proportional-hazards regression models, including baseline model covariates. The proportion 
of phenotypic variance explained by the polygenic score or risk factor of interest on the 
observed scale was calculated using the Nagelkerke’s pseudo-R2 metric– where R2 was 
calculated for the full model inclusive of the variable of interest plus the baseline model 
covariates minus R2 for the baseline model covariates alone. The proportion of phenotypic 
variance explained on the liability scale was similarly calculated using the logit liability R2 
metric, as described elsewhere.109  

To determine the polygenic risk equivalent of a CAD event comparable to risk 
experienced by those with prior CAD, a model was constructed comparing three groups and 
monitored for a CAD event in the follow-up period: individuals with prior CAD, individuals 
without prior CAD in different groupings of the top distribution of GPSMult (high GPSMult) and 
the remaining individuals without prior CAD. Sequentially lower percentile cut-offs for this 
high GPSMult group were tested to find the grouping with equivalent risk increase for CAD as 
those with prior CAD. This analysis was repeated for diabetes mellitus, PAD, and severe 
hypercholesterolemia (LDL cholesterol ≥190 mg/dL). In the lower tail of GPSMult, the risk for 
incident CAD was calculated in individuals in the bottom 5 percentiles or 5-9th percentiles of 
GPSMult relative to those in the middle quintile, using Cox proportional hazards regression 
models including baseline model covariates. The prevalence of CAD among individuals in 
the bottom 5 percentiles of GPSMult was calculated, stratified by 20 pack-years smoking 
increments and compared with the prevalence of CAD in non-smokers in the middle 40-59 
percentiles to estimate equivalent offset risk. 

Cox proportional hazards models were used to estimate hazard ratios for incident 
CAD in the UK Biobank, with covariates of the first 10 principal components. In model 1, only 
age and sex were modeled with the covariates. In model 2, only the clinical risk estimator – 
ACC/AHA Pooled Cohort Equations (PCE)5 or QRISK36 – was modeled with the covariates. 
In model 3, GPSMult, clinical risk estimator, and the interaction term of GPSMult with the 
clinical risk estimator, and the first 10 principal components of genetic ancestry are modeled. 
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The 10-year incidence of CAD for individuals grouped by GPSMult percentile and stratified by 
ancestry group was quantified using model 3 standardized to four PCE risk levels (mean 10-
year risk of atherosclerotic cardiovascular disease as low (<5%), borderline (5 to <7.5%), 
intermediate (≥7.5 to <20%), and high (≥20%)) and the means of each of the covariates. The 
discrimination of each of these predictive models was assessed using Harrell’s C-statistic. 
The improvement in predictive performance of the addition of the GPSMult to the PCE or 
QRISK3 was evaluated using continuous and categorized net reclassification improvement 
(NRI), with a risk probability threshold of 7.5% obtained with Kaplan-Meier estimates for a 
period of 10 years and 95% confidence intervals obtained from 100-fold bootstrapping. All 
statistical analyses were performed with the use of R software, versions 3.5 and 3.6 (R 
Project for Statistical Computing).  
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FIGURES AND TABLES: 
 
Figure 1: Overview of GPSMult development 

 
 
Polygenic scores for coronary artery disease (CAD) were constructed using ancestry-
stratified, cohort-specific summary statistics from CAD and CAD-related traits, resulting in 58 
GPS across all traits and ancestries. For each source trait (e.g., CAD) the best performing 
combination of ancestry-stratified, cohort-specific GPS was determined based on ability to 
predict CAD, selected using stepAIC, and their optimal mixing weights ( ) determined using 
logistic regression in 116,649 individuals of European ancestry in the UK Biobank training 
dataset. The selected GPSs were linearly combined using these mixing weights to yield 
multi-ancestry scores predicting CAD from each source trait (layer 1). The best performing 
combination of multi-ancestry, trait-specific GPSs in predicting CAD was determined using 
stepAIC, and their optimal mixing weights ( ) were determined using logistic regression in 
116,649 individuals of European ancestry in the UK Biobank training dataset. The selected 
GPSs were linearly combined using these mixing weights to yield GPSMult (layer 2). GPSMult 

was validated with prediction of CAD in the UK Biobank and externally validated in Million 
Veteran Program and Genes & Health Studies in hold-out populations not included in score 
training. Ancestries: AFR – African; EA – East Asian; EUR – European; SA – South Asian. 
Source GWAS traits: CAD9,39,53,57,110, body mass index (BMI)57,93, ischemic stroke57,90,111, 
diabetes mellitus (DM)91,111,112, peripheral artery disease (PAD)57,61,110, chronic kidney 
disease (CKD)57,63, systolic blood pressure (SBP)57,113, diastolic blood pressure (DBP)57,113, 
low-density lipoprotein cholesterol (LDL)57,62,79, high-density lipoprotein cholesterol 
(HDL)57,62,79, triglycerides (TG)57,62,79.  
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Figure 2: Trait-specific component polygenic score performance and ancestry-specific 
polygenic score composition of GPSMult 

 
A: The odds ratios for prevalent coronary artery disease (CAD) risk per standard deviation 
increase of the multi-ancestry, trait-specific layer 1 GPSs were assessed in logistic 
regression models adjusted for age, sex, genotyping array, and the first ten principal 
components of ancestry in the same training group of 116,649 UK Biobank European 
ancestry individuals. B: The contributing weights of each of the ancestry-specific GWAS-
based GPS to each of the trait-based layer 1 polygenic scores, color groupings by ancestry 
of source GWAS, and normalized to 100% to reflect composition in overall GPSMult. Of 58 
ancestry- and trait-specific scores that were included in the GPS training analysis, 32 scores 
significantly contributed to overall prediction in GPSMult after optimization of score selection 
with stepAIC and weighting through logistic regression. GPS: genomewide polygenic score; 
LDL: low-density lipoprotein; HDL: high-density lipoprotein 
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Figure 3: Improvements in polygenic prediction of prevalent coronary artery disease 
prediction  

 
 
A: Distributions of GPS2018 and GPSMult percentiles across the UK Biobank validation dataset. 
B: Prevalence of CAD with 95% CI according to 100 groups of the UK Biobank validation 
dataset binned according to the percentile of the GPS2018 and GPSMult. C: Proportion of UK 
Biobank validation population with 3, 4, and 5-fold increased risk for CAD versus the middle 
quintile of the population, stratified by GPS. Odds ratio assessed in a logistic regression 
model adjusted for age, sex, genotyping array, and the first ten principal components of 
ancestry. D: Proportion of UK Biobank testing population with 1/3, 1/4, and 1/5 risk for CAD 
versus the middle quintile of the population, stratified by GPS. Odds ratio assessed in a 
logistic regression model adjusted for age, sex, genotyping array, and the first ten principal 
components of ancestry. GPS: Genome-wide polygenic score; CAD: coronary artery 
disease.  
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Figure 4: External validation of GPSMult and benchmarking against published polygenic 
scores for coronary artery disease across multiple ancestries in Million Veteran Program and 
Genes & Health studies.

 
 
The odds ratio for prevalent coronary artery disease (CAD) risk per standard deviation 
increase of the polygenic score was assessed in a logistic regression model adjusted for 
age, sex, genotyping array, and the first ten principal components of ancestry in the same 
group of individuals per cohort: African ancestry individuals in Million Veteran Program; 
European ancestry individuals in Million Veteran Program; South Asian ancestry individuals 
in Genes & Health, using high-performing published scores from the Polygenic Score 
Catalog (GPS2018

14, metaGRS13, metaPRSCAD
23, AnnoPredCAD

104, PRSCSCHD
75, and PRS2022

9) 
and current GPSMult.

47 Results for these and remaining CAD polygenic scores published in 
the Polygenic Score Catalog are available in Supplementary Tables 6-7. GPS: Genome-
wide polygenic score  
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Figure 5: Incident CAD prediction by GPSMult stratified by ancestry

 
A: Adjusted hazards ratio per standard deviation of the polygenic score with corresponding 
95% CIs and P values for coronary artery disease (CAD) by ancestry, stratified by iteration 
of the version of the polygenic score, calculated from Cox proportional-hazards regression 
models adjusted for age, sex, genotyping array, and the first ten principal components of 
ancestry in the UK Biobank validation dataset. GPS2018 corresponds to previously published 
polygenic score for CAD.14 B: The score effect sizes relative to the effect size of GPS2018 in 
European ancestry individuals. >3-fold larger CAD GWAS designates metrics for polygenic 
score generated using summary statistics from the most recent  Coronary ARtery DIsease 
Genomewide Replication and Meta-analysis plus The Coronary Artery Disease Genetics 
consortium (CARDIOGRAMplusC4D) excluding the UK Biobank, of largely European 
ancestry. Multi-ancestry CAD GWAS refers to the polygenic score generated by combining 
ancestry-specific polygenic scores generated using GWAS summary statistics from 
CARDIOGRAMplusC4D, Genes & Health, Biobank Japan, Million Veteran Program, and 
FinnGEN biobanks in layer 1. GPSMult designates polygenic score for CAD designed with 
summary statistics from multiple ancestries and multiple CAD-related traits in layer 2. 
*Designates the reference group for calculating relative gain. GPS: Genome-wide polygenic 
score; CAD: coronary artery disease; GWAS: genome-wide association study. 
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Figure 6: Discrimination and reclassification by a model integrating polygenic and clinical 
risk for incident CAD 
 

 
 
A: Cumulative incidence of coronary artery disease (CAD) over 10 years predicted by 
modeling GPSMult, AHA/ACC Pooled Cohort Equations (PCE) 10-year risk estimate, and 
their interaction in the UK Biobank validation dataset binned according to the percentile of 
the GPSMult, grouped by risk categories of the PCE (mean 10-year risk of atherosclerotic 
cardiovascular disease as low (<5%), borderline (5 to <7.5%), intermediate (≥7.5 to <20%), 
and high (≥20%)), and stratified by ancestry. B: C-statistics are based on 10-year follow-up 
events from Cox regression models of listed variables. PCE includes age and sex variables 
in its risk estimation. C: The improvement in the predictive performance of the addition of the 
GPSMult to the PCE was evaluated using continuous and categorised net reclassification 
improvement (NRI), with a risk probabilities threshold of 7.5% obtained with Kaplan-Meier 
estimates for a period of 10 years and confidence intervals (95%) obtained from 100-fold 
bootstrapping. GPS: genome-wide polygenic score. 
 
 
 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 5, 2023. ; https://doi.org/10.1101/2023.03.03.23286649doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.03.23286649

